Ergodicity breaking in p-spin glass models and FPU problem

in collaboration with Silvio Franz
LPTMS, Paris Sud - Orsay

Gino Del Ferraro

KTH Royal Institute of Technology, Stockholm

OUTLINE:

- Brief overview on the FPU problem
- $2+$-p-spin spherical models

Investigate metastable states:

- Effective Potential Method
- Disorder and Replicas
- Looking for minima

Dynamics:

- evolution of correlation and response functions
- 3 -spin spherical model partitioned in two interacting subsystems

Brief overview on FPU problem

Brief overview on FPU problem

FPU problem
Potential Method
2+4 p-spin
spherical Model
Potential Method
Disorder and
replicas
Looking for minima

Hamiltonian
dynamics
Generic equation
of dynamics
Correlation and
Response
Lagrangian
multiplier
3=p-spin
spherical Model
Potential Method
Correlation and
Response
Future
developments

$$
H=\sum_{i=0}^{N}\left[\frac{p_{i}^{2}}{2 m}+\frac{K}{2}\left(q_{i+1}-q_{i}\right)^{2}+\frac{\epsilon}{\alpha}\left(q_{i+1}-q_{i}\right)^{\alpha}\right]
$$

[Fermi, E., Pasta, J., \& Ulam, S. (1955). Studies of nonlinear problems. Los Alamos Scientific Laboratory Report No. LA-1940] [Cencini, M., Cecconi, F., \& Vulpiani, A. (2009). Chaos. From simple Models to Complex Systems. World Scientific.]

for $\epsilon=0 \longrightarrow$ Integrable

Using the normal modes

$$
a_{k}=\sqrt{\frac{2}{N+1}} \sum_{n} q_{n} \sin \left(\frac{n k \pi}{N+1}\right) \quad(k=1, \ldots, N)
$$

Brief overview on FPU problem

FPU problem

Potential Method

2+4 p-spin spherical Model Potential Method Disorder and replicas
Looking for minima

Hamiltonian dynamics

Generic equation of dynamics

Correlation and Response
Lagrangian multiplier
$3=$-spin spherical Model Potential Method

Correlation and Response

Future developments

$$
H=\sum_{i=0}^{N}\left[\frac{p_{i}^{2}}{2 m}+\frac{K}{2}\left(q_{i+1}-q_{i}\right)^{2}+\frac{\epsilon}{\alpha}\left(q_{i+1}-q_{i}\right)^{\alpha}\right]
$$

[Fermi, E., Pasta, J., \& Ulam, S. (1955). Studies of nonlinear problems. Los Alamos Scientific Laboratory Report No. LA-1940] [Cencini, M., Cecconi, F., \& Vulpiani, A. (2009). Chaos. From simple Models to Complex Systems. World Scientific.]

$$
\text { for } \epsilon=0 \quad \longrightarrow \quad \text { Integrable }
$$

Using the normal modes

$$
a_{k}=\sqrt{\frac{2}{N+1}} \sum_{n} q_{n} \sin \left(\frac{n k \pi}{N+1}\right) \quad(k=1, \ldots, N),
$$

$\rightarrow \mathrm{N}$ non-interacting harmonic oscillators frequencies

$$
\omega_{k}=2 \sqrt{\frac{K}{m}} \sin \left(\frac{k \pi}{2(N+1)}\right)
$$

energies

$$
E_{k}=\frac{1}{2}\left[\left(\frac{\mathrm{~d} a_{k}}{\mathrm{~d} t}\right)^{2}+\omega_{k}^{2} a_{k}^{2}\right]=\text { const } .
$$

equipartition law

$$
\left\langle E_{k}\right\rangle=\frac{E_{t o t}}{N}
$$

Brief overview on FPU problem

Brief overview on FPU problem

FPU problem
Potential Method
2+4 p-spin
spherical Model
Potential Method
Disorder and
replicas
Looking for minima

Hamiltonian
dynamics
Generic equation
of dynamics
Correlation and
Response
Lagrangian
multiplier
3=p-spin
spherical Model
Potential Method
Correlation and
Response
for $\epsilon \neq 0 \longrightarrow$ Non-integrable

Potential Method

Hamiltonian dynamics
Generic equation of dynamics

Correlation and Response
Lagrangian multiplier

3=p-spin spherical Model Potential Method

Correlation and Response
Future developments

Fig. 14.1 Normalized modes energies $E_{k}(t) / E_{t o t}$ for $k=1$ (solid line), $k=2$ (dashed line) and $k=3$ (dotted line) obtained with $N=32, \alpha=3$ and $\epsilon=0.1$. The initial condition is $E_{1}(0)=E_{t o t}=2.24$ and $E_{k}(0)=0$ for $k=2, \ldots, 32$. [Courtesy of G. Benettin]

Fermi-Pasta-Ulam problem

$$
H=\sum_{i=0}^{N}\left[\frac{p_{i}^{2}}{2 m}+\frac{K}{2}\left(q_{i+1}-q_{i}\right)^{2}+\frac{\epsilon}{\alpha}\left(q_{i+1}-q_{i}\right)^{\alpha}\right]
$$

$2+4$ p-spherical spin Hamiltonian

Fig. 14.2 Time averaged fraction of energy, in modes $k=1,2,3,4$ (bold lines, from top to below), the dashed line shows the time average of the sum from $k=5$ to $N=32$. The parameters of the system are the same as in Fig. 14.1. [Courtesy of G. Benettin]
[Cencini, M., Cecconi, F., \& Vulpiani, A. (2009). Chaos. From simple Models to Complex Systems. World Scientific.]

$$
H=\frac{1}{2} \sum_{i} p_{i}^{2}-\sum_{i<j} J_{i j} s_{i} s_{j}-\sum_{i<j<k<l} J_{i j k l} s_{i} s_{j} s_{k} s_{l}+\frac{\mu_{x}(t)}{2}\left(\sum_{i} s_{i}^{2}-N\right)
$$

Potential Method

FPU problem
 Potential Method
 2+4 p-spin
 spherical Model
 Potential Method
 Disorder and replicas
 Looking for minima
 Hamiltonian dynamics
 Generic equation of dynamics
 Correlation and Response
 Lagrangian multiplier
 3=p-spin
 spherical Model
 Potential Method
 Correlation and Response
 Future
 developments

Two systems (the same) at two different temperatures
Reference system

$$
P(\underline{s})=\frac{\exp \left(-\beta^{\prime} H_{J}[\underline{s}]\right)}{Z\left(\beta^{\prime}\right)}
$$

Overlap: $\quad Q(\underline{s}, \underline{\sigma})=\frac{1}{N} \sum_{i} s_{i} \sigma_{i}$

Probe system

$$
P(\underline{\sigma})=\frac{\exp \left(-\beta H_{J}[\underline{\sigma}]\right)}{Z(\beta)}
$$

Potential Method

FPU problem

Potential Method

2+4 p-spin
spherical Model
Potential Method
Disorder and replicas
Looking for minima

Hamiltonian dynamics
Generic equation of dynamics
Correlation and Response
Lagrangian multiplier

3=p-spin
spherical Model
Potential Method
Correlation and Response

Two systems (the same) at two different temperatures

Reference system

$$
P(\underline{s})=\frac{\exp \left(-\beta^{\prime} H_{J}[\underline{s}]\right)}{Z\left(\beta^{\prime}\right)}
$$

Probe system

$$
P(\underline{\sigma})=\frac{\exp \left(-\beta H_{J}[\underline{\sigma}]\right)}{Z(\beta)}
$$

Overlap: $\quad Q(\underline{s}, \underline{\sigma})=\frac{1}{N} \sum_{i} s_{i} \sigma_{i}$

Constrained free-energy

$$
F(\underline{s}, \beta, \tilde{p})=\lim _{N \rightarrow \infty}-\frac{1}{\beta N} \ln \int d \underline{\sigma} \mathrm{e}^{-\beta \mathrm{H}[\underline{\underline{\sigma}}]} \delta(\tilde{\mathrm{p}}-\mathrm{Q}(\underline{\mathrm{~s}}, \underline{\sigma}))
$$

Potential Function

$$
V\left(\tilde{p}, \beta, \beta^{\prime}\right)=\lim _{N \rightarrow \infty}-\frac{1}{\beta N} \overline{\int d \underline{s} \frac{\mathrm{e}^{-\beta^{\prime} \mathrm{H}[\mathrm{~s}]}}{Z\left(\beta^{\prime}\right)} \ln \int d \underline{\sigma} \mathrm{e}^{-\beta \mathrm{H}[\underline{\sigma}]} \delta(\tilde{\mathrm{p}}-\mathrm{Q}(\underline{\mathrm{~s}}, \underline{\sigma}))}
$$

[Franz, S., \& Parisi, G. (1995). Recipes for metastable states in spin glasses. Journal de Physique I, 5(11), 1401-1415]

Meaning of the minima

Meaning of the minima

FPU problem
Potential Method
2+4 p-spin
spherical Model
Potential Method
Disorder and
replicas
Looking for minima
Hamiltonian
dynamics
Generic equation
of dynamics
Correlation and
Response
Lagrangian
multiplier
3=p-spin
spherical Model
Potential Method
Correlation and
Response
Future
developments

$$
V\left(\tilde{p}, \beta, \beta^{\prime}\right)=\lim _{N \rightarrow \infty}-\frac{1}{\beta N} \overline{\int d \underline{s} \frac{\mathrm{e}^{-\beta^{\prime} \mathrm{H}[\mathrm{~s}]}}{Z\left(\beta^{\prime}\right)} \ln \int d \underline{\sigma} \mathrm{e}^{-\beta \mathrm{H}[\underline{\sigma}]} \delta(\tilde{\mathrm{p}}-\mathrm{Q}(\underline{\mathrm{~s}}, \underline{\sigma}))}
$$

[^0]
Meaning of the minima

FPU problem
Potential Method
2+4 p-spin
spherical Model
Potential Method
Disorder and
replicas
Looking for minima

Hamiltonian
dynamics
Generic equation
of dynamics
Correlation and
Response
Lagrangian
multiplier
3=p-spin
spherical Model
Potential Method
Correlation and
Response
Future
developments
Pa

$$
V\left(\tilde{p}, \beta, \beta^{\prime}\right)=\lim _{N \rightarrow \infty}-\frac{1}{\beta N} \overline{\int d \underline{\left.\mathrm{e}^{-\beta^{\prime} \mathrm{H}[\mathrm{~s}]}\right]}} \frac{Z\left(\beta^{\prime}\right)}{\ln \int d \underline{\sigma} \mathrm{e}^{-\beta \mathrm{H}[\underline{\sigma}]} \delta(\tilde{\mathrm{p}}-\mathrm{Q}(\underline{\mathrm{~s}}, \underline{\sigma}))}
$$

[S. Franz and G. Semerjian. Analytical approaches to time and length scales in models of glasses in Dynamical heterogeneities in glasses, colloids and granular materials. Oxford University Press, 2011.]

