

CSC/CBP COMPUTATIONAL BIOLOGICAL PHYSICS

Ergodicity breaking in p-spin glass models and FPU problem

in collaboration with **Silvio Franz** LPTMS, Paris Sud - Orsay

Gino Del Ferraro

KTH Royal Institute of Technology, Stockholm

OUTLINE:

- Brief overview on the FPU problem
- 2+p-spin spherical models

Investigate metastable states:

- Effective Potential Method
- Disorder and Replicas
- Looking for minima

Dynamics:

- evolution of correlation and response functions
- 3-spin spherical model partitioned in two interacting subsystems

Brief overview on FPU problem

FPU problem

Potential Method

2+4 p-spin spherical Model Potential Method Disorder and replicas Looking for minima

> Hamiltonian dynamics

Generic equation of dynamics

Correlation and Response

> Lagrangian multiplier

3=p-spin spherical Model Potential Method

Correlation and Response

Future developments

$$H = \sum_{i=0}^{N} \left[\frac{p_i^2}{2m} + \frac{K}{2} (q_{i+1} - q_i)^2 + \frac{\epsilon}{\alpha} (q_{i+1} - q_i)^{\alpha} \right]$$

[Fermi, E., Pasta, J., & Ulam, S. (1955). Studies of nonlinear problems. Los Alamos Scientific Laboratory Report No. LA-1940] [Cencini, M., Cecconi, F., & Vulpiani, A. (2009). Chaos. From simple Models to Complex Systems. World Scientific.]

Brief overview on FPU problem

FPU problem

Potential Method

2+4 p-spin spherical Model Potential Method Disorder and replicas Looking for minima

> Hamiltonian dynamics

Generic equation of dynamics

Correlation and Response

> Lagrangian multiplier

3=p-spin spherical Model Potential Method

Correlation and Response

Future developments

$$H = \sum_{i=0}^{N} \left[\frac{p_i^2}{2m} + \frac{K}{2} (q_{i+1} - q_i)^2 + \frac{\epsilon}{\alpha} (q_{i+1} - q_i)^{\alpha} \right]$$

[Fermi, E., Pasta, J., & Ulam, S. (1955). Studies of nonlinear problems. Los Alamos Scientific Laboratory Report No. LA-1940] [Cencini, M., Cecconi, F., & Vulpiani, A. (2009). Chaos. From simple Models to Complex Systems. World Scientific.]

for $\epsilon = 0$ \longrightarrow Integrable

Using the normal modes

$$a_k = \sqrt{\frac{2}{N+1}} \sum_n q_n \sin\left(\frac{n\,k\,\pi}{N+1}\right) \qquad (k = 1, \dots, N) \,,$$

Brief overview on FPU problem °

FPU problem

Potential Method

2+4 p-spin spherical Model Potential Method Disorder and replicas Looking for minima

Hamiltonian

dynamics

Generic equation of dynamics

Correlation and Response

> Lagrangian multiplier

3=p-spin spherical Model Potential Method

Correlation and Response

Future developments

$$H = \sum_{i=0}^{N} \left[\frac{p_i^2}{2m} + \frac{K}{2} (q_{i+1} - q_i)^2 + \frac{\epsilon}{\alpha} (q_{i+1} - q_i)^{\alpha} \right] / (q_i + 1 - q_i)^{\alpha}$$

[Fermi, E., Pasta, J., & Ulam, S. (1955). Studies of nonlinear problems. Los Alamos Scientific Laboratory Report No. LA-1940 [[Cencini, M., Cecconi, F., & Vulpiani, A. (2009). Chaos. From striple Models to Complex Systems. World Scientific.]15000. t

- ഗ

for $\epsilon = 0$ \longrightarrow Integrable

Using the normal modes

$$a_k = \sqrt{\frac{2}{N+1}} \sum_n q_n \sin\left(\frac{n\,k\,\pi}{N+1}\right) \qquad (k = 1, \dots, N)\,,$$

→ N non-interacting harmonic oscillators frequencies

$$\omega_k = 2\sqrt{\frac{K}{m}} \sin\left(\frac{k\pi}{2(N+1)}\right)$$

energies

$$E_k = \frac{1}{2} \left[\left(\frac{\mathrm{d}a_k}{\mathrm{d}t} \right)^2 + \omega_k^2 a_k^2 \right] = const.$$

equipartition law

$$\langle E_k \rangle = \frac{E_{tot}}{N}$$

Brief overview on FPU problem

Potential Method

2+4 p-spin spherical Model

Potential Method Disorder and replicas

Looking for minima

Hamiltonian dynamics

Generic equation of dynamics

Correlation and Response

> Lagrangian multiplier

3=p-spin spherical Model Potential Method

Correlation and Response

Future developments

for $\epsilon \neq 0 \longrightarrow$

→ Non-integrable

Fig. 14.1 Normalized modes energies $E_k(t)/E_{tot}$ for k = 1 (solid line), k = 2 (dashed line) and k = 3 (dotted line) obtained with N = 32, $\alpha = 3$ and $\epsilon = 0.1$. The initial condition is $E_1(0) = E_{tot} = 2.24$ and $E_k(0) = 0$ for $k = 2, \ldots, 32$. [Courtesy of G. Benettin]

Fig. 14.2 Time averaged fraction of energy, in modes k = 1, 2, 3, 4 (bold lines, from top to below), the dashed line shows the time average of the sum from k = 5 to N = 32. The parameters of the system are the same as in Fig. 14.1. [Courtesy of G. Benettin]

[Cencini, M., Cecconi, F., & Vulpiani, A. (2009). Chaos. From simple Models to Complex Systems. World Scientific.]

Brief overview on FPU problem

Potential Method

2+4 p-spin spherical Model

Potential Method Disorder and replicas

Looking for minima

Hamiltonian dynamics

Generic equation of dynamics

Correlation and Response

> Lagrangian multiplier

3=p-spin spherical Model

Potential Method

Correlation and Response

Future developments

for $\epsilon \neq 0 \longrightarrow$

→ Non-integrable

Fig. 14.1 Normalized modes energies $E_k(t)/E_{tot}$ for k = 1 (solid line), k = 2 (dashed line) and k = 3 (dotted line) obtained with N = 32, $\alpha = 3$ and $\epsilon = 0.1$. The initial condition is $E_1(0) = E_{tot} = 2.24$ and $E_k(0) = 0$ for $k = 2, \ldots, 32$. [Courtesy of G. Benettin]

Fig. 14.2 Time averaged fraction of energy, in modes k = 1, 2, 3, 4 (bold lines, from top to below), the dashed line shows the time average of the sum from k = 5 to N = 32. The parameters of the system are the same as in Fig. 14.1. [Courtesy of G. Benettin]

[Cencini, M., Cecconi, F., & Vulpiani, A. (2009). Chaos. From simple Models to Complex Systems. World Scientific.]

Fermi-Pasta-Ulam problem

$$H = \sum_{i=0}^{N} \left[\frac{p_i^2}{2m} + \frac{K}{2} (q_{i+1} - q_i)^2 + \frac{\epsilon}{\alpha} (q_{i+1} - q_i)^{\alpha} \right]$$

2+4 p-spherical spin Hamiltonian

$$H = \frac{1}{2} \sum_{i} p_i^2 - \sum_{i < j} J_{ij} s_i s_j - \sum_{i < j < k < l} J_{ijkl} s_i s_j s_k s_l + \frac{\mu_x(t)}{2} (\sum_{i} s_i^2 - N)$$

FPU problem

Potential Method

2+4 p-spin spherical Model Potential Method

Disorder and replicas

Looking for minima

Hamiltonian dynamics

Generic equation of dynamics

Correlation and Response

> Lagrangian multiplier

3=p-spin spherical Model Potential Method

Correlation and Response

Future developments

2+4 P-spin spherical model

- Effective Potential Method -

Potential Method

FPU problem

Two systems (the same) at two different temperatures

Potential Method

2+4 p-spin spherical Model Potential Method Disorder and replicas Looking for minima

> Hamiltonian dynamics

Generic equation of dynamics

Correlation and Response

> Lagrangian multiplier

3=p-spin spherical Model Potential Method

Correlation and Response

Future developments

Reference system

$$P(\underline{s}) = \frac{\exp\left(-\beta' H_J[\underline{s}]\right)}{Z(\beta')}$$

Overlap:
$$Q(\underline{s}, \underline{\sigma}) = \frac{1}{N} \sum_{i} s_i \sigma_i$$

$$P(\underline{\sigma}) = \frac{\exp\left(-\beta H_J[\underline{\sigma}]\right)}{Z(\beta)}$$

Potential Method

FPU problem

Potential Method

2+4 p-spin spherical Model Potential Method Disorder and replicas Looking for minima

Hamiltonian dynamics

Generic equation of dynamics

Correlation and Response

> Lagrangian multiplier

3=p-spin spherical Model Potential Method

Correlation and Response

Future developments

Two systems (the same) at two different temperatures

Reference system

$$P(\underline{s}) = \frac{\exp\left(-\beta' H_J[\underline{s}]\right)}{Z(\beta')}$$

Overlap:
$$Q(\underline{s}, \underline{\sigma}) = \frac{1}{N} \sum_{i} s_i \sigma_i$$

Constrained free-energy

$$F(\underline{s},\beta,\tilde{p}) = \lim_{N \to \infty} -\frac{1}{\beta N} \ln \int d\underline{\sigma} \, \mathrm{e}^{-\beta \mathrm{H}[\underline{\sigma}]} \, \delta(\tilde{p} - \mathrm{Q}(\underline{s},\underline{\sigma}))$$

Potential Function

$$V(\tilde{p},\beta,\beta') = \lim_{N \to \infty} -\frac{1}{\beta N} \overline{\int d\underline{s}} \, \frac{\mathrm{e}^{-\beta' \mathrm{H}[\underline{s}]}}{Z(\beta')} \ln \int d\underline{\sigma} \, \mathrm{e}^{-\beta \mathrm{H}[\underline{\sigma}]} \, \delta(\tilde{\mathrm{p}} - \mathrm{Q}(\underline{s},\underline{\sigma}))$$

[Franz, S., & Parisi, G. (1995). Recipes for metastable states in spin glasses. Journal de Physique I, 5(11), 1401-1415]

Probe system

 $P(\underline{\sigma}) = \frac{\exp\left(-\beta H_J[\underline{\sigma}]\right)}{Z(\beta)}$

FPU problem

$V(\tilde{p},\beta,\beta') = \lim_{N \to \infty} -\frac{1}{\beta N} \overline{\int d\underline{s}} \, \frac{\mathrm{e}^{-\beta' \mathrm{H}[\underline{s}]}}{Z(\beta')} \ln \int d\underline{\sigma} \, \mathrm{e}^{-\beta \mathrm{H}[\underline{\sigma}]} \, \delta(\tilde{\mathrm{p}} - \mathrm{Q}(\underline{s},\underline{\sigma}))$

V(p,T) - F(T)

Potential Method

2+4 p-spin spherical Model Potential Method

Disorder and replicas

Looking for minima

Hamiltonian dynamics

Generic equation of dynamics

Correlation and Response

> Lagrangian multiplier

3=p-spin spherical Model Potential Method

Correlation and Response

Future developments

$V(\tilde{p},\beta,\beta') = \lim_{N \to \infty} -\frac{1}{\beta N} \overline{\int d\underline{s}} \, \frac{\mathrm{e}^{-\beta' \mathrm{H}[\underline{s}]}}{Z(\beta')} \ln \int d\underline{\sigma} \, \mathrm{e}^{-\beta \mathrm{H}[\underline{\sigma}]} \, \delta(\tilde{\mathrm{p}} - \mathrm{Q}(\underline{s},\underline{\sigma}))$ **FPU** problem **Potential Method** 0.16 2+4 p-spin V(p,T) - F(T)0.14 spherical Model 0.12 **Potential Method Disorder and** 0.1 Function V(p) replicas $T > T_d$ 0.08 Looking for minima 0.06 0.04 Hamiltonian dynamics 0.02 **Generic equation** 0 0.1 0.2 0.3 0.5 0.6 0.7 0.8 0.9 0.4 of dynamics 0 Overlap p

[S. Franz and G. Semerjian. Analytical approaches to time and length scales in models of glasses in Dynamical heterogeneities in glasses, colloids and granular materials. Oxford University Press, 2011.]

3=p-spin spherical Model Potential Method

Correlation and

Response

Lagrangian multiplier

Correlation and Response

Future developments

Correlation and Response

> Lagrangian multiplier

3=p-spin spherical Model Potential Method

Correlation and Response

Future developments

Correlation and Response

> Lagrangian multiplier

3=p-spin spherical Model Potential Method

Correlation and Response

Future developments

Correlation and Response

> Lagrangian multiplier

3=p-spin spherical Model Potential Method

Correlation and Response

Future developments

Correlation and Response

> Lagrangian multiplier

3=p-spin spherical Model Potential Method

Correlation and Response

Future developments

Correlation and Response

Lagrangian multiplier

3=p-spin spherical Model Potential Method

Correlation and Response

Future developments

for
$$T \in [T_K, T_d]$$

free energy

$$F(T) = f^*(T) - T\Sigma(f^*(T))$$

potential

1

$$V(p_{min}(T), T) - F(T) = T\Sigma(f^*(T))$$

Correlation and Response

> Lagrangian multiplier

3=p-spin spherical Model Potential Method

Correlation and Response

Future developments

Future

3=p-spin

Response

Average over disorder: Replica trick

FPU problem

Potential Function

Potential Method

2+4 p-spin spherical Model Potential Method Disorder and replicas

Looking for minima

Hamiltonian dynamics

Generic equation of dynamics

Correlation and Response

> Lagrangian multiplier

3=p-spin spherical Model Potential Method

Correlation and Response

Future developments

$$V(\tilde{p},\beta,\beta') = \lim_{N \to \infty} -\frac{1}{\beta N} \int d\underline{s} \, \frac{\mathrm{e}^{-\beta'\mathrm{H}[\underline{s}]}}{Z(\beta')} \ln \int d\underline{\sigma} \, \mathrm{e}^{-\beta\mathrm{H}[\underline{\sigma}]} \, \delta(\tilde{\mathrm{p}} - \mathrm{Q}(\underline{s},\underline{\sigma}))$$

With the use of the replica trick

$$NV = -T \lim_{n \to 0} \lim_{m \to 0} \int d\underline{s} \exp\left(-\beta' H[\underline{s}]\right) Z[\beta']^{n-1} \left(\frac{Z[\underline{s}, \tilde{p}]^m - 1}{m}\right)$$

with the constrained partition function

$$Z[\underline{s}, \tilde{p}] = \int d\underline{\sigma} \,\mathrm{e}^{-\beta \mathrm{H}[\underline{\sigma}]} \,\delta(\tilde{\mathrm{p}} - \mathrm{Q}(\underline{s}, \underline{\sigma}))$$

