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Introduction

What are we trying to do?

Understanding economic crises and economic stability via
disordered systems methods




Introduction

In the beginning

@ Hatchett & Kiihn 2006 : Effect of economic interactions on
credit risk presents a simple model of economic interaction
and study the contagion effects.

@ The contagion mechanism is cast as a linear threshold model
with noise

@ Some mean-field results, but few results for sparse or
heterogeneous networks



Introduction

Model setting

o We take a weighted graph of size N

@ Each node has an initial wealth 6;, and a state n;; = 0,1
(“active” and “defaulted”)

e Each edge has weights (w;;, wj;) ~ py(wij, wj;)
@ Every time a neighbor j defaults, node 7 loses w;; from his
wealth.
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Model setting

@ at time ¢, a node defaults (n;—1 = 0,n; = 1) with some
transition probability W; taken to be of the form

Wi (1 [ > Nji—1wij — 0; — fo,t])
9¢ |jeos
@ £y system-wide bias — “global economic condition”
o Reference case: Wi(x) = ®(z), &or=&0, oe=1
@ we write
n(t) = ((),... 7071717...)
)

t



Introduction

Simple model: large connectivity

@ Large-but-dilute connectivity limit with Gaussian interactions
and noise

@ Erdos-Renyi case : narrow degree distribution, largely
equivalent to regular networks
— only the wealth appears as a node disorder

@ wealth and connectivity patterns are uncorrelated — uniform
(large) sampling at each node

— Dynamics are equivalent to that of the complete graph
(Corollary: all unbiased connectivity systems whose minimum
degree is large enough are largely equivalent)
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Effective dynamics on the complete graph

default rate at given wealth
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Cavity solution

What happens with small degrees?

@ we want to compute m; for (sparse) random graphs
@ we consider a node i with degree k; and initial wealth 6;

@ What is the marginal default probability at time ¢ of this node
?
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Cavity solution : key insights

Consider a central node defaulting at ¢;:

@ before t;, it doesn't influence its neighbors
o after t;, its neighbors do not influence it

— no memory effects
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Cavity solution : reasoning |

o if the graph is a tree, we can write
pit) = > piltil{m};e00) [ pimilts)
{7i},coi j€di
@ and likewise
pi(rilt) = > pi(milta {mheapd) 11 pi(nlms)
{m}icojvi l€dj\i

o if a neighbor defaults after the node, the default time has no
importance

vr' > 1, p(rlr’) = p(r|T) = p(7)
I
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Cavity solution : reasoning |l

@ Similarly,
VT>t7 p(t|7-77—27'” 7Tn) :p(t|t77—27'” 77-71)
@ hence Vr € 9j5\i,

Zp] T]|t’bv{7—l}l€6]\z H Db Tl’Tj

ledj\i

Z pj(7j|ti7 {Tl}leaj\i)pr(Tr) H pi(m)

T <Tj 1€dj\{i,r}

+pj (Tj|tiv{7'l}l68j\i> DI CON I | D

<7 1€05\{i.r}
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Cavity : conclusion

@ Main point : everything can be computed from the p, which
follow a forward-integration relation

=257 X T IT - Yot

Ty Th—1€{1, , 7T <T l|m=T1 <
k—1
X <P (7’\9, Zwln(n)>> ,
I=1 0,w
where
t—2
P(t|0,h) = Wiy (hy—1 — 0) [] [1 = Wi (0 — h)]

s=0
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Cavity : result

@ and from there,

p®)=>_pk) > ] e ] [l Zp(n)]

T Tk 1<t llm=t /<t
6{17 7t}

k—1
X <P (t!&,zwln(n)>> ;
=1 0,w
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Conclusion

Forward integration instead of fixed-point equation
— Easily done numerically
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numerical results : homogeneous networks

homogeneous graph, c=1.5
0.07 T T T

—#— Simulation
—e— Cavity
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homogeneous graph, c=10
0.05 T T T T

mean defaulted fraction as a function of time for a homogeneous network, ¢ = 10
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numerical results : heterogeneous networks

heterogeneous graph, k. =1

0.07 T T T

—— Simulation
—&— Cavity

mean defaulted fraction as a function of time for a heterogeneous, network, (k) = 1.3
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heterogeneous graph, k . =5

0.05 T T T

mean defaulted fraction as a function of time for a heterogeneous network, (k) = 10
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numerical results : network size

relative error with system size

relative error
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system size

deviation from cavity for different network sizes



Numerical results

numerical results : interaction strength

defaulted fractions
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Defaulted fractions for different mean interaction strength : simulation (circled) and

theori. Network size is set at N = 500.
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extensions and new directions

From this point, many different fields of investigations

current research directions

@ Study of rare events and large deviations

@ Interaction with other contagion channels — asset overlap
contagion

@ Inclusion of recovery aspects — extension to SIR model

e Examination of regulatory policy: do CCPs (Central
Counter-Party clearing house) limit systemic risk?
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Large deviation

introduction

Two related questions

@ what is the probability of a large-scale crisis?