Meaning of the minima

FPU problem
Potential Method
2+4 p-spin
spherical Model
Potential Method
Disorder and
replicas
Looking for minima
Hamiltonian
dynamics
Generic equation
of dynamics
Correlation and
Response
Lagrangian
multiplier
3=p-spin
spherical Model
Potential Method
Correlation and
Response
Future
developments

$$
V\left(\tilde{p}, \beta, \beta^{\prime}\right)=\lim _{N \rightarrow \infty}-\frac{1}{\beta N} \overline{\int d \underline{\left.\mathrm{e}^{-\beta^{\prime} \mathrm{H}[\mathrm{~s}]}\right]}} \frac{Z\left(\beta^{\prime}\right)}{\ln } \int d \underline{\sigma} \mathrm{e}^{-\beta \mathrm{H}[\underline{\sigma}]} \delta(\tilde{\mathrm{p}}-\mathrm{Q}(\underline{\mathrm{~s}}, \underline{\sigma}))
$$

[S. Franz and G. Semerjian. Analytical approaches to time and length scales in models of glasses in Dynamical heterogeneities in glasses, colloids and granular materials. Oxford
University Press, 2011.]

$$
\text { for } T \in\left[T_{K}, T_{d}\right]
$$

free energy

$$
F(T)=f^{*}(T)-T \Sigma\left(f^{*}(T)\right)
$$

potential

$$
V\left(p_{\min }(T), T\right)-F(T)=T \Sigma\left(f^{*}(T)\right)
$$

Meaning of the minima

FPU problem
Potential Method
2+4 p-spin
spherical Model
Potential Method
Disorder and
replicas
Looking for minima

Hamiltonian
dynamics
Generic equation
of dynamics
Correlation and
Response
Lagrangian
multiplier
3=p-spin
spherical Model
Potential Method
Correlation and
Response
Future
developments
Pa

$$
V\left(\tilde{p}, \beta, \beta^{\prime}\right)=\lim _{N \rightarrow \infty}-\frac{1}{\beta N} \overline{\int d \underline{\left.\mathrm{e}^{-\beta^{\prime} \mathrm{H}[\mathrm{~s}]}\right]}} \frac{Z\left(\beta^{\prime}\right)}{\ln \int d \underline{\sigma} \mathrm{e}^{-\beta \mathrm{H}[\underline{\sigma}]} \delta(\tilde{\mathrm{p}}-\mathrm{Q}(\underline{\mathrm{~s}}, \underline{\sigma}))}
$$

[S. Franz and G. Semerjian. Analytical approaches to time and length scales in models of glasses in Dynamical heterogeneities in glasses, colloids and granular materials. Oxford University Press, 2011.]

Meaning of the minima

FPU problem
 Potential Method

2+4 p-spin spherical Model Potential Method Disorder and replicas
Looking for minima

Hamiltonian dynamics
Generic equation of dynamics

Correlation and Response
Lagrangian multiplier

3=p-spin spherical Model Potential Method

Future developments

$$
V\left(\tilde{p}, \beta, \beta^{\prime}\right)=\lim _{N \rightarrow \infty}-\frac{1}{\beta N} \overline{\int d \underline{s} \frac{\mathrm{e}^{-\beta^{\prime} \mathrm{H}[\underline{\mathrm{~s}}]}}{Z\left(\beta^{\prime}\right)} \ln \int d \underline{\sigma} \mathrm{e}^{-\beta \mathrm{H}[\underline{\sigma}]} \delta(\tilde{\mathrm{p}}-\mathrm{Q}(\underline{\mathrm{~s}}, \underline{\sigma}))}
$$

[S. Franz and G. Semerjian. Analytical approaches to time and length scales in models of glasses in Dynamical heterogeneities in glasses, colloids and granular materials. Oxford
University Press, 2011.]

Meaning of the minima

Potential Method

2+4 p-spin spherical Model Potential Method Disorder and replicas
Looking for minima

Hamiltonian dynamics
Generic equation of dynamics

Correlation and Response
Lagrangian multiplier

3=p-spin spherical Model Potential Method

Future
developments

$$
V\left(\tilde{p}, \beta, \beta^{\prime}\right)=\lim _{N \rightarrow \infty}-\frac{1}{\beta N} \overline{\int d \underline{s} \frac{\mathrm{e}^{-\beta^{\prime} \mathrm{H}[\underline{\mathrm{~s}}]}}{Z\left(\beta^{\prime}\right)} \ln \int d \underline{\sigma} \mathrm{e}^{-\beta \mathrm{H}[\underline{\sigma}]} \delta(\tilde{\mathrm{p}}-\mathrm{Q}(\underline{\mathrm{~s}}, \underline{\sigma}))}
$$

[S. Franz and G. Semerjian. Analytical approaches to time and length scles in models of glasses in Dynamical heterogeneities in glasses, colloids and granular mıterials. Oxford University Press, 2011.]

Meaning of the minima

Average over disorder: Replica trick

FPU problem
Potential Method
2+4 p-spin
spherical Model
Potential Method
Disorder and
replicas
Looking for minima

Hamiltonian
dynamics
Generic equation
of dynamics
Correlation and
Response
Lagrangian
multiplier
3ep-spin
spherical Model
Potential Method
Correlation and
Response

Potential Function

$$
V\left(\tilde{p}, \beta, \beta^{\prime}\right)=\lim _{N \rightarrow \infty}-\frac{1}{\beta N} \overline{\int d \underline{s} \frac{\mathrm{e}^{-\beta^{\prime} \mathrm{H}[\mathrm{~s}]}}{Z\left(\beta^{\prime}\right)} \ln \int d \underline{\sigma} \mathrm{e}^{-\beta \mathrm{H}[\underline{\sigma}]} \delta(\tilde{\mathrm{p}}-\mathrm{Q}(\underline{\mathrm{~s}}, \underline{\sigma}))}
$$

With the use of the replica trick

$$
N V=-T \lim _{n \rightarrow 0} \lim _{m \rightarrow 0} \overline{\int d \underline{s} \exp \left(-\beta^{\prime} H[\underline{[g}) Z\left[\beta^{\prime}\right]^{n-1}\left(\frac{Z[\underline{s}, \tilde{p}]^{m}-1}{m}\right)\right.}
$$

with the constrained partition function $\quad Z[\underline{s}, \tilde{p}]=\int d \underline{\mathrm{e}^{-\beta H}[\underline{\sigma}} \delta(\tilde{\mathrm{p}}-\mathrm{Q}(\underline{\mathrm{s}}, \underline{q}))$

Average over disorder: Replica trick

FPU problem
\section*{Potential Method}
2+4 p-spin spherical Model
Potential Method
Disorder and replicas
Looking for minima
Hamiltonian dynamics
Generic equation of dynamics
Correlation and Response
Lagrangian multiplier
3=p-spin spherical Model Potential Method
Correlation and Response

Potential Function

$$
V\left(\tilde{p}, \beta, \beta^{\prime}\right)=\lim _{N \rightarrow \infty}-\frac{1}{\beta N} \overline{\int d \underline{s} \frac{\mathrm{e}^{-\beta^{\prime} \mathrm{H}[\mathrm{~s}]}}{Z\left(\beta^{\prime}\right)} \ln \int d \underline{\sigma} \mathrm{e}^{-\beta \mathrm{H}[\underline{\sigma}]} \delta(\tilde{\mathrm{p}}-\mathrm{Q}(\underline{\mathrm{~s}}, \underline{\sigma}))}
$$

With the use of the replica trick

$$
N V=-T \lim _{n \rightarrow 0} \lim _{m \rightarrow 0} \overline{\int d \underline{s} \exp \left(-\beta^{\prime} H[\underline{s}]\right) Z\left[\beta^{\prime}\right]^{n-1}\left(\frac{Z[\underline{s}, \tilde{p}]^{m}-1}{m}\right)}
$$

with the constrained partition function $\quad Z[\underline{s}, \tilde{p}]=\int d \underline{\mathrm{e}^{-\beta H}[\underline{\sigma}} \delta(\tilde{\mathrm{p}}-\mathrm{Q}(\underline{\mathrm{s}}, \underline{q}))$
Define the 'replicated partition function'

$$
Z^{(n, m)}=\int d s^{1} \mathrm{e}^{\beta^{\prime} \mathrm{H}\left(\mathrm{~s}^{1}\right)} \mathrm{Z}\left(\beta^{\prime}\right)^{\mathrm{n}-1} \mathrm{Z}[\underline{\mathrm{~s}}, \tilde{\mathrm{p}}]^{\mathrm{m}}=\int \mathrm{ds}^{1} \mathrm{e}^{\beta^{\prime} \mathrm{H}\left(\mathrm{~s}^{1}\right)} \mathrm{Z}\left(\beta^{\prime}\right)^{\mathrm{n}-1} \mathrm{e}^{\mathrm{m} \ln \mathrm{Z}[\mathrm{~s}, \tilde{\mathrm{p}}]}
$$

The potential can be recovered with

$$
N V=-\left.T \frac{\partial}{\partial m} \ln Z^{(n, m)}\right|_{\substack{m=0 \\ n=0}}
$$

2+4 spin Hamiltonian: averaging over disorder

```
FPU problem
Potential Method
    2+4 p-spin
spherical Model
```

Potential Method
Disorder and replicas

Looking for minima

Hamiltonian dynamics

Generic equation of dynamics

Correlation and Response

Lagrangian multiplier

$2+4$ p-spin spherical Hamiltonian

$$
H=-\sum_{i<j} J_{i j} s_{i} s_{j}-\sum_{i<j<k<l} J_{i j k l} s_{i} s_{j} s_{k} s_{l}, \quad \sum_{i} s_{i}^{2}=N
$$

Replicated partition function

$$
Z^{(n, m)}=\overline{\int D s^{a} \int D \sigma^{\alpha} \exp \left[\beta^{\prime} \sum_{a}^{n} H\left(s^{a}\right)+\beta \sum_{\alpha}^{m} H\left(\sigma^{\alpha}\right)\right] \prod_{\alpha=1}^{m} \delta\left(\sum_{i} s_{i}^{1} \sigma_{i}^{\alpha}-N \tilde{p}\right)}
$$