Average over disorder: Replica trick

FPU problem

Potential Function

Potential Method

2+4 p-spin spherical Model Potential Method Disorder and replicas

Looking for minima

Hamiltonian dynamics

Generic equation of dynamics

Correlation and Response

> Lagrangian multiplier

3=p-spin spherical Model Potential Method

Correlation and Response

Future developments

$$V(\tilde{p},\beta,\beta') = \lim_{N \to \infty} -\frac{1}{\beta N} \int d\underline{s} \, \frac{\mathrm{e}^{-\beta'\mathrm{H}[\underline{s}]}}{Z(\beta')} \ln \int d\underline{\sigma} \, \mathrm{e}^{-\beta\mathrm{H}[\underline{\sigma}]} \, \delta(\tilde{\mathrm{p}} - \mathrm{Q}(\underline{s},\underline{\sigma}))$$

With the use of the replica trick

$$NV = -T \lim_{n \to 0} \lim_{m \to 0} \overline{\int d\underline{s} \exp\left(-\beta' H[\underline{s}]\right) Z[\beta']^{n-1} \left(\frac{Z[\underline{s}, \tilde{p}]^m - 1}{m}\right)}$$

with the constrained partition function

$$Z[\underline{s}, \tilde{p}] = \int d\underline{\sigma} \,\mathrm{e}^{-\beta \mathrm{H}[\underline{\sigma}]} \,\delta(\tilde{\mathrm{p}} - \mathrm{Q}(\underline{s}, \underline{\sigma}))$$

Define the 'replicated partition function'

$$Z^{(n,m)} = \int ds^1 e^{\beta' H(s^1)} Z(\beta')^{n-1} Z[\underline{s}, \tilde{p}]^m = \int ds^1 e^{\beta' H(s^1)} Z(\beta')^{n-1} e^{m \ln Z[\underline{s}, \tilde{p}]}$$

The potential can be recovered with

$$NV = -T\frac{\partial}{\partial m} \ln Z^{(n,m)} \Big|_{\substack{m=0\\n=0}}$$

2+4 spin Hamiltonian: averaging over disorder

FPU problem

Potential Method

2+4 p-spin spherical Model

Potential Method

Disorder and replicas

Looking for minima

Hamiltonian dynamics

Generic equation of dynamics

Correlation and Response

> Lagrangian multiplier

3=p-spin spherical Model Potential Method

Correlation and Response

Future developments

2+4 p-spin spherical Hamiltonian

$$H = -\sum_{i < j} J_{ij} s_i s_j - \sum_{i < j < k < l} J_{ijkl} s_i s_j s_k s_l , \qquad \sum_i s_i^2 = N$$

Replicated partition function

$$Z^{(n,m)} = \int Ds^a \int D\sigma^\alpha \exp\left[\beta' \sum_a^n H(s^a) + \beta \sum_\alpha^m H(\sigma^\alpha)\right] \prod_{\alpha=1}^m \delta\left(\sum_i s_i^1 \sigma_i^\alpha - N\tilde{p}\right)$$

fixed distance between the two systems

2+4 spin Hamiltonian: averaging over disorder

FPU problem

Potential Method

2+4 p-spin spherical Model

Potential Method

Disorder and replicas

Looking for minima

Hamiltonian dynamics

Generic equation of dynamics

Correlation and Response

> Lagrangian multiplier

3=p-spin spherical Model Potential Method

Correlation and Response

Future developments

2+4 p-spin spherical Hamiltonian

$$H = -\sum_{i < j} J_{ij} s_i s_j - \sum_{i < j < k < l} J_{ijkl} s_i s_j s_k s_l , \qquad \sum_i s_i^2 = N$$

Replicated partition function

$$Z^{(n,m)} = \int Ds^a \int D\sigma^\alpha \exp\left[\beta' \sum_a^n H(s^a) + \beta \sum_\alpha^m H(\sigma^\alpha)\right] \prod_{\alpha=1}^m \delta\left(\sum_i s_i^1 \sigma_i^\alpha - N\tilde{p}\right)$$

fixed distance between the two systems

Gaussian couplings

2+4 spin Hamiltonian: averaging over disorder

FPU problem

Potential Method

2+4 p-spin spherical Model

Potential Method

Disorder and replicas

Looking for minima

Hamiltonian dynamics

Generic equation of dynamics

Correlation and Response

> Lagrangian multiplier

3=p-spin spherical Model Potential Method

Correlation and Response

Future developments

2+4 p-spin spherical Hamiltonian

$$H = -\sum_{i < j} J_{ij} \, s_i s_j - \sum_{i < j < k < l} J_{ijkl} \, s_i s_j s_k s_l \, , \qquad \sum_i s_i^2 = N$$

Replicated partition function

$$Z^{(n,m)} = \int Ds^a \int D\sigma^\alpha \exp\left[\beta' \sum_a^n H(s^a) + \beta \sum_\alpha^m H(\sigma^\alpha)\right] \prod_{\alpha=1}^m \delta\left(\sum_i s_i^1 \sigma_i^\alpha - N\tilde{p}\right)$$

fixed distance between the two systems

Gaussian couplings

After averaging over the disorder

$$Z^{(n,m)} = \int Ds^a \int D\sigma^\alpha \prod_{i < j} \exp\left[\frac{p_2!}{4N^{p_2-1}} \left(\beta_2 \sum_a^n s_i^a s_j^a + \beta \sum_\alpha^m \sigma_i^\alpha \sigma_j^\alpha\right)^2\right]$$
$$\prod_{i < j < k < l} \exp\left[\frac{p_4!}{4N^{p_4-1}} \left(\beta_4 \sum_a^n s_i^a s_j^a s_k^a s_l^a + \beta \sum_\alpha^m \sigma_i^\alpha \sigma_j^\alpha \sigma_k^\alpha \sigma_l^\alpha\right)^2\right] \prod_{\alpha=1}^m \delta\left(\sum_i s_i^1 \sigma_i^\alpha - N\tilde{p}\right)$$

Introducing order parameters

FPU problem

Potential Method

2+4 p-spin spherical Model

Potential Method

Disorder and replicas

Looking for minima

Hamiltonian dynamics

Generic equation of dynamics

Correlation and Response

> Lagrangian multiplier

3=p-spin spherical Model Potential Method

Correlation and Response

Future developments

Order parameter matrices

$$Q_{ab} = \frac{1}{N} \sum_{i} s_{i}^{a} s_{i}^{b}$$

 $R_{\alpha\beta} = \frac{1}{N} \sum_{i} \sigma_{i}^{\alpha} \sigma_{i}^{\beta}$
 $P_{a\alpha} = \frac{1}{N} \sum_{i} s_{i}^{a} \sigma_{i}^{\alpha}$

Single matrix

$$\mathbf{Q} = \left(\begin{array}{cc} Q & P \\ P^T & R \end{array}\right)$$

Introducing order parameters

FPU problem

Potential Method

2+4 p-spin spherical Model

Potential Method

Disorder and replicas

Looking for minima

Hamiltonian dynamics

Generic equation of dynamics

Correlation and Response

> Lagrangian multiplier

3=p-spin spherical Model Potential Method

Correlation and Response

Future developments

Order parameter matrices

$$Q_{ab} = rac{1}{N} \sum_{i} s_{i}^{a} s_{i}^{b}$$

 $R_{lphaeta} = rac{1}{N} \sum_{i} \sigma_{i}^{lpha} \sigma_{i}^{eta}$
 $P_{alpha} = rac{1}{N} \sum_{i} s_{i}^{a} \sigma_{i}^{lpha}$

Single matrixSingle spin vector $\mathbf{Q} = \begin{pmatrix} Q & P \\ P^T & R \end{pmatrix}$ $\underline{v} = (v_1, v_2, \dots, v_{n+m})$
 $= (s_1, \dots, s_n, \sigma_1, \dots, \sigma_m)$

Introducing

$$1 = \int d\mathbf{Q}_{\gamma\eta} \,\delta\Big(N\mathbf{Q}_{\gamma\eta} - \sum_{i} v_{i}^{\gamma} v_{i}^{\eta}\Big)$$

Introducing order parameters

FPU problem

Potential Method

2+4 p-spin spherical Model

Potential Method

Disorder and replicas

Looking for minima

Hamiltonian dynamics

Generic equation of dynamics

Correlation and Response

> Lagrangian multiplier

3=p-spin spherical Model Potential Method

Correlation and Response

Future developments

Order parameter matrices

$$Q_{ab} = \frac{1}{N} \sum_{i} s_{i}^{a} s_{i}^{b}$$

 $R_{\alpha\beta} = \frac{1}{N} \sum_{i} \sigma_{i}^{\alpha} \sigma_{i}^{\beta}$
 $P_{a\alpha} = \frac{1}{N} \sum_{i} s_{i}^{a} \sigma_{i}^{\alpha}$

Single matrixSingle spin vector $\mathbf{Q} = \begin{pmatrix} Q & P \\ P^T & R \end{pmatrix}$ $\underline{v} = (v_1, v_2, \dots, v_{n+m})$
 $= (s_1, \dots, s_n, \sigma_1, \dots, \sigma_m)$

Introducing

$$1 = \int d\mathbf{Q}_{\gamma\eta} \,\delta\Big(N\mathbf{Q}_{\gamma\eta} - \sum_{i} v_{i}^{\gamma} v_{i}^{\eta}\Big)$$

We obtain

$$Z^{(n,m)} = \int Dv^{\gamma} \int D\mathbf{Q}_{\gamma\eta} \,\delta\Big(N\mathbf{Q}_{\gamma\eta} - \sum_{i} v_{i}^{\gamma} v_{i}^{\eta}\Big) \,\exp\Big[\frac{N}{4}\Big(\beta_{2}^{2} \sum_{a,b}^{n} Q_{ab}^{2} + 2\beta_{2}\beta \sum_{a,\alpha} P_{a,\alpha}^{2} + \beta^{2} \sum_{\alpha,\beta} R_{\alpha,\beta}^{2}\Big)\Big] \\ \exp\Big[\frac{N}{4}\Big(\beta_{4}^{2} \sum_{a,b}^{n} Q_{ab}^{4} + 2\beta_{4}\beta \sum_{a,\alpha} P_{a,\alpha}^{4} + \beta^{2} \sum_{\alpha,\beta} R_{\alpha,\beta}^{4}\Big)\Big] \prod_{\gamma=n+1}^{n+m} \delta\Big(\sum_{i} v_{i}^{1} v_{i}^{\gamma} - N\tilde{p}\Big)$$

Generalized RS ansatz

FPU problem

Potential Method

2+4 p-spin spherical Model

Potential Method

Disorder and replicas

Looking for minima

Hamiltonian dynamics

Generic equation of dynamics

Correlation and Response

> Lagrangian multiplier

3=p-spin spherical Model Potential Method

Correlation and Response

Future developments

Using a **saddle point** technique to estimate the integral

$$Z^{(n,m)} = \int D\mathbf{Q}_{\gamma\eta} \int D\lambda_{\gamma\eta} \exp[-NS(\lambda, \mathbf{Q})] \simeq \exp[-NS(\lambda^*, \mathbf{Q}^*)]$$

$$\begin{split} \frac{1}{N}\ln Z^{n,m} &= \frac{1}{4} \Big(\beta_2^2 \sum_{a,b}^n Q_{ab}^2 + 2\beta_2 \beta \sum_{a,\alpha}^{n,m} P_{a,\alpha}^2 + \beta^2 \sum_{\alpha,\beta}^m R_{\alpha,\beta}^2 \Big) \\ &+ \frac{1}{4} \Big(\beta_4^2 \sum_{a,b}^n Q_{ab}^4 + 2\beta_4 \beta \sum_{a,\alpha}^{n,m} P_{a,\alpha}^4 + \beta^2 \sum_{\alpha,\beta}^m R_{\alpha,\beta}^4 \Big) + \frac{1}{2} \ln \det \begin{pmatrix} Q & P \\ P^T & R \end{pmatrix} \end{split}$$

The Effective Potential can be obtained using

$$NV = -T\frac{\partial}{\partial m} \ln Z^{(n,m)} \Big|_{\substack{m=0\\n=0}}$$

Generalized RS ansatz

FPU problem

Potential Method

2+4 p-spin spherical Model

Potential Method

Disorder and replicas

Looking for minima

Hamiltonian dynamics

Generic equation of dynamics

Correlation and Response

> Lagrangian multiplier

3=p-spin spherical Model Potential Method

Correlation and Response

Future developments

Using a **saddle point** technique to estimate the integral

$$Z^{(n,m)} = \int D\mathbf{Q}_{\gamma\eta} \int D\lambda_{\gamma\eta} \exp[-NS(\lambda, \mathbf{Q})] \simeq \exp[-NS(\lambda^*, \mathbf{Q}^*)]$$

$$\begin{split} \frac{1}{N}\ln Z^{n,m} &= \frac{1}{4} \left(\beta_2^2 \sum_{a,b}^n Q_{ab}^2 + 2\beta_2 \beta \sum_{a,\alpha}^{n,m} P_{a,\alpha}^2 + \beta^2 \sum_{\alpha,\beta}^m R_{\alpha,\beta}^2 \right) \\ &+ \frac{1}{4} \left(\beta_4^2 \sum_{a,b}^n Q_{ab}^4 + 2\beta_4 \beta \sum_{a,\alpha}^{n,m} P_{a,\alpha}^4 + \beta^2 \sum_{\alpha,\beta}^m R_{\alpha,\beta}^4 \right) + \frac{1}{2} \ln \det \begin{pmatrix} Q & P \\ P^T & R \end{pmatrix} \end{split}$$

The Effective Potential can be obtained using

$$NV = -T\frac{\partial}{\partial m} \ln Z^{(n,m)} \Big|_{\substack{m=0\\n=0}}$$

Ansatz for the Overlap Matrices

$$Q_{ab} = \delta_{ab} + (1 - \delta_{ab})q$$

$$P_{a\alpha} = \tilde{p} \delta_{\alpha n} + (1 - \delta_{\alpha n})s$$

$$R_{\alpha\beta} = \delta_{\alpha\beta} + (1 - \delta_{\alpha\beta})r$$

$$Q = \begin{pmatrix} Q & P \\ P^T & R \end{pmatrix} = \begin{pmatrix} 1 & q & \cdots & q & \vdots & \vdots & \cdots & \vdots \\ \vdots & \vdots & \cdots & \vdots & s & s & \cdots & s \\ q & q & \cdots & 1 & \tilde{p} & \tilde{p} & \cdots & \tilde{p} \\ s & \cdots & s & \tilde{p} & 1 & r & \cdots & r \\ \vdots & \ddots & \vdots & \vdots & r & 1 & \cdots & r \\ s & \cdots & s & \tilde{p} & \vdots & \vdots & \ddots & \vdots \\ s & \cdots & s & \tilde{p} & r & r & \cdots & 1 \end{pmatrix}$$