@ How sensitive is the model to external shocks/bias?




Large deviation

Effect of macro-economic bias

How sensitive is the economy to a downturn? J

@ Many ways to bias the trajectories toward default or survival

@ in our model: & parameter represents global economic
conditions— &y ~ N (0,0.2)

@ distribution over &y induces a distribution over the defaulted
fraction

@ right tail of the distribution — sensitivity of the economy to a
(large) downturn
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macro-economic forcing

default probability distributions
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End-of-year defaulted fraction distribution (induced): simulation (blue), cavity (red),
non-interacting case (green)
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Crisis distribution

What is the intrinsic probability of a large-scale crisis ? J

@ Numerically: difficult to probe the tail of the default
distribution

@ Analytically: compute the rate function via the Gartner-Ellis
theorem

1
— compute pu(y) = N log <exp1/;2nz-,T>

— another way of biasing the trajectories toward default

@ problem: solving the equations is not obvious
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simple case

@ Simplest case: identical wealth, regular graph, fixed couplings,
two time steps

@ can derive low-1, high-i) expansion easily
o for the complete rate function: Newton method

e scaling : ~ T2, x sampling needed for desired precision for
random processes (e.g. random couplings), x number of steps
needed for convergence (depends on wanted precision)

— limiting factor: if high precision is needed, can only
accommodate limited sources of disorder



analytic equations

rak—1l 4+ (1— T)yk_l + (1 =7)fu(y,2) (6¢ — 1)
rab + (1 =7r)y* + (1= 7)f(y,2) (¥ — 1)

raf 4+ (1 -y (1) fy(y, 2) (¥ — 1) (3)
raf + (1 —r)y* + (1 =7)fo(y, 2) (¥ — 1)

rak-1

rak 4+ (1 —r)yk + (1 —7) fo(y, 2) (e¥ — 1)




Gartner-Ellis theorem

wu(v) E% log <exp P Z n,-7T> (4)
—1log [m’f F (1= + (=) foly, z) (ew - 1)] (5)
- g(y2 +2z(x —y) — 1)

Gartner-Ellis theorem
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result

large deviation
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default probability at 7" = 2: large deviation prediction (blue) and simulations (red) for
N = 500
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current questions

annealed computation for a non self-averaging problem

@ simple case: not a problem (only one homogeneous regular
tree, error needs more than one time step)

@ if more complicated: lesser agreement, but is it still usable

@ the heuristics of self-averaging-or-not are unclear

scaling

Can we make the computation scale well with more time steps and
disorder 7
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Spillover effects

@ Interesting extension of the model: inclusion of asset overlap
contagion

@ A firm, short on liquidity, sells a large amount of assets in a
short time — asset price drops — wealth position drops for
everyone holding this asset: 6; — 6} < 6;.

@ in our model : only one asset class, firm sells when
Oir < fex0;

Oip = r(d) ;i — > wijeinjs — Eog

with 7(d) = (1 +rody) 71,
@ d; : fraction of distressed firms at time ¢.
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fire-sales : numerical comparison

Fire-sales — dramatic contagion enhancement

Pm,,)
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ongoing work

current questions

@ What happens with more than one asset class?
@ What happens with many more asset classes?

@ How do we get better heuristics?
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introduction

@ It is possible to add any number of features to the model as
long as they do not affect irreversibility or insensitivity to
future states

@ e.g. : recovery of lost funds with various set recovery scenario
is possible

@ restriction : scenario chosen cannot depend on future state
(field post default), but can depend on field at default.

e example : neighbors recover n% of lost funds every time step
after default, n ~ U[0, 50]



Recovery

time evolution of defaulted fraction
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mean defaulted fraction: simulations (blue circles) and analytic predictions (red)
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default probability distributions
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End-of-year default probabilities without recovery (blue), with recovery (red,
Nmaz = 50), and without interaction(green)
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Coming Soon (Sorry!) J
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Current issues

many unanswered questions

@ It's unclear what the limitations of our annealed computations
are

@ lots of numerics, but few heuristics

@ unrealistic networks, and difficult to improve on it




Thank you ! J