2+4 spin Hamiltonian: averaging over disorder

FPU problem
Potential Method
2+4 p-spin
spherical Model
Potential Method
Disorder and
replicas
Looking for minima
Hamiltonian
dynamics
Generic equation
of dynamics
Correlation and
Response
Lagrangian
multiplier
3=p-spin
spherical Model
Potential Method
Correlation and
Response

$2+4$ p-spin spherical Hamiltonian

$$
H=-\sum_{i<j} J_{i j} s_{i} s_{j}-\sum_{i<j<k<l} J_{i j k l} s_{i} s_{j} s_{k} s_{l}, \quad \sum_{i} s_{i}^{2}=N
$$

Replicated partition function

$$
Z^{(n, m)}=\overline{\int D s^{a} \int D \sigma^{\alpha} \exp \left[\beta^{\prime} \sum_{a}^{n} H\left(s^{a}\right)+\beta \sum_{\alpha}^{m} H\left(\sigma^{\alpha}\right)\right] \prod_{\alpha=1}^{m} \delta\left(\sum_{i} s_{i}^{1} \sigma_{i}^{\alpha}-N \tilde{p}\right)}
$$

fixed distance between the two systems

Gaussian couplings

2+4 spin Hamiltonian: averaging over disorder

```
FPU problem
Potential Method
    2+4 p-spin
spherical Model
```

Potential Method
Disorder and replicas
Looking for minima

Hamiltonian dynamics

Generic equation of dynamics

Correlation and Response
Lagrangian multiplier

3=p-spin spherical Model Potential Method

Correlation and Response
$2+4$ p-spin spherical Hamiltonian

$$
H=-\sum_{i<j} J_{i j} s_{i} s_{j}-\sum_{i<j<k<l} J_{i j k l} s_{i} s_{j} s_{k} s_{l}, \quad \quad \sum_{i} s_{i}^{2}=N
$$

Replicated partition function

$$
Z^{(n, m)}=\overline{\int D s^{a} \int D \sigma^{\alpha} \exp \left[\beta^{\prime} \sum_{a}^{n} H\left(s^{a}\right)+\beta \sum_{\alpha}^{m} H\left(\sigma^{\alpha}\right)\right] \prod_{\alpha=1}^{m} \delta\left(\sum_{i} s_{i}^{1} \sigma_{i}^{\alpha}-N \tilde{p}\right)}
$$

fixed distance between
the two systems
Gaussian couplings

After averaging over the disorder

$$
\begin{aligned}
Z^{(n, m)}= & \int D s^{a} \int D \sigma^{\alpha} \prod_{i<j} \exp \left[\frac{p_{2}!}{4 N^{p_{2}-1}}\left(\beta_{2} \sum_{a}^{n} s_{i}^{a} s_{j}^{a}+\beta \sum_{\alpha}^{m} \sigma_{i}^{\alpha} \sigma_{j}^{\alpha}\right)^{2}\right] \\
& \prod_{i<j<k<l} \exp \left[\frac{p_{4}!}{4 N^{p_{4}-1}}\left(\beta_{4} \sum_{a}^{n} s_{i}^{a} s_{j}^{a} s_{k}^{a} s_{l}^{a}+\beta \sum_{\alpha}^{m} \sigma_{i}^{\alpha} \sigma_{j}^{\alpha} \sigma_{k}^{\alpha} \sigma_{l}^{\alpha}\right)^{2}\right] \prod_{\alpha=1}^{m} \delta\left(\sum_{i} s_{i}^{1} \sigma_{i}^{\alpha}-N \tilde{p}\right)
\end{aligned}
$$

Introducing order parameters

FPU problem		
Potential Method		
$\begin{aligned} & \text { 2+4 p-spin } \\ & \text { spherical Model } \end{aligned}$	Order parameter matrices	Single matrix
Potential Method	$Q_{a b}=\frac{\bar{N}}{N} \sum_{i} s_{i}^{a} s_{i}^{o}$	$\mathbf{Q}=\left(\begin{array}{cc} Q & P \\ P^{T} & R \end{array}\right)$
Disorder and replicas	$R_{\alpha \beta}=\frac{1}{N} \sum_{i} \sigma_{i}^{\alpha} \sigma_{i}^{\beta}$	
Looking for minima	$P_{a \alpha}=\frac{1}{N} \sum_{i} s_{i}^{a} \sigma_{i}^{\alpha}$	
Hamiltonian dynamics		
Generic equation of dynamics		
Correlation and Response		
Lagrangian multiplier		
3=p-spin spherical Model		
Potential Method		
Correlation and Response		
Future developments		

Introducing order parameters

FPU problem
Potential Method
2+4 p-spin
spherical Model
Potential Method
Disorder and
replicas
Looking for minima
Hamiltonian
dynamics
Generic equation
of dynamics
Correlation and
Response
Lagrangian
multiplier
3=p-spin
spherical Model
Potential Method
Correlation and
Response
Future
developments

Order parameter matrices

$Q_{a b}=\frac{1}{N} \sum_{i} s_{i}^{a} s_{i}^{b}$
$R_{\alpha \beta}=\frac{1}{N} \sum_{i} \sigma_{i}^{\alpha} \sigma_{i}^{\beta}$
$P_{a \alpha}=\frac{1}{N} \sum_{i} s_{i}^{a} \sigma_{i}^{\alpha}$

Single matrix
$\mathbf{Q}=\left(\begin{array}{cc}Q & P \\ P^{T} & R\end{array}\right)$
Single spin vector

$$
\begin{aligned}
\underline{v} & =\left(v_{1}, v_{2}, \ldots, v_{n+m}\right) \\
& =\left(s_{1}, \ldots, s_{n}, \sigma_{1}, \ldots, \sigma_{m}\right)
\end{aligned}
$$

Introducing

$$
1=\int d \mathbf{Q}_{\gamma \eta} \delta\left(N \mathbf{Q}_{\gamma \eta}-\sum_{i} v_{i}^{\gamma} v_{i}^{\eta}\right)
$$

Introducing order parameters

```
FPU problem
Potential Method
    2+4 p-spin
spherical Model
Potential Method
    Disorder and
        replicas
Looking for minima
Hamiltonian dynamics
Generic equation of dynamics
Correlation and Response
Lagrangian multiplier
3=p-spin spherical Model Potential Method Response

\section*{Order parameter matrices}
\[
\begin{aligned}
Q_{a b} & =\frac{1}{N} \sum_{i} s_{i}^{a} s_{i}^{b} \\
R_{\alpha \beta} & =\frac{1}{N} \sum_{i} \sigma_{i}^{\alpha} \sigma_{i}^{\beta} \\
P_{a \alpha} & =\frac{1}{N} \sum_{i} s_{i}^{a} \sigma_{i}^{\alpha}
\end{aligned}
\]

\section*{Single matrix}
Single spin vector
\[
\mathbf{Q}=\left(\begin{array}{cc}
Q & P \\
P^{T} & R
\end{array}\right)
\]
\[
\begin{aligned}
\underline{v} & =\left(v_{1}, v_{2}, \ldots, v_{n+m}\right) \\
& =\left(s_{1}, \ldots, s_{n}, \sigma_{1}, \ldots, \sigma_{m}\right)
\end{aligned}
\]

Introducing
\[
1=\int d \mathbf{Q}_{\gamma \eta} \delta\left(N \mathbf{Q}_{\gamma \eta}-\sum_{i} v_{i}^{\gamma} v_{i}^{\eta}\right)
\]

We obtain
\[
\begin{aligned}
Z^{(n, m)}= & \int D v^{\gamma} \int D \mathbf{Q}_{\gamma \eta} \delta\left(N \mathbf{Q}_{\gamma \eta}-\sum_{i} v_{i}^{\gamma} v_{i}^{\eta}\right) \exp \left[\frac{N}{4}\left(\beta_{2}^{2} \sum_{a, b}^{n} Q_{a b}^{2}+2 \beta_{2} \beta \sum_{a, \alpha} P_{a, \alpha}^{2}+\beta^{2} \sum_{\alpha, \beta} R_{\alpha, \beta}^{2}\right)\right] \\
& \exp \left[\frac{N}{4}\left(\beta_{4}^{2} \sum_{a, b}^{n} Q_{a b}^{4}+2 \beta_{4} \beta \sum_{a, \alpha} P_{a, \alpha}^{4}+\beta^{2} \sum_{\alpha, \beta} R_{\alpha, \beta}^{4}\right)\right] \prod_{\gamma=n+1}^{n+m} \delta\left(\sum_{i} v_{i}^{1} v_{i}^{\gamma}-N \tilde{p}\right)
\end{aligned}
\]

\section*{Generalized RS ansatz}
```

FPU problem
Potential Method
2+4 p-spin
spherical Model
Potential Method
Disorder and
replicas
Looking for minima
Hamiltonian
dynamics
Generic equation
of dynamics
Correlation and
Response
Lagrangian
multiplier

Using a saddle point technique to estimate the integral

$$
Z^{(n, m)}=\int D \mathbf{Q}_{\gamma \eta} \int D \lambda_{\gamma \eta} \exp [-N S(\lambda, \mathbf{Q})] \simeq \exp \left[-N S\left(\lambda^{*}, \mathbf{Q}^{*}\right)\right]
$$

$$
\begin{aligned}
\frac{1}{N} \ln Z^{n, m}= & \frac{1}{4}\left(\beta_{2}^{2} \sum_{a, b}^{n} Q_{a b}^{2}+2 \beta_{2} \beta \sum_{a, \alpha}^{n, m} P_{a, \alpha}^{2}+\beta^{2} \sum_{\alpha, \beta}^{m} R_{\alpha, \beta}^{2}\right) \\
& +\frac{1}{4}\left(\beta_{4}^{2} \sum_{a, b}^{n} Q_{a b}^{4}+2 \beta_{4} \beta \sum_{a, \alpha}^{n, m} P_{a, \alpha}^{4}+\beta^{2} \sum_{\alpha, \beta}^{m} R_{\alpha, \beta}^{4}\right)+\frac{1}{2} \ln \operatorname{det}\left(\begin{array}{cc}
Q & P \\
P^{T} & R
\end{array}\right)
\end{aligned}
$$

The Effective Potential can be obtained using

$$
N V=-\left.T \frac{\partial}{\partial m} \ln Z^{(n, m)}\right|_{\substack{m=0 \\ n=0}}
$$

Generalized RS ansatz

\author{

FPU problem

 \section*{Potential Method}
 2+4 p-spin spherical Model Potential Method
 \section*{Disorder and} replicas
 Looking for minima
 Hamiltonian dynamics
 Generic equation of dynamics
 Correlation and
 Response
 Lagrangian multiplier
 3=p-spin spherical Model Potential Method
 Correlation and Response}