FPU problem

Potential Function

Potential Method

2+4 p-spin spherical Model

Potential Method

Disorder and replicas

Looking for minima

Hamiltonian dynamics

Generic equation of dynamics

Correlation and Response

> Lagrangian multiplier

3=p-spin spherical Model Potential Method

Correlation and Response

Future developments

$$\beta V = -\frac{1}{4} (2\beta^2 + 2\beta(\beta_2 p^2 + \beta_4 p^4) - \beta^2(r^2 + r^4) - 2\beta(\beta_2 s^2 + \beta_4 s^4)) - \frac{1}{2} (\frac{-p^2 + 2p^2 q + r - 2qr + q^2r - 2pqs + s^2}{1 - 2q + q^2 - r + 2qr - q^2r} + \ln[1 - r])$$

FPU problem

Potential Function

Potential Method

2+4 p-spin spherical Model Potential Method Disorder and

replicas

Looking for minima

Hamiltonian dynamics

Generic equation of dynamics

Correlation and Response

> Lagrangian multiplier

3=p-spin spherical Model Potential Method

Correlation and Response

Future developments

$$\beta V = -\frac{1}{4} (2\beta^2 + 2\beta(\beta_2 p^2 + \beta_4 p^4) - \beta^2(r^2 + r^4) - 2\beta(\beta_2 s^2 + \beta_4 s^4)) -\frac{1}{2} (\frac{-p^2 + 2p^2 q + r - 2qr + q^2r - 2pqs + s^2}{1 - 2q + q^2 - r + 2qr - q^2r} + \ln[1 - r])$$

Determine minima

$$\frac{\partial V(q, s, r, \tilde{p})}{\partial q} = 0$$

$$\frac{\partial V(q, s, r, \tilde{p})}{\partial s} = 0$$

$$\frac{\partial V(q, s, r, \tilde{p})}{\partial \tilde{p}} = 0$$

$$\frac{\partial V(q, s, r, \tilde{p})}{\partial r} = 0$$

FPU problem

Potential Function

Potential Method

2+4 p-spin spherical Model Potential Method Disorder and replicas

Looking for minima

Hamiltonian dynamics

Generic equation of dynamics

Correlation and Response

> Lagrangian multiplier

3=p-spin spherical Model Potential Method

Correlation and Response

Future developments

$$\beta V = -\frac{1}{4} (2\beta^2 + 2\beta(\beta_2 p^2 + \beta_4 p^4) - \beta^2(r^2 + r^4) - 2\beta(\beta_2 s^2 + \beta_4 s^4)) - \frac{1}{2} (\frac{-p^2 + 2p^2 q + r - 2qr + q^2r - 2pqs + s^2}{1 - 2q + q^2 - r + 2qr - q^2r} + \ln[1 - r])$$

Determine minima

$$\frac{\partial V(q, s, r, \tilde{p})}{\partial q} = 0$$

$$\frac{\partial V(q, s, r, \tilde{p})}{\partial s} = 0$$

$$\frac{\partial V(q, s, r, \tilde{p})}{\partial \tilde{p}} = 0$$

$$\frac{\partial V(q, s, r, \tilde{p})}{\partial r} = 0$$

Simplified case: only p = 4 spin and

 $\beta_2 = \beta_4 = \beta, \quad q = 0, \quad s = 0$

Potential Function \checkmark

$$\beta V = -\frac{1}{4}(\beta^2 + 2\beta^2 \tilde{p}^4 - \beta^2 r^4) - \frac{1}{2}(\frac{r - \tilde{p}^2}{1 - r} + \ln[1 - r])$$

[Franz, S., & Parisi, G. (1995). Recipes for metastable states in spin glasses. Journal de Physique I, 5(11), 1401-1415]

FPU problem

Potential Function

Potential Method

2+4 p-spin spherical Model Potential Method Disorder and replicas

Looking for minima

Hamiltonian dynamics

Generic equation of dynamics

Correlation and Response

> Lagrangian multiplier

3=p-spin spherical Model Potential Method

Correlation and Response

Future developments

$$\beta V = -\frac{1}{4} (2\beta^2 + 2\beta(\beta_2 p^2 + \beta_4 p^4) - \beta^2(r^2 + r^4) - 2\beta(\beta_2 s^2 + \beta_4 s^4)) - \frac{1}{2} (\frac{-p^2 + 2p^2 q + r - 2qr + q^2r - 2pqs + s^2}{1 - 2q + q^2 - r + 2qr - q^2r} + \ln[1 - r])$$

Determine minima

 $\partial V(a \le r \ \tilde{n})$

$$\frac{\partial V(q, s, r, p)}{\partial q} = 0$$

$$\frac{\partial V(q, s, r, \tilde{p})}{\partial s} = 0$$

$$\frac{\partial V(q, s, r, \tilde{p})}{\partial \tilde{p}} = 0$$

$$\frac{\partial V(q, s, r, \tilde{p})}{\partial r} = 0$$

Simplified case: only p = 4 spin and

$$\beta_2 = \beta_4 = \beta, \quad q = 0, \quad s = 0$$

Potential Function \checkmark

$$\beta V = -\frac{1}{4}(\beta^2 + 2\beta^2 \tilde{p}^4 - \beta^2 r^4) - \frac{1}{2}(\frac{r - \tilde{p}^2}{1 - r} + \ln[1 - r])$$

[Franz, S., & Parisi, G. (1995). Recipes for metastable states in spin glasses. Journal de Physique I, 5(11), 1401-1415]

FPU problem

Potential Function

Potential Method

2+4 p-spin spherical Model Potential Method Disorder and replicas

Looking for minima

Hamiltonian dynamics

Generic equation of dynamics

Correlation and Response

> Lagrangian multiplier

3=p-spin spherical Model Potential Method

Correlation and Response

Future developments

$$\beta V = -\frac{1}{4} (2\beta^2 + 2\beta(\beta_2 p^2 + \beta_4 p^4) - \beta^2(r^2 + r^4) - 2\beta(\beta_2 s^2 + \beta_4 s^4)) - \frac{1}{2} (\frac{-p^2 + 2p^2 q + r - 2qr + q^2r - 2pqs + s^2}{1 - 2q + q^2 - r + 2qr - q^2r} + \ln[1 - r])$$

Determine minima

$$\frac{\partial V(q, s, r, \tilde{p})}{\partial q} = 0$$

$$\frac{\partial V(q, s, r, \tilde{p})}{\partial s} = 0$$

$$\frac{\partial V(q, s, r, \tilde{p})}{\partial \tilde{p}} = 0$$

$$\frac{\partial V(q, s, r, \tilde{p})}{\partial r} = 0$$

Simplified case: only p = 4 spin and

$$\beta_2 = \beta_4 = \beta, \quad q = 0, \quad s = 0$$

Potential Function

$$\beta V = -\frac{1}{4}(\beta^2 + 2\beta^2 \tilde{p}^4 - \beta^2 r^4) - \frac{1}{2}(\frac{r - \tilde{p}^2}{1 - r} + \ln[1 - r])$$

[Franz, S., & Parisi, G. (1995). Recipes for metastable states in spin glasses. Journal de Physique I, 5(11), 1401-1415]

Looking for minima

FPU problem

Potential Function

Potential Method

2+4 p-spin spherical Model Potential Method Disorder and replicas

Looking for minima

Hamiltonian dynamics

Generic equation of dynamics

Correlation and Response

> Lagrangian multiplier

3=p-spin spherical Model Potential Method

Correlation and Response

Future developments

$$\beta V = -\frac{1}{4} (2\beta^2 + 2\beta(\beta_2 p^2 + \beta_4 p^4) - \beta^2(r^2 + r^4) - 2\beta(\beta_2 s^2 + \beta_4 s^4)) - \frac{1}{2} (\frac{-p^2 + 2p^2 q + r - 2qr + q^2r - 2pqs + s^2}{1 - 2q + q^2 - r + 2qr - q^2r} + \ln[1 - r])$$

Determine minima

$$\frac{\partial V(q, s, r, \tilde{p})}{\partial q} = 0$$

$$\frac{\partial V(q, s, r, \tilde{p})}{\partial s} = 0$$

$$\frac{\partial V(q, s, r, \tilde{p})}{\partial \tilde{p}} = 0$$

$$\frac{\partial V(q, s, r, \tilde{p})}{\partial r} = 0$$

Simplified case: only p = 4 spin and

$$\beta_2 = \beta_4 = \beta, \quad q = 0, \quad s = 0$$

Potential Function

$$\beta V = -\frac{1}{4}(\beta^2 + 2\beta^2 \tilde{p}^4 - \beta^2 r^4) - \frac{1}{2}(\frac{r - \tilde{p}^2}{1 - r} + \ln[1 - r])$$

[Franz, S., & Parisi, G. (1995). Recipes for metastable states in spin glasses. Journal de Physique I, 5(11), 1401-1415]

Potential: 1RSB corrections

FPU problem

Potential Method

2+4 p-spin spherical Model Potential Method

Disorder and replicas

Looking for minima

Hamiltonian dynamics

Generic equation of dynamics

Correlation and Response

> Lagrangian multiplier

3=p-spin spherical Model Potential Method

Correlation and Response

Future developments

1RSB treatment of the p>2 spin spherical model

Barrat, A., Franz, S., & Parisi, G. (1997). Temperature evolution and bifurcations of metastable states in mean-field spin glasses, with connections with structural glasses. Journal of Physics A: Mathematical and General, 30(16), 5593.

Potential: 1RSB corrections

FPU problem

Potential Method

2+4 p-spin spherical Model Potential Method Disorder and

replicas

Looking for minima

Hamiltonian dynamics

Generic equation of dynamics

Correlation and Response

> Lagrangian multiplier

3=p-spin spherical Model Potential Method

Correlation and Response

Future developments

1RSB treatment of the p>2 spin spherical model

Barrat, A., Franz, S., & Parisi, G. (1997). Temperature evolution and bifurcations of metastable states in mean-field spin glasses, with connections with structural glasses. Journal of Physics A: Mathematical and General, 30(16), 5593.

FPU problem

Hamiltonian

Potential Method

2+4 p-spin spherical Model

Potential Method

Disorder and replicas

Looking for minima

Hamiltonian dynamics

Generic equation of dynamics

Correlation and Response

> Lagrangian multiplier

3=p-spin spherical Model Potential Method

Correlation and Response

Future developments

 $H = -\mu_2 \sum_{i < j} J_{ij} \, s_i s_j - \mu_4 \sum_{i < j < k < l} J_{ijkl} \, s_i s_j s_k s_l$

FPU problem

Hamiltonia

Potential Method

2+4 p-spin spherical Model

Potential Method

Disorder and replicas

Looking for minima

Hamiltonian dynamics

Generic equation of dynamics

Correlation and Response

> Lagrangian multiplier

3=p-spin spherical Model Potential Method

Correlation and Response

Future developments

Friday, September 5, 14

an

$$H = -\mu_2 \sum_{i < j} J_{ij} s_i s_j - \mu_4 \sum_{i < j < k < l} J_{ijkl} s_i s_j s_k s_l$$
1-RSB

Hamiltonian dynamics

Generic equation of dynamics

Correlation and Response

> Lagrangian multiplier

3=p-spin spherical Model Potential Method

Correlation and Response

Future developments

Hamiltonian $\int_{\langle k < l} J_{ijkl} s_i s_j s_k s_l$ $H = -\mu_2 \sum_{i < j} J_{ij} s_i s_j + \mu_4 \prod_i$ weak replica symmetry **Full RSB 1-RSB** breaking

FPU problem

Potential Method

2+4 p-spin spherical Model

Potential Method

Disorder and replicas

Looking for minima

Hamiltonian dynamics

Generic equation of dynamics

Correlation and Response

> Lagrangian multiplier

3=p-spin spherical Model Potential Method

Correlation and Response

Future developments

Phase diagram

The static phase diagram of the 2+4 model in the (μ_2, μ_4) plane

Crisanti, A., and L. Leuzzi. "Spherical 2+ p spin-glass model: An exactly solvable model for glass to spin-glass transition." Physical review letters 93.21 (2004): 217203.

р

FPU problem

Potential Method

2+4 p-spin spherical Model

Potential Method

Disorder and replicas

Looking for minima

Hamiltonian dynamics

Generic equation of dynamics

Correlation and Response

> Lagrangian multiplier

3=p-spin spherical Model Potential Method

Correlation and Response

Future developments

Friday, September 5, 14

Phase diagram

When $\gamma_2 \ll \gamma_4$

[S. Franz and G. Semerjian. Analytical approaches to time and length scales in models of glasses in Dynamical heterogeneities in glasses, colloids and granular materials. Oxford University Press, 2011.]

р

FPU problem

Potential Method

2+4 p-spin spherical Model

Potential Method

Disorder and replicas

Looking for minima

Hamiltonian dynamics

Generic equation of dynamics

Correlation and Response

> Lagrangian multiplier

3=p-spin spherical Model Potential Method

Correlation and Response

Future developments

Phase diagram

The static phase diagram of the 2+4 model in the (μ_2, μ_4) plane

FPU problem

Potential Method

2+4 p-spin spherical Model

Potential Method

Disorder and replicas

Looking for minima

Hamiltonian dynamics

Generic equation of dynamics

Correlation and Response

> Lagrangian multiplier

3=p-spin spherical Model Potential Method

Correlation and Response

Future developments

Phase diagram

The static phase diagram of the 2+4 model in the (μ_2, μ_4) plane

Crisanti, A., and L. Leuzzi. "Spherical 2+ p spin-glass model: An exactly solvable model for glass to spin-glass transition." Physical review letters 93.21 (2004): 217203.

FPU problem

Potential Method

2+4 p-spin spherical Model

Potential Method

Disorder and replicas

Looking for minima

Hamiltonian dynamics

Generic equation of dynamics

Correlation and Response

> Lagrangian multiplier

3=p-spin spherical Model Potential Method

Correlation and Response

Future developments

Phase diagram

The static phase diagram of the 2+4 model in the (μ_2, μ_4) plane

Friday, September 5, 14

Friday, September 5, 14

developments

FPU problem

Potential Method

2+4 p-spin spherical Model

Potential Method

Disorder and replicas

Looking for minima

Hamiltonian dynamics

Generic equation of dynamics

Correlation and Response

> Lagrangian multiplier

3=p-spin spherical Model Potential Method

Correlation and Response

Future developments

Hamiltonian Dynamics

Hamiltonian dynamics

Hamiltonian:

FPU problem

Potential Method

2+4 p-spin spherical Model

Potential Method

Disorder and

$$H = \frac{1}{2} \sum_{i} p_i^2 + V_J(s) + \sum_{i} h_i s_i + \frac{\mu_x(t)}{2} (\sum_{i} s_i^2 - N)$$

with $V_J(\underline{s}(t)) = -\sum_{i < j} J_{ij} s_i s_j - \sum_{i < j < k < l} J_{ijkl} s_i s_j s_k s_l$
ton's equations

Hamilton's equations

 $\frac{\partial H}{\partial p_i} = \dot{s}_i = p_i$ $\frac{\partial H}{\partial s_i} = -\dot{p}_i = \frac{\partial V}{\partial s_i} + \mu_x s_i$

replicas Looking for minima

Hamiltonian dynamics

Generic equation of dynamics

Correlation and Response

> Lagrangian multiplier

3=p-spin spherical Model Potential Method

Correlation and Response

Future developments

Hamiltonian dynamics

Hamiltonian:

FPU problem

Potential Method

2+4 p-spin spherical Model Potential Method

Disorder and replicas

Looking for minima

Hamiltonian dynamics

Generic equation of dynamics

Correlation and Response

> Lagrangian multiplier

3=p-spin spherical Model Potential Method

Correlation and Response

Future developments

$$H = \frac{1}{2} \sum_{i} p_{i}^{2} + V_{J}(s) + \sum_{i} h_{i} s_{i} + \frac{\mu_{x}(t)}{2} (\sum_{i} s_{i}^{2} - N)$$

with $V_{J}(\underline{s}(t)) = -\sum_{i < j} J_{ij} s_{i} s_{j} - \sum_{i < j < k < l} J_{ijkl} s_{i} s_{j} s_{k} s_{l}$
Hamilton's equations
$$\frac{\partial H}{\partial p_{i}} = \dot{s}_{i} = p_{i}$$

$$\frac{\partial H}{\partial s_{i}} = -\dot{p}_{i} = \frac{\partial V}{\partial s_{i}} + \mu_{x} s_{i}$$

(Newtonian) **Equation of motion:** $\dot{p}_i = \ddot{s}_i =$

$$\ddot{s}_i = -\frac{\partial H}{\partial s_i} = -\frac{\partial V}{\partial s_i} - \mu_x s_i + h_i(t)$$

which explicitly reads

$$\ddot{s}_i = -\mu_x(t)s_i(t) + \sum_j J_{ij} s_j(t) + \sum_{j < k < l} J_{ijkl} s_j(t)s_k(t)s_l(t) + h_i(t)$$

Hamiltonian dynamics

Hamiltonian:

FPU problem

Potential Method

2+4 p-spin spherical Model Potential Method Disorder and

replicas

Looking for minima

Hamiltonian dynamics

Generic equation of dynamics

Correlation and Response

> Lagrangian multiplier

3=p-spin spherical Model Potential Method

Correlation and Response

Future developments

$$H = \frac{1}{2} \sum_{i} p_{i}^{2} + V_{J}(s) + \sum_{i} h_{i} s_{i} + \frac{\mu_{x}(t)}{2} (\sum_{i} s_{i}^{2} - N)$$

with $V_{J}(\underline{s}(t)) = -\sum_{i < j} J_{ij} s_{i} s_{j} - \sum_{i < j < k < l} J_{ijkl} s_{i} s_{j} s_{k} s_{l}$
Hamilton's equations
$$\frac{\partial H}{\partial p_{i}} = \dot{s}_{i} = p_{i}$$

$$\frac{\partial H}{\partial s_{i}} = -\dot{p}_{i} = \frac{\partial V}{\partial s_{i}} + \mu_{x} s_{i}$$

(Newtonian) Equation of motion: $\dot{p}_i = \ddot{s}_i = -\frac{\partial H}{\partial s_i} = -\frac{\partial H}{\partial s_i}$

$$F_i = -\frac{\partial H}{\partial s_i} = -\frac{\partial V}{\partial s_i} - \mu_x s_i + h_i(t)$$

which explicitly reads

$$\ddot{s}_i = -\mu_x(t)s_i(t) + \sum_j J_{ij} s_j(t) + \sum_{j < k < l} J_{ijkl} s_j(t)s_k(t)s_l(t) + h_i(t)$$

Multiplying by an observable and averaging

$$\mathbb{E}\langle \ddot{s}_i A(s(t')) \rangle = -\mathbb{E}\langle \mu_x(t) s_i(t) A(s(t')) \rangle + \sum_j \mathbb{E}(J_{ij} \langle s_j(t) A(s(t')) \rangle) + \sum_{j < k < l} \mathbb{E}(J_{ijkl} \langle s_j(t) s_k(t) s_l(t) A(s(t')) \rangle)$$

Martin-Siggia-Rose formalism

FPU problem

From the equation of motion

Potential Method

2+4 p-spin spherical Model Potential Method

Disorder and replicas

Looking for minima

Hamiltonian dynamics

Generic equation of dynamics

Correlation and Response

> Lagrangian multiplier

3=p-spin spherical Model Potential Method

Correlation and Response

Future developments

$$\mathbb{E}\langle \ddot{s}_i A(s(t')) \rangle = -\mathbb{E}\langle \mu_x(t) s_i(t) A(s(t')) \rangle + \sum_j \mathbb{E}(J_{ij} \langle s_j(t) A(s(t')) \rangle) + \sum_{j < k < l} \mathbb{E}(J_{ijkl} \langle s_j(t) s_k(t) s_l(t) A(s(t')) \rangle)$$

Friday, September 5, 14

Martin-Siggia-Rose formalism

FPU problem

From the equation of motion

Potential Method

2+4 p-spin spherical Model **Potential Method**

Hamiltonian dynamics

Generic equation of dynamics

Correlation and Response

> Lagrangian multiplier

3=p-spin spherical Model **Potential Method**

Correlation and Response

Future developments

$$\mathbb{E}\langle \ddot{s}_i A(s(t')) \rangle = -\mathbb{E}\langle \mu_x(t) s_i(t) A(s(t')) \rangle + \sum_j \mathbb{E}(J_{ij} \langle s_j(t) A(s(t')) \rangle) + \sum_{j < k < l} \mathbb{E}(J_{ijkl} \langle s_j(t) s_k(t) s_l(t) A(s(t')) \rangle)$$

Taking averages $\langle \dots \rangle \longrightarrow Martin-Siggia-Rose formalism$

$$P[s]\mu(s(0)) = \int_{-\infty}^{\infty} \left(\prod_{u=0}^{t} \frac{d\hat{s}_{i}(u)}{2\pi}\right) \exp\left\{\sum_{i} \int_{0}^{t} du \left[i\hat{s}_{i}(u)\left(-\ddot{s}_{i}(u) - \frac{\partial H_{J}}{\partial s_{i}(u)}\right)\right]\right\} \mu(s(0))$$
$$= \int_{-\infty}^{\infty} \left(\prod_{u=0}^{t} \frac{d\hat{s}_{i}(u)}{2\pi}\right) \exp\left\{\sum_{i} \int_{0}^{t} du \left[i\hat{s}_{i}(u)\left(-\ddot{s}_{i}(u) - \mu_{x}(u)s_{i}(u) + \sum_{j} J_{ij}s_{j} + \sum_{j < k < l} J_{ijkl}s_{j}s_{k}s_{l} + h_{i}(u)\right)\right]\right\} \mu(s(0))$$

Martin-Siggia-Rose formalism

FPU problem

From the equation of motion

Potential Method

2+4 p-spin spherical Model **Potential Method** Di

Hamiltonian dynamics

Generic equation of dynamics

Correlation and Response

> Lagrangian multiplier

3=p-spin spherical Model **Potential Method**

Correlation and Response

Future developments

$$\mathbb{E}\langle \ddot{s}_i A(s(t')) \rangle = -\mathbb{E}\langle \mu_x(t) s_i(t) A(s(t')) \rangle + \sum_j \mathbb{E}(J_{ij} \langle s_j(t) A(s(t')) \rangle) + \sum_{j < k < l} \mathbb{E}(J_{ijkl} \langle s_j(t) s_k(t) s_l(t) A(s(t')) \rangle)$$

Taking averages $\langle \dots \rangle \longrightarrow Martin-Siggia-Rose formalism$

$$\begin{split} P[s]\mu(s(0)) &= \int_{-\infty}^{\infty} \Big(\prod_{u=0}^{t} \frac{d\hat{s}_{i}(u)}{2\pi}\Big) \exp\Big\{\sum_{i} \int_{0}^{t} du \Big[i\hat{s}_{i}(u)\Big(-\ddot{s}_{i}(u) - \frac{\partial H_{J}}{\partial s_{i}(u)}\Big)\Big]\Big\}\mu(s(0)) \\ &= \int_{-\infty}^{\infty} \Big(\prod_{u=0}^{t} \frac{d\hat{s}_{i}(u)}{2\pi}\Big) \exp\Big\{\sum_{i} \int_{0}^{t} du \Big[i\hat{s}_{i}(u)\Big(-\ddot{s}_{i}(u) - \mu_{x}(u)s_{i}(u) + \sum_{j} J_{ij}s_{j} + \sum_{j < k < l} J_{ijkl}s_{j}s_{k}s_{l} + h_{i}(u)\Big)\Big]\Big\}\mu(s(0)) \end{split}$$

Let us observe

$$\frac{\partial}{\partial h_i(u)} \langle B(s(t)) \rangle = \langle B(s(t)) \, i \hat{s}_i(u) \rangle$$

Define **Correlation** and **Response**

$$C(t,t') = \frac{1}{N} \sum_{i} s_i(t) s_i(t') \to \langle s_i(t) s_i(t') \rangle$$
$$R(t,t') = \frac{1}{N} \sum_{i} s_i(t) i \hat{s}_i(t') \to \langle s_i(t) i \hat{s}_i(t') \rangle = \frac{\partial \langle s_i(t) \rangle}{\partial h_j(t')}$$

Main equation of dynamics

Potential Method

2+4 p-spin spherical Model Potential Method

Disorder and replicas

Looking for minima

Hamiltonian dynamics

Generic equation of dynamics

Correlation and Response

> Lagrangian multiplier

3=p-spin spherical Model Potential Method

Correlation and Response

Future developments

$$\begin{split} \mathbb{E}\langle \ddot{s}_{i}A(s(t'))\rangle &= -\mathbb{E}\langle \mu_{x}(t)s_{i}(t)A(s(t'))\rangle + \sum_{j}\mathbb{E}(J_{ij}^{2})\Big[\int_{0}^{t}du\,\mathbb{E}\langle i\hat{s}_{i}(u)s_{j}A(s(t'))s_{j}(t)\rangle \\ &+ \int_{0}^{t}du\,\mathbb{E}\langle s_{i}\,i\hat{s}_{j}A(s(t'))s_{j}\rangle + \mathbb{E}\langle \beta_{2}(s_{i}^{0}s_{j}^{0} + \langle s_{i}^{0}s_{j}^{0}\rangle_{eq})A(s(t'))s_{j}(t)\rangle\Big] \\ &+ \sum_{j < k < l}\mathbb{E}(J_{ijkl}^{2})\Big[\int_{0}^{t}du\,\mathbb{E}\langle i\hat{s}_{i}(u)s_{j}s_{k}s_{l}A(s(t'))s_{j}s_{k}s_{l}\rangle \\ &+ \int_{0}^{t}du\,\mathbb{E}\langle s_{i}\,(i\hat{s}_{j}s_{k}s_{l} + s_{j}\,i\hat{s}_{k}s_{l} + s_{j}s_{k}\,i\hat{s}_{l})A(s(t'))s_{j}s_{k}s_{l}\rangle \\ &+ \mathbb{E}\langle \beta_{4}(s_{i}^{0}s_{j}^{0}s_{k}^{0}s_{l}^{0} + \langle s_{i}^{0}s_{j}^{0}s_{k}^{0}s_{l}^{0}\rangle_{eq})A(s(t'))s_{j}s_{k}s_{l}\rangle\Big] \end{split}$$

Main equation of dynamics

Potential Method

2+4 p-spin spherical Model Potential Method

Disorder and replicas

Looking for minima

Hamiltonian dynamics

Generic equation of dynamics

Correlation and Response

> Lagrangian multiplier

3=p-spin spherical Model Potential Method

Correlation and Response

Future developments

$$\begin{split} \mathbb{E}\langle \ddot{s}_{i}A(s(t'))\rangle &= -\mathbb{E}\langle \mu_{x}(t)s_{i}(t)A(s(t'))\rangle + \sum_{j}\mathbb{E}(J_{ij}^{2})\Big[\int_{0}^{t}du\,\mathbb{E}\langle i\hat{s}_{i}(u)s_{j}A(s(t'))s_{j}(t)\rangle \\ &+ \int_{0}^{t}du\,\mathbb{E}\langle s_{i}\,i\hat{s}_{j}A(s(t'))s_{j}\rangle + \mathbb{E}\langle \beta_{2}(s_{i}^{0}s_{j}^{0} + \langle s_{i}^{0}s_{j}^{0}\rangle_{eq})A(s(t'))s_{j}(t)\rangle\Big] \\ &+ \sum_{j$$

FPU problem

Main equation of dynamics

Potential Method

2+4 p-spin spherical Model Potential Method Disorder and

replicas

Looking for minima

Hamiltonian dynamics

Generic equation of dynamics

Correlation and Response

> Lagrangian multiplier

3=p-spin spherical Model Potential Method

Correlation and Response

Future developments

$$\begin{split} \mathbb{E}\langle \ddot{s}_{i}A(s(t'))\rangle &= -\mathbb{E}\langle \mu_{x}(t)s_{i}(t)A(s(t'))\rangle + \sum_{j} \mathbb{E}(J_{ij}^{2}) \Big[\int_{0}^{t} du \,\mathbb{E}\langle i\hat{s}_{i}(u)s_{j}A(s(t'))s_{j}(t)\rangle \\ &+ \int_{0}^{t} du \,\mathbb{E}\langle s_{i}\,i\hat{s}_{j}A(s(t'))s_{j}\rangle + \mathbb{E}\langle \beta_{2}(s_{i}^{0}s_{j}^{0} + \langle s_{i}^{0}s_{j}^{0}\rangle_{eq})A(s(t'))s_{j}(t)\rangle \Big] \\ &+ \sum_{j < k < l} \mathbb{E}(J_{ijkl}^{2}) \Big[\int_{0}^{t} du \,\mathbb{E}\langle i\hat{s}_{i}(u)s_{j}s_{k}s_{l}A(s(t'))s_{j}s_{k}s_{l}\rangle \\ &+ \int_{0}^{t} du \,\mathbb{E}\langle s_{i}\,(i\hat{s}_{j}s_{k}s_{l} + s_{j}\,i\hat{s}_{k}s_{l} + s_{j}s_{k}\,i\hat{s}_{l})A(s(t'))s_{j}s_{k}s_{l}\rangle \\ &+ \mathbb{E}\langle \beta_{4}(s_{i}^{0}s_{j}^{0}s_{k}^{0}s_{l}^{0} + \langle s_{i}^{0}s_{j}^{0}s_{k}^{0}s_{l}^{0}\rangle_{eq})A(s(t'))s_{j}s_{k}s_{l}\rangle \Big] \end{split}$$