Using a saddle point technique to estimate the integral

$$
Z^{(n, m)}=\int D \mathbf{Q}_{\gamma \eta} \int D \lambda_{\gamma \eta} \exp [-N S(\lambda, \mathbf{Q})] \simeq \exp \left[-N S\left(\lambda^{*}, \mathbf{Q}^{*}\right)\right]
$$

$$
\begin{aligned}
\frac{1}{N} \ln Z^{n, m}= & \frac{1}{4}\left(\beta_{2}^{2} \sum_{a, b}^{n} Q_{a b}^{2}+2 \beta_{2} \beta \sum_{a, \alpha}^{n, m} P_{a, \alpha}^{2}+\beta^{2} \sum_{\alpha, \beta}^{m} R_{\alpha, \beta}^{2}\right) \\
& +\frac{1}{4}\left(\beta_{4}^{2} \sum_{a, b}^{n} Q_{a b}^{4}+2 \beta_{4} \beta \sum_{a, \alpha}^{n, m} P_{a, \alpha}^{4}+\beta^{2} \sum_{\alpha, \beta}^{m} R_{\alpha, \beta}^{4}\right)+\frac{1}{2} \ln \operatorname{det}\left(\begin{array}{cc}
Q & P \\
P^{T} & R
\end{array}\right)
\end{aligned}
$$

The Effective Potential can be obtained using

$$
N V=-\left.T \frac{\partial}{\partial m} \ln Z^{(n, m)}\right|_{\substack{m=0 \\ n=0}}
$$

Ansatz for the Overlap Matrices

$$
\begin{aligned}
Q_{a b} & =\delta_{a b}+\left(1-\delta_{a b}\right) q \\
P_{a \alpha} & =\tilde{p} \delta_{\alpha n}+\left(1-\delta_{\alpha n}\right) s \\
R_{\alpha \beta} & =\delta_{\alpha \beta}+\left(1-\delta_{\alpha \beta}\right) r
\end{aligned}
$$

$$
\left(\begin{array}{cccccccc}
\overbrace{1} & q & \cdots & q & n & \overbrace{s} & s & \cdots \\
q & 1 & \cdots & q & & s \\
\vdots & \vdots & \ddots & \vdots & & s & s & \cdots \\
q & q & \cdots & 1 & \tilde{p} & \tilde{p} & \cdots & \tilde{p} \\
& & & & & & & \\
s & \cdots & s & \tilde{p} & 1 & r & \cdots & r \\
\vdots & \ddots & \vdots & \vdots & r & 1 & \cdots & r \\
s & \cdots & s & \tilde{p} & \vdots & \vdots & \ddots & \vdots \\
s & \cdots & s & \tilde{p} & r & r & \cdots & 1
\end{array}\right)
$$

Looking for minima

FPU problem
Potential Method
2+4 p-spinspherical Model
Potential Method
Disorder andreplicasLooking for minimaHamiltoniandynamics
Generic equationof dynamics
Correlation and
Response
Lagrangianmultiplier
3=p-spin
spherical Model
Potential Method
Correlation andResponse
Potential Function

$$
\begin{aligned}
\beta V= & -\frac{1}{4}\left(2 \beta^{2}+2 \beta\left(\beta_{2} p^{2}+\beta_{4} p^{4}\right)-\beta^{2}\left(r^{2}+r^{4}\right)-2 \beta\left(\beta_{2} s^{2}+\beta_{4} s^{4}\right)\right) \\
& -\frac{1}{2}\left(\frac{-p^{2}+2 p^{2} q+r-2 q r+q^{2} r-2 p q s+s^{2}}{1-2 q+q^{2}-r+2 q r-q^{2} r}+\ln [1-r]\right)
\end{aligned}
$$

Looking for minima

FPU problem

Potential Function

$$
\begin{aligned}
\beta V= & -\frac{1}{4}\left(2 \beta^{2}+2 \beta\left(\beta_{2} p^{2}+\beta_{4} p^{4}\right)-\beta^{2}\left(r^{2}+r^{4}\right)-2 \beta\left(\beta_{2} s^{2}+\beta_{4} s^{4}\right)\right) \\
& -\frac{1}{2}\left(\frac{-p^{2}+2 p^{2} q+r-2 q r+q^{2} r-2 p q s+s^{2}}{1-2 q+q^{2}-r+2 q r-q^{2} r}+\ln [1-r]\right)
\end{aligned}
$$

Determine minima

$$
\begin{aligned}
& \frac{\partial V(q, s, r, \tilde{p})}{\partial q}=0 \\
& \frac{\partial V(q, s, r, \tilde{p})}{\partial s}=0 \\
& \frac{\partial V(q, s, r, \tilde{p})}{\partial r}=0
\end{aligned} \quad \rightarrow \quad \rightarrow \quad \frac{\partial V(q, s, r, \tilde{p})}{\partial \tilde{p}}=0
$$

Looking for minima

FPU problem

Potential Method

2+4 p-spin spherical Model

Potential Method
Disorder and replicas
Looking for minima

Hamiltonian dynamics

Generic equation of dynamics

Correlation and Response
Lagrangian multiplier

3=p-spin spherical Model

Potential Method

Correlation and Response

Future developments

Potential Function

$$
\begin{aligned}
\beta V= & -\frac{1}{4}\left(2 \beta^{2}+2 \beta\left(\beta_{2} p^{2}+\beta_{4} p^{4}\right)-\beta^{2}\left(r^{2}+r^{4}\right)-2 \beta\left(\beta_{2} s^{2}+\beta_{4} s^{4}\right)\right) \\
& -\frac{1}{2}\left(\frac{-p^{2}+2 p^{2} q+r-2 q r+q^{2} r-2 p q s+s^{2}}{1-2 q+q^{2}-r+2 q r-q^{2} r}+\ln [1-r]\right)
\end{aligned}
$$

Determine minima

$$
\begin{aligned}
& \frac{\partial V(q, s, r, \tilde{p})}{\partial q}=0 \\
& \frac{\partial V(q, s, r, \tilde{p})}{\partial s}=0 \\
& \frac{\partial V(q, s, r, \tilde{p})}{\partial r}=0
\end{aligned} \quad \longrightarrow \quad \frac{\partial V(q, s, r, \tilde{p})}{\partial \tilde{p}}=0
$$

Simplified case: only $p=4$ spin and

$$
\beta_{2}=\beta_{4}=\beta, \quad q=0, \quad s=0
$$

Potential Function
$\beta V=-\frac{1}{4}\left(\beta^{2}+2 \beta^{2} \tilde{p}^{4}-\beta^{2} r^{4}\right)-\frac{1}{2}\left(\frac{r-\tilde{p}^{2}}{1-r}+\ln [1-r]\right)$
[Franz, S., \& Parisi, G. (1995). Recipes for metastable states in spin glasses.
Journal de Physique I, 5(11), 1401-1415]

Looking for minima

FPU problem

Potential Method

2+4 p-spin spherical Model

Potential Method
Disorder and replicas
Looking for minima

Hamiltonian dynamics

Generic equation of dynamics

Correlation and Response
Lagrangian multiplier

3=p-spin spherical Model

Potential Method

Correlation and

 Response
Potential Function

$$
\begin{aligned}
\beta V= & -\frac{1}{4}\left(2 \beta^{2}+2 \beta\left(\beta_{2} p^{2}+\beta_{4} p^{4}\right)-\beta^{2}\left(r^{2}+r^{4}\right)-2 \beta\left(\beta_{2} s^{2}+\beta_{4} s^{4}\right)\right) \\
& -\frac{1}{2}\left(\frac{-p^{2}+2 p^{2} q+r-2 q r+q^{2} r-2 p q s+s^{2}}{1-2 q+q^{2}-r+2 q r-q^{2} r}+\ln [1-r]\right)
\end{aligned}
$$

Determine minima

$$
\begin{aligned}
& \frac{\partial V(q, s, r, \tilde{p})}{\partial q}=0 \\
& \frac{\partial V(q, s, r, \tilde{p})}{\partial s}=0 \\
& \frac{\partial V(q, s, r, \tilde{p})}{\partial r}=0
\end{aligned} \quad \longrightarrow \quad \frac{\partial V(q, s, r, \tilde{p})}{\partial \tilde{p}}=0
$$

Simplified case: only $p=4$ spin and

$$
\beta_{2}=\beta_{4}=\beta, \quad q=0, \quad s=0
$$

Potential Function
$\beta V=-\frac{1}{4}\left(\beta^{2}+2 \beta^{2} \tilde{p}^{4}-\beta^{2} r^{4}\right)-\frac{1}{2}\left(\frac{r-\tilde{p}^{2}}{1-r}+\ln [1-r]\right)$
[Franz, S., \& Parisi, G. (1995). Recipes for metastable states in spin glasses.
Journal de Physique I, 5(11), 1401-1415]

Looking for minima

FPU problem

Potential Method

2+4 p-spin spherical Model

Potential Method
Disorder and replicas
Looking for minima

Hamiltonian dynamics

Generic equation of dynamics

Correlation and Response
Lagrangian multiplier

3=p-spin spherical Model

Potential Method
Correlation and Response

Potential Function

$$
\begin{aligned}
\beta V= & -\frac{1}{4}\left(2 \beta^{2}+2 \beta\left(\beta_{2} p^{2}+\beta_{4} p^{4}\right)-\beta^{2}\left(r^{2}+r^{4}\right)-2 \beta\left(\beta_{2} s^{2}+\beta_{4} s^{4}\right)\right) \\
& -\frac{1}{2}\left(\frac{-p^{2}+2 p^{2} q+r-2 q r+q^{2} r-2 p q s+s^{2}}{1-2 q+q^{2}-r+2 q r-q^{2} r}+\ln [1-r]\right)
\end{aligned}
$$

Determine minima

$$
\begin{aligned}
& \frac{\partial V(q, s, r, \tilde{p})}{\partial q}=0 \\
& \frac{\partial V(q, s, r, \tilde{p})}{\partial s}=0 \\
& \frac{\partial V(q, s, r, \tilde{p})}{\partial r}=0
\end{aligned}
$$

Simplified case: only $p=4$ spin and

$$
\beta_{2}=\beta_{4}=\beta, \quad q=0, \quad s=0
$$

Potential Function
$\beta V=-\frac{1}{4}\left(\beta^{2}+2 \beta^{2} \tilde{p}^{4}-\beta^{2} r^{4}\right)-\frac{1}{2}\left(\frac{r-\tilde{p}^{2}}{1-r}+\ln [1-r]\right)$
[Franz, S., \& Parisi, G. (1995). Recipes for metastable states in spin glasses. Journal de Physique I, 5(11), 1401-1415]