Second moments

$$\longrightarrow \quad \mathbb{E}(J^2_{i_1,\dots,i_p}) = \frac{p!}{2N^{p-1}}$$

Main equation of dynamics

FPU problem

Potential Method

2+4 p-spin spherical Model Potential Method Disorder and replicas

Looking for minima

Hamiltonian dynamics

Generic equation of dynamics

Correlation and Response

> Lagrangian multiplier

3=p-spin spherical Model Potential Method

Correlation and Response

Future developments

$$\begin{split} \mathbb{E}\langle \ddot{s}_i A(s(t')) \rangle &= - \mathbb{E}\langle \mu_x(t) s_i(t) A(s(t')) \rangle + \sum_j \mathbb{E}(J_{ij}^2) \Big[\int_0^t du \, \mathbb{E}\langle i \hat{s}_i(u) s_j A(s(t')) s_j(t) \rangle \\ &+ \int_0^t du \, \mathbb{E}\langle s_i \, i \hat{s}_j A(s(t')) s_j \rangle + \mathbb{E}\langle \beta_2(s_i^0 s_j^0 + \langle s_i^0 s_j^0 \rangle_{eq}) A(s(t')) s_j(t) \rangle \Big] \\ &+ \sum_{j < k < l} \mathbb{E}(J_{ijkl}^2) \Big[\int_0^t du \, \mathbb{E}\langle i \hat{s}_i(u) s_j s_k s_l A(s(t')) s_j s_k s_l \rangle \\ &+ \int_0^t du \, \mathbb{E}\langle s_i \, (i \hat{s}_j s_k s_l + s_j \, i \hat{s}_k s_l + s_j s_k \, i \hat{s}_l) A(s(t')) s_j s_k s_l \rangle \\ &+ \mathbb{E}\langle \beta_4(s_i^0 s_j^0 s_k^0 s_l^0 + \langle s_i^0 s_j^0 s_k^0 s_l^0 \rangle_{eq}) A(s(t')) \, s_j s_k s_l \rangle \Big] \end{split}$$

Second moments

$$\longrightarrow \quad \mathbb{E}(J^2_{i_1,\dots,i_p}) = \frac{p!}{2N^{p-1}}$$

Main equation of dynamics

FPU problem

Potential Method

2+4 p-spin spherical Model Potential Method Disorder and replicas

Looking for minima

Hamiltonian dynamics

Generic equation of dynamics

Correlation and Response

> Lagrangian multiplier

3=p-spin spherical Model Potential Method

Correlation and Response

Future developments

$$\begin{split} \mathbb{E}\langle \ddot{s}_i \underline{A}(s(t')) \rangle &= - \mathbb{E}\langle \mu_x(t) s_i(t) A(s(t')) \rangle + \sum_j \mathbb{E}(J_{ij}^2) \Big[\int_0^t du \, \mathbb{E}\langle i \hat{s}_i(u) s_j A(s(t')) s_j(t) \rangle \\ &+ \int_0^t du \, \mathbb{E}\langle s_i \, i \hat{s}_j A(s(t')) s_j \rangle + \mathbb{E}\langle \beta_2(s_i^0 s_j^0 + \langle s_i^0 s_j^0 \rangle_{eq}) A(s(t')) s_j(t) \rangle \Big] \\ &+ \sum_{j < k < l} \mathbb{E}(J_{ijkl}^2) \Big[\int_0^t du \, \mathbb{E}\langle i \hat{s}_i(u) s_j s_k s_l A(s(t')) s_j s_k s_l \rangle \\ &+ \int_0^t du \, \mathbb{E}\langle s_i \, (i \hat{s}_j s_k s_l + s_j \, i \hat{s}_k s_l + s_j s_k \, i \hat{s}_l) A(s(t')) s_j s_k s_l \rangle \\ &+ \mathbb{E}\langle \beta_4(s_i^0 s_j^0 s_k^0 s_l^0 + \langle s_i^0 s_j^0 s_k^0 s_l^0 \rangle_{eq}) A(s(t')) \, s_j s_k s_l \rangle \Big] \end{split}$$

Second moments

$$\longrightarrow \quad \mathbb{E}(J^2_{i_1,\dots,i_p}) = \frac{p!}{2N^{p-1}}$$

Get equations for **Correlation** and **Response**

$$A(s(t')) = s_i(t') \longrightarrow C(t,t') = \frac{1}{N} \sum_i s_i(t) s_i(t') \rightarrow \langle s_i(t) s_i(t') \rangle$$

$$A(s(t')) = i \hat{s}_i(t') \longrightarrow R(t,t') = \frac{1}{N} \sum_i s_i(t) i \hat{s}_i(t') \rightarrow \langle s_i(t) i \hat{s}_i(t') \rangle = \frac{\partial \langle s_i(t) \rangle}{\partial h_j(t')}$$

FPU problem

Potential Method

2+4 p-spin spherical Model

Potential Method

Disorder and replicas

Looking for minima

Hamiltonian dynamics

Generic equation of dynamics

Correlation and Response

> Lagrangian multiplier

3=p-spin spherical Model Potential Method

Correlation and Response

Future developments

$$\begin{split} \frac{\partial^2 C(t,t')}{\partial t^2} &= -\mu_x(t)C(t,t') \\ &+ \frac{p_2}{2} \int_0^{t'} du R(t',u)C(t,u)^{p_2-1} + \frac{p_2(p_2-1)}{2} \int_0^t du \, C(t',u)R(t,u)C(t,u)^{p_2-2} \\ &+ \beta_2 \frac{p_2}{2} \Big(C(t',0)C(t,0)^{p_2-1} - K(0,t')K(0,t)^{p_2-1} \Big) \\ &+ \frac{p_4}{2} \int_0^{t'} du R(t',u)C(t,u)^{p_4-1} + \frac{p_4(p_4-1)}{2} \int_0^t du \, C(t',u)R(t,u)C(t,u)^{p_4-2} \\ &+ \beta_4 \frac{p_4}{2} \Big(C(t',0)C(t,0)^{p_4-1} - K(0,t')K(0,t)^{p_4-1} \Big) \end{split}$$

$$\begin{aligned} \frac{\partial^2 R(t,t')}{\partial t^2} &= -\mu_x(t) R(t,t') + \frac{p_2(p_2-1)}{2} \int_{t'}^t du \, R(u,t') R(t,u) C(t,u)^{p_2-2} \\ &+ \frac{p_4(p_4-1)}{2} \int_{t'}^t du \, R(u,t') R(t,u) C(t,u)^{p_4-2} \end{aligned}$$

FPU problem

Potential Method

2+4 p-spin spherical Model

Potential Method

Disorder and replicas

Looking for minima

Hamiltonian dynamics

Generic equation of dynamics

Correlation and Response

> Lagrangian multiplier

3=p-spin spherical Model Potential Method

Correlation and Response

Future developments

$$\begin{split} \frac{\partial^2 C(t,t')}{\partial t^2} &= -\mu_x(t)C(t,t') \\ &+ \frac{p_2}{2} \int_0^{t'} du R(t',u)C(t,u)^{p_2-1} + \frac{p_2(p_2-1)}{2} \int_0^t du \, C(t',u)R(t,u)C(t,u)^{p_2-2} \\ &+ \beta_2 \frac{p_2}{2} \Big(C(t',0)C(t,0)^{p_2-1} - \underline{K(0,t')K(0,t)^{p_2-1}} \Big) \\ &+ \frac{p_4}{2} \int_0^{t'} du R(t',u)C(t,u)^{p_4-1} + \frac{p_4(p_4-1)}{2} \int_0^t du \, C(t',u)R(t,u)C(t,u)^{p_4-2} \\ &+ \beta_4 \frac{p_4}{2} \Big(C(t',0)C(t,0)^{p_4-1} - \underline{K(0,t')K(0,t)^{p_4-1}} \Big) \end{split}$$

$$\begin{aligned} \frac{\partial^2 R(t,t')}{\partial t^2} &= -\mu_x(t) R(t,t') + \frac{p_2(p_2-1)}{2} \int_{t'}^t du \, R(u,t') R(t,u) C(t,u)^{p_2-2} \\ &+ \frac{p_4(p_4-1)}{2} \int_{t'}^t du \, R(u,t') R(t,u) C(t,u)^{p_4-2} \end{aligned}$$

FPU problem

Potential Method

2+4 p-spin spherical Model

Potential Method

Disorder and replicas

Looking for minima

Hamiltonian dynamics

Generic equation of dynamics

Correlation and Response

> Lagrangian multiplier

3=p-spin spherical Model

Potential Method

Correlation and Response

Future developments

$$\begin{split} \frac{\partial^2 C(t,t')}{\partial t^2} &= -\mu_x(t)C(t,t') \\ &+ \frac{p_2}{2} \int_0^{t'} du R(t',u)C(t,u)^{p_2-1} + \frac{p_2(p_2-1)}{2} \int_0^t du \, C(t',u)R(t,u)C(t,u)^{p_2-2} \\ &+ \beta_2 \frac{p_2}{2} \Big(C(t',0)C(t,0)^{p_2-1} - \underline{K(0,t')K(0,t)^{p_2-1}} \Big) \\ &+ \frac{p_4}{2} \int_0^{t'} du R(t',u)C(t,u)^{p_4-1} + \frac{p_4(p_4-1)}{2} \int_0^t du \, C(t',u)R(t,u)C(t,u)^{p_4-2} \\ &+ \beta_4 \frac{p_4}{2} \Big(C(t',0)C(t,0)^{p_4-1} - \underline{K(0,t')K(0,t)^{p_4-1}} \Big) \end{split}$$

$$\begin{aligned} \frac{\partial^2 R(t,t')}{\partial t^2} &= -\mu_x(t) R(t,t') + \frac{p_2(p_2-1)}{2} \int_{t'}^t du \, R(u,t') R(t,u) C(t,u)^{p_2-2} \\ &+ \frac{p_4(p_4-1)}{2} \int_{t'}^t du \, R(u,t') R(t,u) C(t,u)^{p_4-2} \end{aligned}$$

Where we introduced the **Pseudo-Correlation**

$$K(0,t) = \lim_{N \to \infty} \frac{1}{N} \sum_{i} \langle s_i(0) \rangle_{eq} \langle s_i(t) \rangle$$

And we **assumed**

self averaging of correlation, response and pseudo-correlation mean-field approximation

FPU problem

Potential Method

2+4 p-spin spherical Model

Potential Method

Disorder and replicas

Looking for minima

Hamiltonian dynamics

Generic equation of dynamics

Correlation and Response

> Lagrangian multiplier

3=p-spin spherical Model

Potential Method

Correlation and Response

Future developments

$$\begin{split} \frac{\partial^2 C(t,t')}{\partial t^2} &= -\mu_x(t)C(t,t') \\ &+ \frac{p_2}{2} \int_0^{t'} du R(t',u)C(t,u)^{p_2-1} + \frac{p_2(p_2-1)}{2} \int_0^t du \, C(t',u)R(t,u)C(t,u)^{p_2-2} \\ &+ \beta_2 \frac{p_2}{2} \Big(C(t',0)C(t,0)^{p_2-1} - K(0,t')K(0,t)^{p_2-1} \Big) \\ &+ \frac{p_4}{2} \int_0^{t'} du R(t',u)C(t,u)^{p_4-1} + \frac{p_4(p_4-1)}{2} \int_0^t du \, C(t',u)R(t,u)C(t,u)^{p_4-2} \\ &+ \beta_4 \frac{p_4}{2} \Big(C(t',0)C(t,0)^{p_4-1} - K(0,t')K(0,t)^{p_4-1} \Big) \end{split}$$

$$\begin{aligned} \frac{\partial^2 R(t,t')}{\partial t^2} &= -\mu_x(t) R(t,t') + \frac{p_2(p_2-1)}{2} \int_{t'}^t du \, R(u,t') R(t,u) C(t,u)^{p_2-2} \\ &+ \frac{p_4(p_4-1)}{2} \int_{t'}^t du \, R(u,t') R(t,u) C(t,u)^{p_4-2} \end{aligned}$$

Where we introduced the **Pseudo-Correlation**

$$K(0,t) = \lim_{N \to \infty} \frac{1}{N} \sum_{i} \langle s_i(0) \rangle_{eq} \langle s_i(t) \rangle$$

And we **assumed**

self averaging of correlation, response and pseudo-correlation mean-field approximation

Equation for the Pseudo-Correlation

FPU problem

To

Potential Method

2+4 p-spin spherical Model

Potential Method

Disorder and replicas

Looking for minima

Hamiltonian dynamics

Generic equation of dynamics

Correlation and Response

> Lagrangian multiplier

3=p-spin spherical Model Potential Method

Correlation and Response

Future developments

$$K(0,t) = \lim_{N \to \infty} \frac{1}{N} \sum_{i} \langle s_i(0) \rangle_{eq} \langle s_i(t) \rangle$$

Main equation of dynamics:

$$\begin{split} \mathbb{E}\langle \ddot{s}_{i}A(s(t'))\rangle &= -\mathbb{E}\langle \mu_{x}(t)s_{i}(t)A(s(t'))\rangle + \sum_{j}\mathbb{E}(J_{ij}^{2})\Big[\int_{0}^{t}du\,\mathbb{E}\langle i\hat{s}_{i}(u)s_{j}A(s(t'))s_{j}(t)\rangle \\ &+ \int_{0}^{t}du\,\mathbb{E}\langle s_{i}\,i\hat{s}_{j}A(s(t'))s_{j}\rangle + \mathbb{E}\langle \beta_{2}(s_{i}^{0}s_{j}^{0} + \langle s_{i}^{0}s_{j}^{0}\rangle_{eq})A(s(t'))s_{j}(t)\rangle\Big] \\ &+ \sum_{j$$

Equation for the Pseudo-Correlation

FPU problem

Potential Method

2+4 p-spin spherical Model Potential Method

Disorder and replicas

Looking for minima

Hamiltonian dynamics

Generic equation of dynamics

Correlation and Response

> Lagrangian multiplier

3=p-spin spherical Model Potential Method

Correlation and Response

Future developments

$$K(0,t) = \lim_{N \to \infty} \frac{1}{N} \sum_{i} \langle s_i(0) \rangle_{eq} \langle s_i(t) \rangle$$

We choose $\longrightarrow A(s_i(t')) = \langle s_i(0) \rangle_{eq}$

Main equation of dynamics:

$$\begin{split} \mathbb{E}\langle \ddot{s}_{i}A(s(t'))\rangle &= -\mathbb{E}\langle \mu_{x}(t)s_{i}(t)A(s(t'))\rangle + \sum_{j}\mathbb{E}(J_{ij}^{2})\Big[\int_{0}^{t}du\,\mathbb{E}\langle i\hat{s}_{i}(u)s_{j}A(s(t'))s_{j}(t)\rangle \\ &+ \int_{0}^{t}du\,\mathbb{E}\langle s_{i}\,i\hat{s}_{j}A(s(t'))s_{j}\rangle + \mathbb{E}\langle \beta_{2}(s_{i}^{0}s_{j}^{0} + \langle s_{i}^{0}s_{j}^{0}\rangle_{eq})A(s(t'))s_{j}(t)\rangle\Big] \\ &+ \sum_{j$$

Equation for the Pseudo-Correlation

FPU problem

Potential Method

2+4 p-spin spherical Model We choose

Potential Method Disorder and

replicas

Looking for minima

Hamiltonian dynamics

Generic equation of dynamics

Correlation and Response

Lagrangian multiplier

3=p-spin spherical Model Potential Method

Correlation and Response

Future developments

$$K(0,t) = \lim_{N \to \infty} \frac{1}{N} \sum_{i} \langle s_i(0) \rangle_{eq} \langle s_i(t) \rangle$$

 $A(s_i(t')) = \langle s_i(0) \rangle_{eq}$

Main equation of dynamics:

$$\begin{split} \mathbb{E}\langle \ddot{s}_{i}A(s(t'))\rangle &= -\mathbb{E}\langle \mu_{x}(t)s_{i}(t)A(s(t'))\rangle + \sum_{j}\mathbb{E}(J_{ij}^{2})\Big[\int_{0}^{t}du\,\mathbb{E}\langle i\hat{s}_{i}(u)s_{j}A(s(t'))s_{j}(t)\rangle \\ &+ \int_{0}^{t}du\,\mathbb{E}\langle s_{i}\,i\hat{s}_{j}A(s(t'))s_{j}\rangle + \mathbb{E}\langle \beta_{2}(s_{i}^{0}s_{j}^{0} + \langle s_{i}^{0}s_{j}^{0}\rangle_{eq})A(s(t'))s_{j}(t)\rangle\Big] \\ &+ \sum_{j$$

The differential equation for the **Pseudo-Correlation**

$$\begin{split} \frac{\partial^2 K(0,t)}{\partial t^2} &= -\mu_x(t)K(0,t) + \frac{p_2(p_2-1)}{2}\int_0^t du\,K(0,u)R(t,u)C(t,u)^{p_2-2} + \beta_2\frac{p_2}{2}\Big(K(0,0)C(t,0)^{p_2-1} - \bar{q}K(0,t)^{p_2-1}\Big) \\ &+ \frac{p_4(p_4-1)}{2}\int_0^t du\,K(0,u)R(t,u)C(t,u)^{p_4-2} + \beta_4\frac{p_4}{2}\Big(K(0,0)C(t,0)^{p_4-1} - \bar{q}K(0,t)^{p_4-1}\Big) \end{split}$$

FPU problem

Hamiltonian:

Potential Method

2+4 p-spin spherical Model

Potential Method Disorder and replicas

Looking for minima

Hamiltonian dynamics

Generic equation of dynamics

Correlation and Response

> Lagrangian multiplier

3=p-spin spherical Model Potential Method

Correlation and Response

Future developments

$$H(s) = \frac{1}{2} \sum_{i} p_i^2 + V_J(s) + \frac{\mu_x(t)}{2} (\sum_{i} s_i^2 - N) \qquad \longrightarrow \qquad \sum_{i} p_i^2 = 2(H - V_J)$$

Hamilton's equations

$$\frac{\partial H}{\partial p_i} = \dot{s}_i = p_i$$
$$\frac{\partial H}{\partial s_i} = -\dot{p}_i = \frac{\partial V}{\partial s_i} + \mu_x s_i$$

FPU problem

Hamiltonian:

Potential Method

2+4 p-spin spherical Model

Potential Method Disorder and replicas

Looking for minima

Hamiltonian dynamics

Generic equation of dynamics

Correlation and Response

> Lagrangian multiplier

3=p-spin spherical Model Potential Method

Correlation and Response

Future developments

Friday, September 5, 14

$$H(s) = \frac{1}{2} \sum_{i} p_i^2 + V_J(s) + \frac{\mu_x(t)}{2} (\sum_{i} s_i^2 - N) \qquad \longrightarrow \qquad \sum_{i} p_i^2 = 2(H - V_J)$$

Hamilton's equations

$$\frac{\partial H}{\partial p_i} = \dot{s}_i = p_i$$
$$\frac{\partial H}{\partial s_i} = -\dot{p}_i = \frac{\partial V}{\partial s_i} + \mu_x s_i$$

$$\sum_{i} \dot{p}_{i} s_{i} = \sum_{i} \ddot{s}_{i} s_{i} = \frac{1}{2} \frac{d}{dt} \sum_{i} s_{i}^{2} - \sum_{i} \dot{s}_{i}^{2} = -\sum_{i} \dot{s}_{i}^{2}$$

FPU problem

Hamiltonian:

Potential Method

2+4 p-spin spherical Model

Potential Method Disorder and replicas

Looking for minima

Hamiltonian dynamics

Generic equation of dynamics

Correlation and Response

> Lagrangian multiplier

3=p-spin spherical Model Potential Method

Correlation and Response

Future developments

$$H(s) = \frac{1}{2} \sum_{i} p_i^2 + V_J(s) + \frac{\mu_x(t)}{2} (\sum_{i} s_i^2 - N) \qquad \longrightarrow \qquad \sum_{i} p_i^2 = 2(H - V_J)$$

Hamilton's equations

$$\frac{\partial H}{\partial p_i} = \dot{s}_i = p_i$$
$$\frac{\partial H}{\partial s_i} = -\dot{p}_i = \frac{\partial V}{\partial s_i} + \mu_x s_i$$

$$\sum_{i} \dot{p}_{i} s_{i} = \sum_{i} \ddot{s}_{i} s_{i} = \frac{1}{2} \frac{d}{dt} \underbrace{\sum_{i} s_{i}^{2}}_{N} - \sum_{i} \dot{s}_{i}^{2} = -\sum_{i} \dot{s}_{i}^{2}$$

FPU problem

Hamiltonian:

Potential Method

2+4 p-spin spherical Model Potential Method

Disorder and replicas

Looking for minima

Hamiltonian dynamics

Generic equation of dynamics

Correlation and Response

> Lagrangian multiplier

3=p-spin spherical Model Potential Method

Correlation and Response

Future developments

$$H(s) = \frac{1}{2} \sum_{i} p_i^2 + V_J(s) + \frac{\mu_x(t)}{2} (\sum_{i} s_i^2 - N) \qquad \longrightarrow \qquad \sum_{i} p_i^2 = 2(H - V_J)$$

Hamilton's equations $\frac{\partial H}{\partial p_i} = \dot{s}_i = p_i$ $\frac{\partial H}{\partial s_i} = -\dot{p}_i = \frac{\partial V}{\partial s_i} + \mu_x s_i$

$$\sum_{i} \dot{p}_{i} s_{i} = \sum_{i} \ddot{s}_{i} s_{i} = \frac{1}{2} \frac{d}{dt} \underbrace{\sum_{i} s_{i}^{2}}_{N} - \sum_{i} \dot{s}_{i}^{2} = -\sum_{i} \dot{s}_{i}^{2}$$

$$\sum_{i} \ddot{s}_i s_i = -\sum_{i} \frac{\partial V}{\partial s_i} s_i - N\mu_x = -\sum_{i} \dot{s}_i^2 = \sum_{i} p_i^2 = 2(H - V_J)$$

Friday, September 5, 14

FPU problem

Hamiltonian:

Potential Method

2+4 p-spin spherical Model Potential Method

Disorder and replicas

Looking for minima

Hamiltonian dynamics

Generic equation of dynamics

Correlation and Response

> Lagrangian multiplier

3=p-spin spherical Model Potential Method

Correlation and Response

Future developments

$$H(s) = \frac{1}{2} \sum_{i} p_i^2 + V_J(s) + \frac{\mu_x(t)}{2} (\sum_{i} s_i^2 - N) \qquad \longrightarrow \qquad \sum_{i} p_i^2 = 2(H - V_J)$$

Hamilton's equations $\frac{\partial H}{\partial p_i} = \dot{s}_i = p_i$ $\frac{\partial H}{\partial s_i} = -\dot{p}_i = \frac{\partial V}{\partial s_i} + \mu_x s_i$

$$\sum_{i} \dot{p}_i s_i = \sum_{i} \ddot{s}_i s_i = \frac{1}{2} \frac{d}{dt} \underbrace{\sum_{i} s_i^2}_{N} - \sum_{i} \dot{s}_i^2 = -\sum_{i} \dot{s}_i^2$$

$$\sum_{i} \ddot{s}_i s_i = -\sum_{i} \frac{\partial V}{\partial s_i} s_i - N\mu_x = -\sum_{i} \dot{s}_i^2 = \sum_{i} p_i^2 = 2(H - V_J)$$
Equation for the lagrangian multiplier

FPU problem

Hamiltonian:

Potential Method

2+4 p-spin spherical Model Potential Method

Disorder and replicas

Looking for minima

Hamiltonian dynamics

Generic equation of dynamics

Correlation and Response

> Lagrangian multiplier

3=p-spin spherical Model Potential Method

Correlation and Response

Future developments

$$H(s) = \frac{1}{2} \sum_{i} p_i^2 + V_J(s) + \frac{\mu_x(t)}{2} (\sum_{i} s_i^2 - N) \qquad \qquad \sum_{i} p_i^2 = 2(H - V_J)$$

Hamilton's equations $\frac{\partial H}{\partial p_i} = \dot{s}_i = p_i$ $\frac{\partial H}{\partial s_i} = -\dot{p}_i = \frac{\partial V}{\partial s_i} + \mu_x s_i$

$$\sum_{i} \dot{p}_i s_i = \sum_{i} \ddot{s}_i s_i = \frac{1}{2} \frac{d}{dt} \underbrace{\sum_{i} s_i^2}_{N} - \sum_{i} \dot{s}_i^2 = -\sum_{i} \dot{s}_i^2$$

$$\sum_{i} \ddot{s}_{i} s_{i} = -\sum_{i} \frac{\partial V}{\partial s_{i}} s_{i} - N\mu_{x} = -\sum_{i} \dot{s}_{i}^{2} = \sum_{i} p_{i}^{2} = 2(H - V_{J})$$

We obtain the relation desired

$$N\mu_x = -\sum_i \frac{\partial V_J}{\partial s_i} s_i + 2(H - V_J)$$

Averaging

$$N\mu_x = -\sum_i \mathbb{E}\left\langle \frac{\partial V_J}{\partial s_i} s_i \right\rangle + 2(E - \mathbb{E}\langle V_J \rangle)$$

Equation for the lagrangian multiplier

FPU problem

Potential Method

2+4 p-spin spherical Model Potential Method

Disorder and replicas

Looking for minima

Hamiltonian dynamics

Generic equation of dynamics

Correlation and Response

> Lagrangian multiplier

3=p-spin spherical Model Potential Method

Correlation and Response

Future developments

$$N\mu_x = -\sum_i \mathbb{E}\left\langle \frac{\partial V_J}{\partial s_i} s_i \right\rangle + 2(E - \mathbb{E}\langle V_J \rangle)$$

Equation for the lagrangian multiplier

FPU problem

Potential Method

2+4 p-spin spherical Model Potential Method Disorder and replicas

Looking for minima

Hamiltonian dynamics

Generic equation of dynamics

Correlation and Response

> Lagrangian multiplier

3=p-spin spherical Model Potential Method

Correlation and Response

Future developments

$$N\mu_x = -\sum_i \mathbb{E}\left\langle \frac{\partial V_J}{\partial s_i} s_i \right\rangle + 2(E - \mathbb{E}\langle V_J \rangle)$$

With computations analogous to those previously seen for correlation and response Equation for the lagrangian multiplier that enforces the spherical constraint

$$\begin{split} \mu_x(t) = & 2e + 4\frac{p_2}{2} \int_0^t du R(t, u) C(t, u)^{p_2 - 1} + \beta_2 \Big(C(t, 0)^{p_2} - K(0, t)^{p_2} \Big) \\ & + 6\frac{p_4}{2} \int_0^t du R(t, u) C(t, u)^{p_4 - 1} + \beta_4 \Big(C(t, 0)^{p_4} - K(0, t)^{p_4} \Big) \end{split}$$

Equations for dynamics

FPU problem

Potential Method

2+4 p-spin spherical Model Potential Method Disorder and

replicas

Looking for minima

Hamiltonian dynamics

Generic equation of dynamics

Correlation and Response

> Lagrangian multiplier

3=p-spin spherical Model

Potential Method

Correlation and Response

Future developments

$$\begin{split} \frac{\partial^2 C(t,t')}{\partial t^2} &= -\mu_x(t)C(t,t') \\ &+ \frac{p_2}{2} \int_0^{t'} du R(t',u)C(t,u)^{p_2-1} + \frac{p_2(p_2-1)}{2} \int_0^t du \, C(t',u)R(t,u)C(t,u)^{p_2-2} \\ &+ \beta_2 \frac{p_2}{2} \Big(C(t',0)C(t,0)^{p_2-1} - K(0,t')K(0,t)^{p_2-1} \Big) \\ &+ \frac{p_4}{2} \int_0^{t'} du R(t',u)C(t,u)^{p_4-1} + \frac{p_4(p_4-1)}{2} \int_0^t du \, C(t',u)R(t,u)C(t,u)^{p_4-2} \\ &+ \beta_4 \frac{p_4}{2} \Big(C(t',0)C(t,0)^{p_4-1} - K(0,t')K(0,t)^{p_4-1} \Big) \end{split}$$