Looking for minima

FPU problem

Potential Method

2+4 p-spin spherical Model Potential Method

Disorder and replicas
Looking for minima

Hamiltonian dynamics

Generic equation of dynamics

Correlation and Response
Lagrangian multiplier

3=p-spin spherical Model

Potential Method
Correlation and Response

Potential Function

$$
\begin{aligned}
\beta V= & -\frac{1}{4}\left(2 \beta^{2}+2 \beta\left(\beta_{2} p^{2}+\beta_{4} p^{4}\right)-\beta^{2}\left(r^{2}+r^{4}\right)-2 \beta\left(\beta_{2} s^{2}+\beta_{4} s^{4}\right)\right) \\
& -\frac{1}{2}\left(\frac{-p^{2}+2 p^{2} q+r-2 q r+q^{2} r-2 p q s+s^{2}}{1-2 q+q^{2}-r+2 q r-q^{2} r}+\ln [1-r]\right)
\end{aligned}
$$

Determine minima

$$
\begin{aligned}
& \frac{\partial V(q, s, r, \tilde{p})}{\partial q}=0 \\
& \frac{\partial V(q, s, r, \tilde{p})}{\partial s}=0 \\
& \frac{\partial V(q, s, r, \tilde{p})}{\partial r}=0
\end{aligned}
$$

Simplified case: only $p=4$ spin and

$$
\beta_{2}=\beta_{4}=\beta, \quad q=0, \quad s=0
$$

Potential Function \downarrow
$\beta V=-\frac{1}{4}\left(\beta^{2}+2 \beta^{2} \tilde{p}^{4}-\beta^{2} r^{4}\right)-\frac{1}{2}\left(\frac{r-\tilde{p}^{2}}{1-r}+\ln [1-r]\right)$
[Franz, S., \& Parisi, G. (1995). Recipes for metastable states in spin glasses. Journal de Physique I, 5(11), 1401-1415]

Potential: 1RSB corrections

FPU problem
Potential Method
2+4 p-spin
spherical Model
Potential Method
Disorder and
replicas
Looking for minima

Hamiltonian
dynamics
Generic equation
of dynamics
Correlation and
Response
Lagrangian
multiplier
3ep-spin
spherical Model
Potential Method
Correlation and
Response

1RSB treatment of the $p>2$ spin spherical model

Barrat, A., Franz, S., \& Parisi, G. (1997). Temperature evolution and bifurcations of metastable states in mean-field spin glasses, with connections with structural glasses. Journal of Physics A:

Mathematical and General, 30(16), 5593.