Response

Correlation

$$\begin{split} \frac{\partial^2 R(t,t')}{\partial t^2} &= -\mu_x(t) R(t,t') + \frac{p_2(p_2-1)}{2} \int_{t'}^t du \, R(u,t') R(t,u) C(t,u)^{p_2-2} \\ &+ \frac{p_4(p_4-1)}{2} \int_{t'}^t du \, R(u,t') R(t,u) C(t,u)^{p_4-2} \end{split}$$

Pseudo-Correlation

$$\begin{aligned} \frac{\partial^2 K(0,t)}{\partial t^2} &= -\mu_x(t)K(0,t) + \frac{p_2(p_2-1)}{2} \int_0^t du \, K(0,u)R(t,u)C(t,u)^{p_2-2} + \beta_2 \frac{p_2}{2} \Big(K(0,0)C(t,0)^{p_2-1} - \bar{q}K(0,t)^{p_2-1} \Big) \\ &+ \frac{p_4(p_4-1)}{2} \int_0^t du \, K(0,u)R(t,u)C(t,u)^{p_4-2} + \beta_4 \frac{p_4}{2} \Big(K(0,0)C(t,0)^{p_4-1} - \bar{q}K(0,t)^{p_4-1} \Big) \end{aligned}$$

Lagrangian multiplier

$$\mu_x(t) = 2e + 4\frac{p_2}{2} \int_0^t du R(t, u) C(t, u)^{p_2 - 1} + \beta_2 \Big(C(t, 0)^{p_2} - K(0, t)^{p_2} \Big) + 6\frac{p_4}{2} \int_0^t du R(t, u) C(t, u)^{p_4 - 1} + \beta_4 \Big(C(t, 0)^{p_4} - K(0, t)^{p_4} \Big) \Big)$$

Friday, September 5, 14

FPU problem

Potential Method

2+4 p-spin spherical Model Potential Method Disorder and

replicas

Looking for minima

Hamiltonian dynamics

Generic equation of dynamics

Correlation and Response

> Lagrangian multiplier

3=p-spin spherical Model

Potential Method

Correlation and Response

Future developments

$$V_J = H_1 + H_{12} + H_{21} + H_2$$

$$= -\sum_{i < j < k}^{\gamma N, \gamma N, \gamma N} J_{ijk}^{(1)} s_i^{(1)} s_j^{(1)} s_k^{(1)} - \sum_{i < j, k}^{\gamma N, \gamma N,} J_{ijk}^{(12)} s_i^{(1)} s_j^{(1)} s_k^{(2)} - \sum_{i < j, k}^{\gamma N, (1-\gamma)N,} J_{ijk}^{(21)} s_i^{(1)} s_j^{(2)} s_k^{(2)} - \sum_{i < j, k}^{\gamma N, (1-\gamma)N,} J_{ijk}^{(21)} s_i^{(1)} s_j^{(2)} s_k^{(2)} - \sum_{i < j < k}^{(1-\gamma)N} J_{ijk}^{(2)} s_i^{(2)} s_j^{(2)} s_k^{(2)} + \sum_{i < j < k}^{\gamma N, (1-\gamma)N,} J_{ijk}^{(2)} s_i^{(2)} s_j^{(2)} s_k^{(2)} + \sum_{i < j < k}^{\gamma N, (1-\gamma)N,} J_{ijk}^{(2)} s_i^{(2)} s_j^{(2)} s_k^{(2)} + \sum_{i < j < k}^{\gamma N, (1-\gamma)N,} J_{ijk}^{(2)} s_i^{(2)} s_j^{(2)} s_k^{(2)} + \sum_{i < j < k}^{\gamma N, (1-\gamma)N,} J_{ijk}^{(2)} s_i^{(2)} s_j^{(2)} s_k^{(2)} + \sum_{i < j < k}^{\gamma N, (1-\gamma)N,} J_{ijk}^{(2)} s_i^{(2)} s_j^{(2)} s_k^{(2)} + \sum_{i < j < k}^{\gamma N, (1-\gamma)N,} J_{ijk}^{(2)} s_i^{(2)} s_j^{(2)} s_k^{(2)} + \sum_{i < j < k}^{\gamma N, (1-\gamma)N,} J_{ijk}^{(2)} s_i^{(2)} s_j^{(2)} s_k^{(2)} + \sum_{i < j < k}^{\gamma N, (1-\gamma)N,} J_{ijk}^{(2)} s_i^{(2)} s_j^{(2)} s_j^{(2)} s_j^{(2)} s_j^{(2)} s_j^{(2)} + \sum_{i < j < k}^{\gamma N, (1-\gamma)N,} J_{ijk}^{(2)} s_i^{(2)} s_j^{(2)} s$$

Replicated partition function

$$Z^{(n,m)} = \overline{\int Ds^a \int D\sigma^\alpha \exp\left[\beta' \sum_a^n H(s^a) + \beta \sum_\alpha^m H(\sigma^\alpha)\right] \prod_{\alpha=1}^m \delta\left(\sum_i^{\gamma N} s_i^{1(1)} \sigma_i^{\alpha(1)} - N\tilde{p}_1\right) \delta\left(\sum_i^{(1-\gamma)N} s_i^{1(2)} \sigma_i^{\alpha(2)} - N\tilde{p}_2\right)}$$

FPU problem

Potential Method

2+4 p-spin spherical Model Potential Method Disorder and

replicas

Looking for minima

Hamiltonian dynamics

Generic equation of dynamics

Correlation and Response

> Lagrangian multiplier

3=p-spin spherical Model

Potential Method

Correlation and Response

Future developments

$$V_J = H_1 + H_{12} + H_{21} + H_2$$

$$= -\sum_{i < j < k}^{\gamma N, \gamma N, \gamma N} J_{ijk}^{(1)} s_i^{(1)} s_j^{(1)} s_k^{(1)} - \sum_{i < j, k}^{\gamma N, \gamma N,} J_{ijk}^{(12)} s_i^{(1)} s_j^{(2)} s_k^{(2)} - \sum_{i < j, k}^{\gamma N, (1-\gamma)N,} J_{ijk}^{(21)} s_i^{(1)} s_j^{(2)} s_k^{(2)} - \sum_{i < j, k}^{\gamma N, (1-\gamma)N,} J_{ijk}^{(21)} s_i^{(1)} s_j^{(2)} s_k^{(2)} - \sum_{i < j < k}^{(1-\gamma)N} J_{ijk}^{(2)} s_i^{(2)} s_j^{(2)} s_k^{(2)} + \sum_{i < j < k}^{\gamma N, (1-\gamma)N,} J_{ijk}^{(2)} s_i^{(2)} s_j^{(2)} s_k^{(2)} + \sum_{i < j < k}^{\gamma N, (1-\gamma)N,} J_{ijk}^{(2)} s_i^{(2)} s_j^{(2)} s_k^{(2)} + \sum_{i < j < k}^{\gamma N, (1-\gamma)N,} J_{ijk}^{(2)} s_i^{(2)} s_j^{(2)} s_k^{(2)} + \sum_{i < j < k}^{\gamma N, (1-\gamma)N,} J_{ijk}^{(2)} s_i^{(2)} s_j^{(2)} s_k^{(2)} + \sum_{i < j < k}^{\gamma N, (1-\gamma)N,} J_{ijk}^{(2)} s_i^{(2)} s_j^{(2)} s_k^{(2)} + \sum_{i < j < k}^{\gamma N, (1-\gamma)N,} J_{ijk}^{(2)} s_i^{(2)} s_j^{(2)} s_k^{(2)} + \sum_{i < j < k}^{\gamma N, (1-\gamma)N,} J_{ijk}^{(2)} s_i^{(2)} s_j^{(2)} s_k^{(2)} + \sum_{i < j < k}^{\gamma N, (1-\gamma)N,} J_{ijk}^{(2)} s_i^{(2)} s_j^{(2)} s_j^{(2)} s_j^{(2)} s_j^{(2)} s_j^{(2)} + \sum_{i < j < k}^{\gamma N, (1-\gamma)N,} J_{ijk}^{(2)} s_i^{(2)} s_j^{(2)} s$$

Replicated partition function

$$Z^{(n,m)} = \int Ds^a \int D\sigma^\alpha \exp\left[\beta' \sum_a^n H(s^a) + \beta \sum_\alpha^m H(\sigma^\alpha)\right] \prod_{\alpha=1}^m \delta\left(\sum_i^{\gamma N} s_i^{1(1)} \sigma_i^{\alpha(1)} - N\tilde{p}_1\right) \delta\left(\sum_i^{(1-\gamma)N} s_i^{1(2)} \sigma_i^{\alpha(2)} - N\tilde{p}_2\right)$$

fixed distance between the two subsystems 1 fixed distance between the two subsystems 2

 $= -\sum_{i \le j \le k}^{\gamma N, \gamma N, \gamma N} J_{ijk}^{(1)} s_i^{(1)} s_j^{(1)} s_k^{(1)} - \sum_{i \le j, k}^{\gamma N, \gamma N,} J_{ijk}^{(12)} s_i^{(1)} s_j^{(2)} s_k^{(2)} - \sum_{i \le j, k}^{\gamma N, (1-\gamma)N,} J_{ijk}^{(21)} s_i^{(1)} s_j^{(2)} s_k^{(2)} - \sum_{i \le j \le k}^{(1-\gamma)N, (1-\gamma)N,} J_{ijk}^{(2)} s_i^{(2)} s_j^{(2)} s_k^{(2)} + \sum_{i \le j \le k}^{(1-\gamma)N, (1-\gamma)N, (1-\gamma)$

FPU problem

Potential Method

2+4 p-spin spherical Model **Potential Method**

replicas

Looking for minima

Hamiltonian dynamics

Generic equation of dynamics

Correlation and Response

> Lagrangian multiplier

3=p-spin spherical Model

Potential Method

Correlation and Response

Future developments $V_{I} = H_{1} + H_{12} + H_{21} + H_{2}$

Replicated partition function

Disorder and

 $Z^{(n,m)} = \overline{\int Ds^a} \int D\sigma^\alpha \exp\left[\beta' \sum_a^n H(s^a) + \beta \sum_\alpha^m H(\sigma^\alpha)\right] \prod_{\alpha=1}^m \delta\left(\sum_i^{\gamma N} s_i^{1(1)} \sigma_i^{\alpha(1)} - N\tilde{p}_1\right) \delta\left(\sum_i^{(1-\gamma)N} s_i^{1(2)} \sigma_i^{\alpha(2)} - N\tilde{p}_2\right)$

fixed distance between the two subsystems 1

fixed distance between the two subsystems 2

• Average over disorder

FPU problem

Potential Method

2+4 p-spin spherical Model Potential Method Disorder and

replicas

Looking for minima

Hamiltonian dynamics

Generic equation of dynamics

Correlation and Response

> Lagrangian multiplier

3=p-spin spherical Model

Potential Method

Correlation and Response

Future developments

 $V_J = H_1 + H_{12} + H_{21} + H_2$

$$= -\sum_{i < j < k}^{\gamma N, \gamma N, \gamma N} J_{ijk}^{(1)} s_i^{(1)} s_j^{(1)} s_k^{(1)} - \sum_{i < j, k}^{\gamma N, \gamma N,} J_{ijk}^{(12)} s_i^{(1)} s_j^{(2)} s_k^{(2)} - \sum_{i < j, k}^{\gamma N, (1-\gamma)N,} J_{ijk}^{(21)} s_i^{(1)} s_j^{(2)} s_k^{(2)} - \sum_{i < j, k}^{\gamma N, (1-\gamma)N,} J_{ijk}^{(21)} s_i^{(1)} s_j^{(2)} s_k^{(2)} - \sum_{i < j < k}^{(1-\gamma)N} J_{ijk}^{(2)} s_i^{(2)} s_j^{(2)} s_k^{(2)} + \sum_{i < j < k}^{\gamma N, (1-\gamma)N,} J_{ijk}^{(2)} s_i^{(2)} s_j^{(2)} s_k^{(2)} + \sum_{i < j < k}^{\gamma N, (1-\gamma)N,} J_{ijk}^{(2)} s_i^{(2)} s_j^{(2)} s_k^{(2)} + \sum_{i < j < k}^{\gamma N, (1-\gamma)N,} J_{ijk}^{(2)} s_i^{(2)} s_j^{(2)} s_k^{(2)} + \sum_{i < j < k}^{\gamma N, (1-\gamma)N,} J_{ijk}^{(2)} s_i^{(2)} s_j^{(2)} s_k^{(2)} + \sum_{i < j < k}^{\gamma N, (1-\gamma)N,} J_{ijk}^{(2)} s_i^{(2)} s_j^{(2)} s_k^{(2)} + \sum_{i < j < k}^{\gamma N, (1-\gamma)N,} J_{ijk}^{(2)} s_i^{(2)} s_j^{(2)} s_k^{(2)} + \sum_{i < j < k}^{\gamma N, (1-\gamma)N,} J_{ijk}^{(2)} s_i^{(2)} s_j^{(2)} s_j^{(2)} s_j^{(2)} s_j^{(2)} s_j^{(2)} + \sum_{i < j < k}^{\gamma N, (1-\gamma)N,} J_{ijk}^{(2)} s_i^{(2)} s_j^{(2)} s_j^{($$

Replicated partition function

$$Z^{(n,m)} = \overline{\int Ds^a \int D\sigma^\alpha \exp\left[\beta' \sum_a^n H(s^a) + \beta \sum_\alpha^m H(\sigma^\alpha)\right]} \prod_{\alpha=1}^m \delta\left(\sum_i^{\gamma N} s_i^{1(1)} \sigma_i^{\alpha(1)} - N\tilde{p}_1\right) \delta\left(\sum_i^{(1-\gamma)N} s_i^{1(2)} \sigma_i^{\alpha(2)} - N\tilde{p}_2\right)$$

fixed distance between the two subsystems 1 fixed distance between the two subsystems 2

• Average over disorder

Introduce

Single matrices for system 1 and 2

$$\mathbf{Q}^{(1)} = \begin{pmatrix} Q^{(1)} & P^{(1)} \\ P^{(1)T} & R^{(1)} \end{pmatrix}$$
$$\mathbf{Q}^{(2)} = \begin{pmatrix} Q^{(2)} & P^{(2)} \\ P^{(2)T} & R^{(2)} \end{pmatrix}$$

Generalized RS ansatz

FPU problem

Potential Method

2+4 p-spin spherical Model Potential Method Disorder and replicas

Looking for minima

Hamiltonian dynamics

Generic equation of dynamics

Correlation and Response

> Lagrangian multiplier

3=p-spin spherical Model

Potential Method

Correlation and Response

Future developments

Using a **saddle point** technique to estimate the integral

$$Z^{(n,m)} = \int D\mathbf{Q}_{\gamma\eta} \int D\lambda_{\gamma\eta} \exp[-NS(\lambda, \mathbf{Q})] \simeq \exp[-NS(\lambda^*, \mathbf{Q}^*)]$$

$$\begin{split} \frac{1}{N}\ln Z^{n,m} &= +\frac{1}{4}\gamma^3 \Big(\beta_1^2 \sum_{a,b}^n Q_{ab}^{(1)3} + 2\beta_1 \beta \sum_{a,\alpha} P_{a,\alpha}^{(1)3} + \beta^2 \sum_{\alpha,\beta} R_{\alpha,\beta}^{(1)3}\Big) + \frac{1}{4}(1-\gamma)^3 \Big(\beta_2^2 \sum_{a,b}^n Q_{ab}^{(2)3} + 2\beta_2 \beta \sum_{a,\alpha} P_{a,\alpha}^{(2)3} + \beta^2 \sum_{\alpha,\beta} R_{\alpha,\beta}^{(2)3}\Big) \\ &\quad +\frac{3}{4}\gamma^2(1-\gamma) \Big(\beta_{12}^2 \sum_{a,b}^n Q_{ab}^{(1)2} Q_{ab}^{(2)} + 2\beta_{12}\beta \sum_{a,\alpha} P_{a,\alpha}^{(1)2} P_{a,\alpha}^{(2)} + \beta^2 \sum_{\alpha,\beta} R_{\alpha,\beta}^{(1)2} R_{\alpha,\beta}^{(2)}\Big) \\ &\quad +\frac{3}{4}\gamma(1-\gamma)^2 \Big(\beta_{21}^2 \sum_{a,b}^n Q_{ab}^{(1)} Q_{ab}^{(2)2} + 2\beta_{21}\beta \sum_{a,\alpha} P_{a,\alpha}^{(1)} P_{a,\alpha}^{(2)2} + \beta^2 \sum_{\alpha,\beta} R_{\alpha,\beta}^{(1)} R_{\alpha,\beta}^{(2)2}\Big) \\ &\quad +\frac{1}{2}\ln \det \left(\begin{array}{c} Q^{(1)} & P^{(1)} \\ P^{(1)T} & R^{(1)} \end{array} \right) + \frac{1}{2}\ln \det \left(\begin{array}{c} Q^{(2)} & P^{(2)} \\ P^{(2)T} & R^{(2)} \end{array} \right) \end{split}$$

The Effective Potential can be obtained using

$$NV = -T\frac{\partial}{\partial m} \ln Z^{(n,m)} \Big|_{\substack{m=0\\n=0}}$$

Generalized RS ansatz

FPU problem

Potential Method

2+4 p-spin spherical Model Potential Method Disorder and replicas

Looking for minima

Hamiltonian dynamics

Generic equation of dynamics

Correlation and Response

> Lagrangian multiplier

3=p-spin spherical Model

Potential Method

Correlation and Response

Future developments

Using a **saddle point** technique to estimate the integral

$$Z^{(n,m)} = \int D\mathbf{Q}_{\gamma\eta} \int D\lambda_{\gamma\eta} \exp[-NS(\lambda, \mathbf{Q})] \simeq \exp[-NS(\lambda^*, \mathbf{Q}^*)]$$

$$\begin{split} \frac{1}{N}\ln Z^{n,m} &= +\frac{1}{4}\gamma^3 \Big(\beta_1^2 \sum_{a,b}^n Q_{ab}^{(1)3} + 2\beta_1 \beta \sum_{a,\alpha} P_{a,\alpha}^{(1)3} + \beta^2 \sum_{\alpha,\beta} R_{\alpha,\beta}^{(1)3}\Big) + \frac{1}{4}(1-\gamma)^3 \Big(\beta_2^2 \sum_{a,b}^n Q_{ab}^{(2)3} + 2\beta_2 \beta \sum_{a,\alpha} P_{a,\alpha}^{(2)3} + \beta^2 \sum_{\alpha,\beta} R_{\alpha,\beta}^{(2)3}\Big) \\ &\quad +\frac{3}{4}\gamma^2(1-\gamma) \Big(\beta_{12}^2 \sum_{a,b}^n Q_{ab}^{(1)2} Q_{ab}^{(2)} + 2\beta_{12}\beta \sum_{a,\alpha} P_{a,\alpha}^{(1)2} P_{a,\alpha}^{(2)} + \beta^2 \sum_{\alpha,\beta} R_{\alpha,\beta}^{(1)2} R_{\alpha,\beta}^{(2)}\Big) \\ &\quad +\frac{3}{4}\gamma(1-\gamma)^2 \Big(\beta_{21}^2 \sum_{a,b}^n Q_{ab}^{(1)} Q_{ab}^{(2)2} + 2\beta_{21}\beta \sum_{a,\alpha} P_{a,\alpha}^{(1)} P_{a,\alpha}^{(2)2} + \beta^2 \sum_{\alpha,\beta} R_{\alpha,\beta}^{(1)} R_{\alpha,\beta}^{(2)2}\Big) \\ &\quad +\frac{1}{2}\ln \det \left(\begin{array}{c} Q^{(1)} & P^{(1)} \\ P^{(1)T} & R^{(1)} \end{array} \right) + \frac{1}{2}\ln \det \left(\begin{array}{c} Q^{(2)} & P^{(2)} \\ P^{(2)T} & R^{(2)} \end{array} \right) \end{split}$$

The Effective Potential can be obtained using

$$NV = -T\frac{\partial}{\partial m}\ln Z^{(n,m)}\Big|_{\substack{m=0\\n=0}}$$
RS Ansatz
for the Overlap Matrices
$$\mathbf{Q} = \begin{pmatrix} Q & P\\ P^T & R \end{pmatrix} = \begin{pmatrix} \overbrace{q}^{n} & \overbrace{q}^{m} & \overbrace{0}^{m} & \overbrace{0}^{m} & \overbrace{0}^{n} & \overbrace{1}^{m} & \overbrace{1}^{m$$

Effective Potential

 $\beta V(p_1, r_1, p_2,$

FPU problem

Potential Function

Potential Method

2+4 p-spin spherical Model

Potential Method

Disorder and replicas

Looking for minima

Hamiltonian dynamics

Generic equation of dynamics

Correlation and Response

> Lagrangian multiplier

3=p-spin spherical Model

Potential Method

Correlation and Response

Future developments

$$\begin{aligned} r_2) &= -\frac{1}{4}\gamma^3(\beta^2 + 2\beta_1\beta \, p_1^3 - \beta^2 \, r_1^3) \\ &- \frac{1}{4}(1-\gamma)^3(\beta^2 + 2\beta_2\beta \, p_2^3 - \beta^2 \, r_2^3) \\ &- \frac{3}{4}(1-\gamma)^2\gamma(\beta^2 + 2\beta_{21}\beta \, p_1 \, p_2^2 - \beta^2 r_1 \, r_2^2) \\ &- \frac{3}{4}\gamma^2(1-\gamma)(\beta^2 + 2\beta_{12}\beta \, p_1^2 \, p_2 - \beta^2 r_1^2 \, r_2) \\ &- \frac{1}{2}\gamma\left(\frac{r_1 - p_1^2}{1-r_1} + \log[1-r_1]\right) - \frac{1}{2}(1-\gamma)\left(\frac{r_2 - p_2^2}{1-r_2} + \log[1-r_2]\right) \end{aligned}$$

,

Hamiltonian dynamics

FPU problem

Potential Method

Equation for the Hamiltonian dynamics of a generic p-spin spherical model

Correlation

2+4 p-spin spherical Model Potential Method Disorder and replicas

Looking for minima

Hamiltonian dynamics

Generic equation of dynamics

Correlation and Response

> Lagrangian multiplier

3=p-spin spherical Model Potential Method

Correlation and Response

Future developments

$$\begin{split} \frac{\partial^2 C(t,t')}{\partial t^2} &= -\mu(t)C(t,t') \\ &+ \frac{p}{2} \int_0^{t'} du R(t',u)C(t,u)^{p-1} + \frac{p(p-1)}{2} \int_0^t du \, C(t',u)R(t,u)C(t,u)^{p-2} \\ &+ \beta' \frac{p}{2} \Big(C(t',0)C(t,0)^{p-1} - K(0,t')K(0,t)^{p-1} \Big) \end{split}$$

Response

$$\begin{aligned} \frac{\partial^2 R(t,t')}{\partial t^2} &= -\mu(t)R(t,t') + \frac{p(p-1)}{2} \int_{t'}^t du \, R(u,t')R(t,u)C(t,u)^{p-2} \\ &+ \frac{p(p-1)}{2} \int_{t'}^t du \, R(u,t')R(t,u)C(t,u)^{p-2} \end{aligned}$$

Pseudo-Correlation

$$\begin{aligned} \frac{\partial^2 K(0,t)}{\partial t^2} &= -\mu_x(t) K(0,t) + \frac{p(p-1)}{2} \int_0^t du \, K(0,u) R(t,u) C(t,u)^{p-2} \\ &+ \beta' \frac{p}{2} \Big(K(0,0) C(t,0)^{p-1} - \bar{q} K(0,t)^{p-1} \Big) \end{aligned}$$

$$C(t,t') \rightarrow \gamma C_1(t,t') + (1-\gamma)C_2(t,t')$$

$$R(t,t') \rightarrow \gamma R_1(t,t') + (1-\gamma)R_2(t,t')$$

$$K(t,t') \rightarrow \gamma K_1(t,t') + (1-\gamma)K_2(t,t')$$

$$\overline{q} \rightarrow \gamma \overline{q}_1 + (1-\gamma)\overline{q}_2$$

Equations for the dynamics

FPU problem Correlation

Potential Method

2+4 p-spin spherical Model

Potential Method Disorder and

replicas

Looking for minima

Hamiltonian dynamics

Generic equation of dynamics

Correlation and Response

> Lagrangian multiplier

3=p-spin spherical Model

Potential Method

Correlation and Response

Future developments

$$\begin{aligned} \frac{\partial^2 C_1(t,t')}{\partial t^2} &= -\gamma \mu C_1(t,t') \\ &+ \frac{p(p-1)}{2} \Biggl\{ \gamma^3 \int_0^t du C_1(t,u) R_1(t,u) \Bigl(C_1(t,u) + C_1(t',u) \Bigr) + \gamma^2 (1-\gamma) \int_0^t du C_1(t',u) \Bigl(C_2(t,u) R_1(t,u) + C_1(t,u) R_2(t,u) \Bigr) \\ &+ \gamma^2 (1-\gamma) \int_0^t du C_1(t,u) \Bigl(C_2(t',u) R_1(t,u) + C_2(t,u) R_1(t',u) + C_1(t,u) R_2(t',u) \Bigr) \Biggr\} \\ &+ \frac{p \int \beta_s \alpha^3 \Bigl(C_s(t,u)^2 C_s(t',u) - K_s(t,u)^2 K_s(t',u) \Bigr) + 2\beta_s \alpha^2 (1-\alpha) \Bigl(C_s(t,u) C_s(t',u) - K_s(t,u) K_s(t,u) \Bigr) \Biggr\} \end{aligned}$$

 $+\frac{p}{2}\Big\{\beta_1\gamma^3\Big(C_1(t,0)^2C_1(t',0)-K_1(t,0)^2K_1(t',0)\Big)+2\beta_{12}\gamma^2(1-\gamma)\Big(C_1(t,0)C_1(t',0)C_2(t,0)-K_1(t,0)K_1(t',0)K_2(t,0)\Big)+2\beta_{12}\gamma^2(1-\gamma)\Big(C_1(t,0)C_1(t',0)C_2(t,0)-K_1(t,0)K_1(t',0)K_2(t,0)\Big)\Big\}$

+
$$\beta_{12}\gamma^2(1-\gamma)\Big(C_1(t,0)^2C_2(t',0)-K_1(t,0)^2K_2(t',0)\Big)\Big\}$$

Response

$$\frac{\partial^2 R_1(t,t')}{\partial t^2} = -\mu(t)\gamma R_1(t,t') + \frac{p(p-1)}{2} \left[\int_{t'}^t du \, C_1(t,u) R_1(t,u) \left(\gamma^3 R_1(u,t') + \gamma^2(1-\gamma) R_2(u,t') \right) + \gamma^2(1-\gamma) \int_{t'}^t du \, R_1(u,t') \left(C_2(t,u) R_1(t,u) + C_1(t,u) R_2(t,u) \right) \right]$$

Pseudo-Correlation

$$\begin{aligned} \frac{\partial^2 K_1(t,t')}{\partial t^2} &= -\gamma \mu(t) K_1(0,t) \\ &+ \frac{p(p-1)}{2} \Biggl[\int_0^t du \, K_1(0,u) R_1(t,u) \Bigl(\gamma^3 C_1(t,u) + \gamma^2(1-\gamma) C_2(t,u) \Bigr) \\ &+ \gamma^2(1-\gamma) \int_0^t du C_1(t,u) \Bigl(K_2(0,u) R_1(t,u) + K_1(0,u) R_2(t,u) \Bigr) \Biggr] \\ &+ \frac{p}{2} \Biggl\{ \beta_1 \gamma^3 \Bigl(C_1(t,0)^2 K_1(0,0) - q_1 K_1(0,t)^2 \Bigr) \\ &+ 2 \left(C_1(t,0) C_2(t,0) K_1(0,0) - q_1 K_1(0,t) K_2(0,t) \right) \Biggr] \Biggr\} \end{aligned}$$

Further developments

FPU problem

Potential Method

2+4 p-spin spherical Model Potential Method Disorder and replicas

Looking for minima

Hamiltonian dynamics

Generic equation of dynamics

Correlation and Response

> Lagrangian multiplier

3=p-spin spherical Model Potential Method

Correlation and Response

Future developments

- 1-RSB treatment of the potential for the static formulation in the 2+3 spin spherical model
- Full RSB treatment of the potential for the static formulation in the 2+4 spin spherical model
- Numerical results for the integro-differential equations for correlation, response, pseudo-correlation and lagrangian multiplier
- Comparison between static (using the effective potential) and dynamic results

Hopefully find some connections between Ergodicity Breaking in FPU and Spin Glasses

acknowledgments

Erik Aurell Luca Leuzzi Pierpaolo Vivo Angelo Vulpiani

acknowledgments

Erik Aurell Luca Leuzzi Pierpaolo Vivo Angelo Vulpiani

All of you for your attention!