Potential: 1RSB corrections

```
FPU problem
Potential Method
2+4 p-spin
spherical Model
Potential Method
Disorder and
        replicas
Looking for minima
    Hamiltonian
        dynamics
Generic equation
    of dynamics
Correlation and
    Response
    Lagrangian
        multiplier
        3=p-spin
spherical Model
Potential Method
Correlation and
        Response

\section*{1RSB treatment of the \(p>2\) spin spherical model}

Barrat, A., Franz, S., \& Parisi, G. (1997). Temperature evolution and bifurcations of metastable states in mean-field spin glasses, with connections with structural glasses. Journal of Physics A:

Mathematical and General, 30(16), 5593.


\section*{Potential: Results obtained so far}
FPU problem
Potential Method
2+4 p-spin
spherical Model
Potential Method
Disorder and
replicas
Looking for minima
Hamiltonian
dynamics
Generic equation
of dynamics
Correlation and
Response
Lagrangian
multiplier
3=p-spin
spherical Model
Potential Method
Correlation and
Response

Hamiltonian
\[
H=-\mu_{2} \sum_{i<j} J_{i j} s_{i} s_{j}-\mu_{4} \sum_{i<j<k<l} J_{i j k l} s_{i} s_{j} s_{k} s_{l}
\]

\section*{Potential: Results obtained so far}
FPU problem
Potential Method
2+4 p-spin
spherical Model
Potential Method
Disorder and
replicas
Looking for minima

Hamiltonian
dynamics
Generic equation
of dynamics
Correlation and
Response
Lagrangian
multiplier
3=p-spin
spherical Model
Potential Method
Correlation and
Response

Hamiltonian


\section*{Potential: Results obtained so far}
FPU problem
Potential Method
2+4 p-spin
spherical Model
Potential Method
Disorder and
replicas
Looking for minima

Hamiltonian
dynamics
Generic equation
of dynamics
Correlation and
Response
Lagrangian
multiplier
3=p-spin
spherical Model
Potential Method
Correlation and
Response

\section*{Potential: Results obtained so far}
FPU problem
Potential Method
2+4 p-spin
spherical Model
Potential Method
Disorder and
replicas
Looking for minima

Hamiltonian
dynamics
Generic equation
of dynamics
Correlation and
Response
Lagrangian
multiplier
3=p-spin
spherical Model
Potential Method
Correlation and
Response
Future
developments
Po

\section*{Potential: Results obtained so far}
FPU problem
Potential Method
2+4 p-spin
spherical Model
Potential Method
Disorder and
replicas
Looking for minima

Hamiltonian
dynamics
Generic equation
of dynamics
Correlation and
Response
Lagrangian
multiplier
3=p-spin
spherical Model
Potential Method
Correlation and
Response
Future
developments
Po

\section*{Potential: Results obtained so far}

\section*{FPU problem}

Poiential Method

2+4 p-spin spherical Model

Potential Method
Disorder and replicas
Looking for minima

Hamiltonian
dynamics
Generic equation of dynamics

Correlation and Response
Lagrangian multiplier

3=p-spin spherical Model Potential Method Correlation and
Response

Future developments

\section*{Hamiltonian}


\section*{Phase diagram}

The static phase diagram of the \(2+4\) model in the ( \(\mu_{2}, \mu_{4}\) ) plane


Crisanti, A., and L. Leuzzi. "Spherical \(2+p\) spin-glass model: An exactly solvable model for glass to spin-glass transition." Physical review letters 93.21 (2004): 217203.

\section*{Potential: Results obtained so far}

\section*{FPU problem}

Poiential Method

2+4 p-spin spherical Model

Potential Method
Disorder and replicas
Looking for minima

Hamiltonian
dynamics
Generic equation of dynamics

Correlation and Response
Lagrangian multiplier

3=p-spin spherical Model Potential Method Correlation and
Response

Future developments

\section*{Hamiltonian}


\section*{Phase diagram}

The static phase diagram of the \(2+4\) model in the ( \(\mu_{2}, \mu_{4}\) ) plane


Crisanti, A., and L. Leuzzi. "Spherical \(2+p\) spin-glass model: An exactly solvable model for glass to spin-glass transition. " Physical review letters 93.21 (2004): 217203.

\section*{Potential: Results obtained so far}

\section*{FPU problem}

Poiential Method

2+4 p-spin spherical Model

Potential Method
Disorder and replicas
Looking for minima

Hamiltonian
dynamics
Generic equation of dynamics

Correlation and Response
Lagrangian multiplier

3=p-spin spherical Model Potential Method Correlation and
Response

Future developments

\section*{Hamiltonian}


\section*{Phase diagram}

The static phase diagram of the \(2+4\) model in the ( \(\mu_{2}, \mu_{4}\) ) plane


Crisanti, A., and L. Leuzzi. "Spherical \(2+p\) spin-glass model: An exactly solvable model for glass to spin-glass transition." Physical review letters 93.21 (2004): 217203.

\section*{Potential: Results obtained so far}
FPU problem
Potential Method
2+4 p-spin
spherical Model
Potential Method
Disorder and
replicas
Looking for minima

Hamiltonian
dynamics
Generic equation
of dynamics
Correlation and
Response
Lagrangian
multiplier
3=p-spin
spherical Model
Potential Method
Correlation and
Response
Future
developments
Po


\section*{Hamiltonian dynamics}
FPU problem
Potential Method
2+4 p-spin
spherical Model
Potential Method
Disorder and
replicas
Looking for minima

Hamiltonian
dynamics
Generic equation
of dynamics
Correlation and
Response
Lagrangian
multiplier
3=p-spin
spherical Model
Potential Method
Correlation and
Response
Future
developments

\section*{Hamiltonian:}
\[
H=\frac{1}{2} \sum_{i} p_{i}^{2}+V_{J}(s)+\sum_{i} h_{i} s_{i}+\frac{\mu_{x}(t)}{2}\left(\sum_{i} s_{i}^{2}-N\right)
\]

\section*{Hamilton's equations}
\[
\begin{aligned}
& \frac{\partial H}{\partial p_{i}}=\dot{s}_{i}=p_{i} \\
& \frac{\partial H}{\partial s_{i}}=-\dot{p}_{i}=\frac{\partial V}{\partial s_{i}}+\mu_{x} s_{i}
\end{aligned}
\]

\section*{Hamiltonian dynamics}
FPU problem
Potential Method
2+4 p-spin
spherical Model
Potential Method
Disorder and
replicas
Looking for minima
Hamiltonian
dynamics
Generic equation
of dynamics
Correlation and
Response
Lagrangian
multiplier
3=p-spin
spherical Model
Potential Method
Correlation and
Response
Future
developments

\section*{Hamiltonian:}
\[
H=\frac{1}{2} \sum_{i} p_{i}^{2}+V_{J}(s)+\sum_{i} h_{i} s_{i}+\frac{\mu_{x}(t)}{2}\left(\sum_{i} s_{i}^{2}-N\right)
\]

\section*{Hamilton's equations}
\[
\begin{aligned}
& \frac{\partial H}{\partial p_{i}}=\dot{s}_{i}=p_{i} \\
& \frac{\partial H}{\partial s_{i}}=-\dot{p}_{i}=\frac{\partial V}{\partial s_{i}}+\mu_{x} s_{i}
\end{aligned}
\]
\[
\text { with } \quad V_{J}(\underline{s}(t))=-\sum_{i<j} J_{i j} s_{i} s_{j}-\sum_{i<j<k<l} J_{i j k l} s_{i} s_{j} s_{k} s_{l}
\]
(Newtonian) Equation of motion: \(\quad \dot{p}_{i}=\ddot{s}_{i}=-\frac{\partial H}{\partial s_{i}}=-\frac{\partial V}{\partial s_{i}}-\mu_{x} s_{i}+h_{i}(t)\) which explicitly reads
\[
\ddot{s}_{i}=-\mu_{x}(t) s_{i}(t)+\sum_{j} J_{i j} s_{j}(t)+\sum_{j<k<l} J_{i j k l} s_{j}(t) s_{k}(t) s_{l}(t)+h_{i}(t)
\]

\section*{Hamiltonian dynamics}
FPU problem
Potential Method
2+4 p-spin
spherical Model
Potential Method
Disorder and
replicas
Looking for minime
Hamiltonian
dynamics
Generic equation
of dynamics
Correlation and
Response
Lagrangian
multiplier
3=p-spin
spherical Model
Potential Method
Correlation and
Response
Future
developments

\section*{Hamiltonian:}
\[
H=\frac{1}{2} \sum_{i} p_{i}^{2}+V_{J}(s)+\sum_{i} h_{i} s_{i}+\frac{\mu_{x}(t)}{2}\left(\sum_{i} s_{i}^{2}-N\right)
\]

\section*{Hamilton's equations}
\[
\begin{aligned}
& \frac{\partial H}{\partial p_{i}}=\dot{s}_{i}=p_{i} \\
& \frac{\partial H}{\partial s_{i}}=-\dot{p}_{i}=\frac{\partial V}{\partial s_{i}}+\mu_{x} s_{i}
\end{aligned}
\]
\[
\text { with } \quad V_{J}(\underline{s}(t))=-\sum_{i<j} J_{i j} s_{i} s_{j}-\sum_{i<j<k<l} J_{i j k l} s_{i} s_{j} s_{k} s_{l}
\]
(Newtonian) Equation of motion: \(\quad \dot{p}_{i}=\ddot{s}_{i}=-\frac{\partial H}{\partial s_{i}}=-\frac{\partial V}{\partial s_{i}}-\mu_{x} s_{i}+h_{i}(t)\) which explicitly reads
\[
\ddot{s}_{i}=-\mu_{x}(t) s_{i}(t)+\sum_{j} J_{i j} s_{j}(t)+\sum_{j<k<l} J_{i j k l} s_{j}(t) s_{k}(t) s_{l}(t)+h_{i}(t)
\]

Multiplying by an observable and averaging
\[
\mathbb{E}\left\langle\ddot{s}_{i} A\left(s\left(t^{\prime}\right)\right)\right\rangle=-\mathbb{E}\left\langle\mu_{x}(t) s_{i}(t) A\left(s\left(t^{\prime}\right)\right)\right\rangle+\sum_{j} \mathbb{E}\left(J_{i j}\left\langle s_{j}(t) A\left(s\left(t^{\prime}\right)\right)\right\rangle\right)+\sum_{j<k<l} \mathbb{E}\left(J_{i j k l}\left\langle s_{j}(t) s_{k}(t) s_{l}(t) A\left(s\left(t^{\prime}\right)\right)\right\rangle\right)
\]

\section*{Martin-Siggia-Rose formalism}
FPU problem
Potential Method
2+4 p-spin
spherical Model
Potential Method
Disorder and
replicas
Looking for minima

Hamiltonian
dynamics
Generic equation
of dynamics
Correlation and
Response
Lagrangian
multiplier
3=p-spin
spherical Model
Potential Method
Correlation and
Response
Future
developments

From the equation of motion
\[
\mathbb{E}\left\langle\ddot{s}_{i} A\left(s\left(t^{\prime}\right)\right)\right\rangle=-\mathbb{E}\left\langle\mu_{x}(t) s_{i}(t) A\left(s\left(t^{\prime}\right)\right)\right\rangle+\sum_{j} \mathbb{E}\left(J_{i j}\left\langle s_{j}(t) A\left(s\left(t^{\prime}\right)\right)\right\rangle\right)+\sum_{j<k<l} \mathbb{E}\left(J_{i j k l}\left\langle s_{j}(t) s_{k}(t) s_{l}(t) A\left(s\left(t^{\prime}\right)\right)\right\rangle\right)
\]

\section*{Martin-Siggia-Rose formalism}

Potential Method
2+4 p-spin spherical Model
Potential Method
Disorder and replicas
Looking for minima
Hamiltonian dynamics
Generic equation of dynamics
Correlation and Response
Lagrangian multiplier
3=p-spin spherical Model Response

From the equation of motion
\[
\mathbb{E}\left\langle\ddot{s}_{i} A\left(s\left(t^{\prime}\right)\right)\right\rangle=-\mathbb{E}\left\langle\mu_{x}(t) s_{i}(t) A\left(s\left(t^{\prime}\right)\right)\right\rangle+\sum_{j} \mathbb{E}\left(J_{i j}\left\langle s_{j}(t) A\left(s\left(t^{\prime}\right)\right)\right\rangle\right)+\sum_{j<k<l} \mathbb{E}\left(J_{i j k l}\left\langle s_{j}(t) s_{k}(t) s_{l}(t) A\left(s\left(t^{\prime}\right)\right)\right\rangle\right)
\]

Taking averages \(\langle\ldots\rangle \rightarrow\) Martin-Siggia-Rose formalism
\[
\begin{aligned}
P[s] \mu(s(0)) & =\int_{-\infty}^{\infty}\left(\prod_{u=0}^{t} \frac{d \hat{s}_{i}(u)}{2 \pi}\right) \exp \left\{\sum_{i} \int_{0}^{t} d u\left[i \hat{s}_{i}(u)\left(-\ddot{s}_{i}(u)-\frac{\partial H_{J}}{\partial s_{i}(u)}\right)\right]\right\} \mu(s(0)) \\
& =\int_{-\infty}^{\infty}\left(\prod_{u=0}^{t} \frac{d \hat{s}_{i}(u)}{2 \pi}\right) \exp \left\{\sum_{i} \int_{0}^{t} d u\left[i \hat{s}_{i}(u)\left(-\ddot{s}_{i}(u)-\mu_{x}(u) s_{i}(u)+\sum_{j} J_{i j} s_{j}+\sum_{j<k<l} J_{i j k l} s_{j} s_{k} s_{l}+h_{i}(u)\right)\right]\right\} \mu(s(0))
\end{aligned}
\]

\section*{Martin-Siggia-Rose formalism}

\section*{FPU problem}

Potential Method

2+4 p-spin spherical Model

Potential Method
Disorder and replicas
Looking for minima

Hamiltonian dynamics

Generic equation of dynamics

Correlation and Response

Lagrangian multiplier

3=p-spin spherical Model Potential Method

Correlation and Response

From the equation of motion
\[
\mathbb{E}\left\langle\ddot{s}_{i} A\left(s\left(t^{\prime}\right)\right)\right\rangle=-\mathbb{E}\left\langle\mu_{x}(t) s_{i}(t) A\left(s\left(t^{\prime}\right)\right)\right\rangle+\sum_{j} \mathbb{E}\left(J_{i j}\left\langle s_{j}(t) A\left(s\left(t^{\prime}\right)\right)\right\rangle\right)+\sum_{j<k<l} \mathbb{E}\left(J_{i j k l}\left\langle s_{j}(t) s_{k}(t) s_{l}(t) A\left(s\left(t^{\prime}\right)\right)\right\rangle\right)
\]

Taking averages \(\langle\ldots\rangle \rightarrow\) Martin-Siggia-Rose formalism
\[
\begin{aligned}
P[s] \mu(s(0)) & =\int_{-\infty}^{\infty}\left(\prod_{u=0}^{t} \frac{d \hat{s}_{i}(u)}{2 \pi}\right) \exp \left\{\sum_{i} \int_{0}^{t} d u\left[i \hat{s}_{i}(u)\left(-\ddot{s}_{i}(u)-\frac{\partial H_{J}}{\partial s_{i}(u)}\right)\right]\right\} \mu(s(0)) \\
& =\int_{-\infty}^{\infty}\left(\prod_{u=0}^{t} \frac{d \hat{s}_{i}(u)}{2 \pi}\right) \exp \left\{\sum_{i} \int_{0}^{t} d u\left[i \hat{s}_{i}(u)\left(-\ddot{s}_{i}(u)-\mu_{x}(u) s_{i}(u)+\sum_{j} J_{i j} s_{j}+\sum_{j<k<l} J_{i j k l} s_{j} s_{k} s_{l}+h_{i}(u)\right)\right]\right\} \mu(s(0))
\end{aligned}
\]

Let us observe
\[
\frac{\partial}{\partial h_{i}(u)}\langle B(s(t))\rangle=\left\langle B(s(t)) i \hat{s}_{i}(u)\right\rangle
\]

Define Correlation and Response
\[
\begin{aligned}
C\left(t, t^{\prime}\right) & =\frac{1}{N} \sum_{i} s_{i}(t) s_{i}\left(t^{\prime}\right) \rightarrow\left\langle s_{i}(t) s_{i}\left(t^{\prime}\right)\right\rangle \\
R\left(t, t^{\prime}\right) & =\frac{1}{N} \sum_{i} s_{i}(t) i \hat{s}_{i}\left(t^{\prime}\right) \rightarrow\left\langle s_{i}(t) i \hat{s}_{i}\left(t^{\prime}\right)\right\rangle=\frac{\partial\left\langle s_{i}(t)\right\rangle}{\partial h_{j}\left(t^{\prime}\right)}
\end{aligned}
\]

\section*{Dynamics for a generic observable}
```

FPU problem
Potential Method
2+4 p-spin
spherical Model
Potential Method
Disorder and
replicas
Looking for minima
Hamiltonian
dynamics
Generic equation
of dynamics
Correlation and
Response
Lagrangian
multiplier
3=p-spin
spherical Model
Potential Method
Correlation and
Response
Potential Method

```

\section*{Main equation of dynamics}
\[
\begin{aligned}
\mathbb{E}\left\langle\ddot{s}_{i} A\left(s\left(t^{\prime}\right)\right)\right\rangle= & -\mathbb{E}\left\langle\mu_{x}(t) s_{i}(t) A\left(s\left(t^{\prime}\right)\right)\right\rangle+\sum_{j} \mathbb{E}\left(J_{i j}^{2}\right)\left[\int_{0}^{t} d u \mathbb{E}\left\langle i \hat{s}_{i}(u) s_{j} A\left(s\left(t^{\prime}\right)\right) s_{j}(t)\right\rangle\right. \\
& \left.+\int_{0}^{t} d u \mathbb{E}\left\langle s_{i} i \hat{s}_{j} A\left(s\left(t^{\prime}\right)\right) s_{j}\right\rangle+\mathbb{E}\left\langle\beta_{2}\left(s_{i}^{0} s_{j}^{0}+\left\langle s_{i}^{0} s_{j}^{0}\right\rangle_{e q}\right) A\left(s\left(t^{\prime}\right)\right) s_{j}(t)\right\rangle\right] \\
& +\sum_{j<k<l} \mathbb{E}\left(J_{i j k l}^{2}\right)\left[\int_{0}^{t} d u \mathbb{E}\left\langle i \hat{s}_{i}(u) s_{j} s_{k} s_{l} A\left(s\left(t^{\prime}\right)\right) s_{j} s_{k} s_{l}\right\rangle\right. \\
& +\int_{0}^{t} d u \mathbb{E}\left\langle s_{i}\left(i \hat{s}_{j} s_{k} s_{l}+s_{j} i \hat{s}_{k} s_{l}+s_{j} s_{k} i \hat{s}_{l}\right) A\left(s\left(t^{\prime}\right)\right) s_{j} s_{k} s_{l}\right\rangle \\
& \left.+\mathbb{E}\left\langle\beta_{4}\left(s_{i}^{0} s_{j}^{0} s_{k}^{0} s_{l}^{0}+\left\langle s_{i}^{0} s_{j}^{0} s_{k}^{0} s_{l}^{0}\right\rangle_{e q}\right) A\left(s\left(t^{\prime}\right)\right) s_{j} s_{k} s_{l}\right\rangle\right]
\end{aligned}
\]

\section*{Dynamics for a generic observable}
```

FPU problem
Potential Method
2+4 p-spin
spherical Model
Potential Method
Disorder and
replicas
Looking for minima
Hamiltonian
dynamics
Generic equation
of dynamics
Correlation and
Response
Lagrangian
multiplier
3=p-spin
spherical Model
Potential Method
Correlation and
Response
Potential Method

```

\section*{Main equation of dynamics}
\[
\begin{aligned}
\mathbb{E}\left\langle\ddot{s}_{i} A\left(s\left(t^{\prime}\right)\right)\right\rangle= & -\mathbb{E}\left\langle\mu_{x}(t) s_{i}(t) A\left(s\left(t^{\prime}\right)\right)\right\rangle+\sum_{j} \mathbb{E}\left(J_{i j}^{2}\right)\left[\int_{0}^{t} d u \mathbb{E}\left\langle i \hat{s}_{i}(u) s_{j} A\left(s\left(t^{\prime}\right)\right) s_{j}(t)\right\rangle\right. \\
& \left.+\int_{0}^{t} d u \mathbb{E}\left\langle s_{i} i \hat{s}_{j} A\left(s\left(t^{\prime}\right)\right) s_{j}\right\rangle+\mathbb{E}\left\langle\beta_{2}\left(s_{i}^{0} s_{j}^{0}+\left\langle s_{i}^{0} s_{j}^{0}\right\rangle_{e q}\right) A\left(s\left(t^{\prime}\right)\right) s_{j}(t)\right\rangle\right] \\
& +\sum_{j<k<l} \mathbb{E}\left(J_{i j k l}^{2}\right)\left[\int_{0}^{t} d u \mathbb{E}\left\langle i \hat{s}_{i}(u) s_{j} s_{k} s_{l} A\left(s\left(t^{\prime}\right)\right) s_{j} s_{k} s_{l}\right\rangle\right. \\
& +\int_{0}^{t} d u \mathbb{E}\left\langle s_{i}\left(i \hat{s}_{j} s_{k} s_{l}+s_{j} i \hat{s}_{k} s_{l}+s_{j} s_{k} i \hat{s}_{l}\right) A\left(s\left(t^{\prime}\right)\right) s_{j} s_{k} s_{l}\right\rangle \\
& \left.+\mathbb{E}\left\langle\beta_{4}\left(s_{i}^{0} s_{j}^{0} s_{k}^{0} s_{l}^{0}+\left\langle s_{i}^{0} s_{j}^{0} s_{k}^{0} s_{l}^{0}\right\rangle_{e q}\right) A\left(s\left(t^{\prime}\right)\right) s_{j} s_{k} s_{l}\right\rangle\right]
\end{aligned}
\]

\section*{Dynamics for a generic observable}
FPU problem
Potential Method
2+4 p-spin
spherical Model
Potential Method
Disorder and
replicas
Looking for minima
Hamiltonian
dynamics
Generic equation
of dynamics
Correlation and
Response
Lagrangian
multiplier
3=p-spin
spherical Model
Potential Method
Correlation and
Response

\section*{Main equation of dynamics}
\[
\begin{aligned}
\mathbb{E}\left\langle\ddot{s}_{i} A\left(s\left(t^{\prime}\right)\right)\right\rangle= & -\mathbb{E}\left\langle\mu_{x}(t) s_{i}(t) A\left(s\left(t^{\prime}\right)\right)\right\rangle+\sum_{j} \mathbb{E}\left(J_{i j}^{2}\right)\left[\int_{0}^{t} d u \mathbb{E}\left\langle i \hat{s}_{i}(u) s_{j} A\left(s\left(t^{\prime}\right)\right) s_{j}(t)\right\rangle\right. \\
& \left.+\int_{0}^{t} d u \mathbb{E}\left\langle s_{i} i \hat{s}_{j} A\left(s\left(t^{\prime}\right)\right) s_{j}\right\rangle+\mathbb{E}\left\langle\beta_{2}\left(s_{i}^{0} s_{j}^{0}+\left\langle s_{i}^{0} s_{j}^{0}\right\rangle_{e q}\right) A\left(s\left(t^{\prime}\right)\right) s_{j}(t)\right\rangle\right] \\
& +\sum_{j<k<l} \mathbb{E}\left(J_{i j k l}^{2}\right)\left[\int_{0}^{t} d u \mathbb{E}\left\langle i \hat{s}_{i}(u) s_{j} s_{k} s_{l} A\left(s\left(t^{\prime}\right)\right) s_{j} s_{k} s_{l}\right\rangle\right. \\
& +\int_{0}^{t} d u \mathbb{E}\left\langle s_{i}\left(i \hat{s}_{j} s_{k} s_{l}+s_{j} i \hat{s}_{k} s_{l}+s_{j} s_{k} i \hat{s}_{l}\right) A\left(s\left(t^{\prime}\right)\right) s_{j} s_{k} s_{l}\right\rangle \\
& \left.+\mathbb{E}\left\langle\beta_{4}\left(s_{i}^{0} s_{j}^{0} s_{k}^{0} s_{l}^{0}+\left\langle s_{i}^{0} s_{j}^{0} s_{k}^{0} s_{l}^{0}\right\rangle_{e q}\right) A\left(s\left(t^{\prime}\right)\right) s_{j} s_{k} s_{l}\right\rangle\right]
\end{aligned}
\]

Second moments
\[
\longrightarrow \quad \mathbb{E}\left(J_{i_{1}, \ldots, i_{p}}^{2}\right)=\frac{p!}{2 N^{p-1}}
\]

\section*{Dynamics for a generic observable}
FPU problem
Potential Method
2+4 p-spin
spherical Model
Potential Method
Disorder and
replicas
Looking for minima

Hamiltonian
dynamics
Generic equation
of dynamics
Correlation and
Response
Lagrangian
multiplier
3ep-spin
spherical Model
Potential Method
Correlation and
Response

\section*{Main equation of dynamics}
\[
\begin{aligned}
\mathbb{E}\left\langle\ddot{s}_{i} \underline{A\left(s\left(t^{\prime}\right)\right)}\right\rangle= & -\mathbb{E}\left\langle\mu_{x}(t) s_{i}(t) \underline{A\left(s\left(t^{\prime}\right)\right)}\right\rangle+\sum_{j} \mathbb{E}\left(J_{i j}^{2}\right)\left[\int_{0}^{t} d u \mathbb{E}\left\langle i \hat{s}_{i}(u) s_{j} \underline{A\left(s\left(t^{\prime}\right)\right)} s_{j}(t)\right\rangle\right. \\
& \left.+\int_{0}^{t} d u \mathbb{E}\left\langle s_{i} i \hat{s}_{j} \underline{\left.\underline{A\left(s\left(t^{\prime}\right)\right)} s_{j}\right\rangle+\mathbb{E}\left\langle\beta_{2}\left(s_{i}^{0} s_{j}^{0}+\left\langle s_{i}^{0} s_{j}^{0}\right\rangle_{e q}\right) A\left(s\left(t^{\prime}\right)\right)\right.} s_{j}(t)\right\rangle\right] \\
& +\sum_{j<k<l} \mathbb{E}\left(J_{i j k l}^{2}\right)\left[\int_{0}^{t} d u \mathbb{E}\left\langle i \hat{s}_{i}(u) s_{j} s_{k} s_{l} A\left(s\left(t^{\prime}\right)\right) s_{j} s_{k} s_{l}\right\rangle\right. \\
& +\int_{0}^{t} d u \mathbb{E}\left\langle s_{i}\left(i \hat{s}_{j} s_{k} s_{l}+s_{j} i \hat{s}_{k} s_{l}+s_{j} s_{k} i \hat{s}_{l}\right) A\left(s\left(t^{\prime}\right)\right) s_{j} s_{k} s_{l}\right\rangle \\
& \left.+\mathbb{E}\left\langle\beta_{4}\left(s_{i}^{0} s_{j}^{0} s_{k}^{0} s_{l}^{0}+\left\langle s_{i}^{0} s_{j}^{0} s_{k}^{0} s_{l}^{0}\right\rangle_{e q}\right) A\left(s\left(t^{\prime}\right)\right) s_{j} s_{k} s_{l}\right\rangle\right]
\end{aligned}
\]

Second moments
\[
\longrightarrow \quad \mathbb{E}\left(J_{i_{1}, \ldots, i_{p}}^{2}\right)=\frac{p!}{2 N^{p-1}}
\]

\section*{Dynamics for a generic observable}

\section*{FPU problem}

Potential Method

2+4 p-spin spherical Model

Potential Method
Disorder and replicas

Looking for minima

Hamiltonian dynamics

Generic equation of dynamics

Correlation and
Response
Lagrangian multiplier

3=p-spin spherical Model Potential Method

Correlation and Response

\section*{Main equation of dynamics}
\[
\begin{aligned}
\mathbb{E}\left\langle\ddot{s}_{i} \underline{A\left(s\left(t^{\prime}\right)\right)}\right\rangle= & -\mathbb{E}\left\langle\mu_{x}(t) s_{i}(t) \underline{A\left(s\left(t^{\prime}\right)\right)}\right\rangle+\sum_{j} \underline{\mathbb{E}\left(J_{i j}^{2}\right)}\left[\int_{0}^{t} d u \mathbb{E}\left\langle i \hat{s}_{i}(u) s_{j} \underline{A\left(s\left(t^{\prime}\right)\right)} s_{j}(t)\right\rangle\right. \\
& \left.+\int_{0}^{t} d u \mathbb{E}\left\langle s_{i} i \hat{s}_{j} \underline{\left.\underline{A\left(s\left(t^{\prime}\right)\right)} s_{j}\right\rangle+\mathbb{E}\left\langle\beta_{2}\left(s_{i}^{0} s_{j}^{0}+\left\langle s_{i}^{0} s_{j}^{0}\right\rangle_{e q}\right) A\left(s\left(t^{\prime}\right)\right)\right.} s_{j}(t)\right\rangle\right] \\
& +\sum_{j<k<l} \mathbb{E}\left(J_{i j k l}^{2}\right)\left[\int _ { 0 } ^ { t } d u \mathbb { E } \left\langlei \hat{s}_{i}(u) s_{j} s_{k} s_{l} \underline{\left.\underline{A\left(s\left(t^{\prime}\right)\right)} s_{j} s_{k} s_{l}\right\rangle}\right.\right. \\
& +\int_{0}^{t} d u \mathbb{E}\left\langle s_{i}\left(i \hat{s}_{j} s_{k} s_{l}+s_{j} i \hat{s}_{k} s_{l}+s_{j} s_{k} i \hat{s}_{l}\right) A\left(s\left(t^{\prime}\right)\right) s_{j} s_{k} s_{l}\right\rangle \\
& \left.+\mathbb{E}\left\langle\beta_{4}\left(s_{i}^{0} s_{j}^{0} s_{k}^{0} s_{l}^{0}+\left\langle s_{i}^{0} s_{j}^{0} s_{k}^{0} s_{l}^{0}\right\rangle_{e q}\right) A\left(s\left(t^{\prime}\right)\right) s_{j} s_{k} s_{l}\right\rangle\right]
\end{aligned}
\]

Second moments
\[
\longrightarrow \quad \mathbb{E}\left(J_{i_{1}, \ldots, i_{p}}^{2}\right)=\frac{p!}{2 N^{p-1}}
\]

Get equations for Correlation and Response
\[
\begin{aligned}
& \longrightarrow A\left(s\left(t^{\prime}\right)\right)=s_{i}\left(t^{\prime}\right) \longrightarrow C\left(t, t^{\prime}\right)=\frac{1}{N} \sum_{i} s_{i}(t) s_{i}\left(t^{\prime}\right) \rightarrow\left\langle s_{i}(t) s_{i}\left(t^{\prime}\right)\right\rangle \\
& \longrightarrow A\left(s\left(t^{\prime}\right)\right)=i \hat{s}_{i}\left(t^{\prime}\right) \longrightarrow R\left(t, t^{\prime}\right)=\frac{1}{N} \sum_{i} s_{i}(t) i \hat{s}_{i}\left(t^{\prime}\right) \rightarrow\left\langle s_{i}(t) i \hat{s}_{i}\left(t^{\prime}\right)\right\rangle=\frac{\partial\left\langle s_{i}(t)\right\rangle}{\partial h_{j}\left(t^{\prime}\right)}
\end{aligned}
\]

\section*{Equations for Correlation and Response}
FPU problem
Potential Method
2+4 p-spin
spherical Model
Potential Method
Disorder andreplicas
Looking for minima
Hamiltonian dynamics

\section*{Generic equation} of dynamics

\section*{Correlation and}

\section*{Response}
\[
\begin{aligned}
\frac{\partial^{2} C\left(t, t^{\prime}\right)}{\partial t^{2}}= & -\mu_{x}(t) C\left(t, t^{\prime}\right) \\
+ & \frac{p_{2}}{2} \int_{0}^{t^{\prime}} d u R\left(t^{\prime}, u\right) C(t, u)^{p_{2}-1}+\frac{p_{2}\left(p_{2}-1\right)}{2} \int_{0}^{t} d u C\left(t^{\prime}, u\right) R(t, u) C(t, u)^{p_{2}-2} \\
+ & \beta_{2} \frac{p_{2}}{2}\left(C\left(t^{\prime}, 0\right) C(t, 0)^{p_{2}-1}-K\left(0, t^{\prime}\right) K(0, t)^{p_{2}-1}\right) \\
+ & \frac{p_{4}}{2} \int_{0}^{t^{\prime}} d u R\left(t^{\prime}, u\right) C(t, u)^{p_{4}-1}+\frac{p_{4}\left(p_{4}-1\right)}{2} \int_{0}^{t} d u C\left(t^{\prime}, u\right) R(t, u) C(t, u)^{p_{4}-2} \\
+ & \beta_{4} \frac{p_{4}}{2}\left(C\left(t^{\prime}, 0\right) C(t, 0)^{p_{4}-1}-K\left(0, t^{\prime}\right) K(0, t)^{p_{4}-1}\right) \\
\frac{\partial^{2} R\left(t, t^{\prime}\right)}{\partial t^{2}}= & -\mu_{x}(t) R\left(t, t^{\prime}\right)+\frac{p_{2}\left(p_{2}-1\right)}{2} \int_{t^{\prime}}^{t} d u R\left(u, t^{\prime}\right) R(t, u) C(t, u)^{p_{2}-2} \\
& +\frac{p_{4}\left(p_{4}-1\right)}{2} \int_{t^{\prime}}^{t} d u R\left(u, t^{\prime}\right) R(t, u) C(t, u)^{p_{4}-2}
\end{aligned}
\]

\section*{Equations for Correlation and Response}
FPU problem
Potential Method
2+4 p-spin
spherical Model
Potential Method
Disorder andreplicas
Looking for minima
Hamiltonian dynamics

\section*{Generic equation} of dynamics

\section*{Correlation and}

\section*{Response}
\[
\begin{aligned}
\frac{\partial^{2} C\left(t, t^{\prime}\right)}{\partial t^{2}}= & -\mu_{x}(t) C\left(t, t^{\prime}\right) \\
+ & \frac{p_{2}}{2} \int_{0}^{t^{\prime}} d u R\left(t^{\prime}, u\right) C(t, u)^{p_{2}-1}+\frac{p_{2}\left(p_{2}-1\right)}{2} \int_{0}^{t} d u C\left(t^{\prime}, u\right) R(t, u) C(t, u)^{p_{2}-2} \\
+ & \beta_{2} \frac{p_{2}}{2}\left(C\left(t^{\prime}, 0\right) C(t, 0)^{p_{2}-1}-\frac{K\left(0, t^{\prime}\right) K(0, t)^{p_{2}-1}}{p_{4}\left(p_{4}-1\right)}\right. \\
+ & \frac{p_{4}}{2} \int_{0}^{t} d u R\left(t^{t^{\prime}} d u\left(t^{\prime}, u\right) C(t, u)^{p_{4}-1}+\frac{p^{\prime}}{2} R(t, u) C(t, u)^{p_{4}-2}\right. \\
+ & \beta_{4} \frac{p_{4}}{2}\left(C\left(t^{\prime}, 0\right) C(t, 0)^{p_{4}-1}-\underline{K\left(0, t^{\prime}\right) K(0, t)^{p_{4}-1}}\right) \\
\frac{\partial^{2} R\left(t, t^{\prime}\right)}{\partial t^{2}}= & -\mu_{x}(t) R\left(t, t^{\prime}\right)+\frac{p_{2}\left(p_{2}-1\right)}{2} \int_{t^{\prime}}^{t} d u R\left(u, t^{\prime}\right) R(t, u) C(t, u)^{p_{2}-2} \\
& +\frac{p_{4}\left(p_{4}-1\right)}{2} \int_{t^{\prime}}^{t} d u R\left(u, t^{\prime}\right) R(t, u) C(t, u)^{p_{4}-2}
\end{aligned}
\]

\section*{Equations for Correlation and Response}
```

FPU problem
Potential Method
2+4 p-spin
spherical Model
Potential Method
Disorder and
replicas
Looking for minima
Hamiltonian
dynamics
Generic equation
of dynamics

```

Correlation and Response
Lagrangian multiplier

3=p-spin spherical Model
\[
\begin{aligned}
\frac{\partial^{2} C\left(t, t^{\prime}\right)}{\partial t^{2}}= & -\mu_{x}(t) C\left(t, t^{\prime}\right) \\
& +\frac{p_{2}}{2} \int_{0}^{t^{\prime}} d u R\left(t^{\prime}, u\right) C(t, u)^{p_{2}-1}+\frac{p_{2}\left(p_{2}-1\right)}{2} \int_{0}^{t} d u C\left(t^{\prime}, u\right) R(t, u) C(t, u)^{p_{2}-2} \\
& +\beta_{2} \frac{p_{2}}{2}\left(C\left(t^{\prime}, 0\right) C(t, 0)^{p_{2}-1}-\frac{K\left(0, t^{\prime}\right) K(0, t)^{p_{2}-1}}{p_{4}\left(p_{4}-1\right)}\right. \\
& +\frac{p_{4}}{2} \int_{0}^{t} d u C\left(t^{\prime}, u\right) R(t, u) C(t, u)^{p_{4}-2} \\
+ & \beta_{4} \frac{p_{4}}{2}\left(C\left(t^{\prime}, 0\right) C(t, 0)^{p_{4}-1}-\underline{K\left(0, t^{\prime}\right) K(0, t)^{p_{4}-1}}\right) \\
\frac{\partial^{2} R\left(t, t^{\prime}\right)}{\partial t^{2}}= & -\mu_{x}(t) R\left(t, t^{p_{4}}\right)+\frac{p_{2}\left(p_{2}-1\right)}{2} \int_{t^{\prime}}^{t} d u R\left(u, t^{\prime}\right) R(t, u) C(t, u)^{p_{2}-2} \\
& +\frac{p_{4}\left(p_{4}-1\right)}{2} \int_{t^{\prime}}^{t} d u R\left(u, t^{\prime}\right) R(t, u) C(t, u)^{p_{4}-2}
\end{aligned}
\]

Where we introduced the Pseudo-Correlation
\[
K(0, t)=\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{i}\left\langle s_{i}(0)\right\rangle_{e q}\left\langle s_{i}(t)\right\rangle
\]

And we assumed
self averaging of correlation, response and pseudo-correlation mean-field approximation

\section*{Equations for Correlation and Response}
```

FPU problem
Potential Method
2+4 p-spin
spherical Model
Potential Method
Disorder and
replicas
Looking for minima
Hamiltonian
dynamics
Generic equation
of dynamics
Correlation and
Response

```

Lagrangian multiplier
\[
\begin{aligned}
\frac{\partial^{2} C\left(t, t^{\prime}\right)}{\partial t^{2}}= & -\frac{\mu_{x}(t) C\left(t, t^{\prime}\right)}{p_{2}} \int_{0}^{t^{\prime}} d u R\left(t^{\prime}, u\right) C(t, u)^{p_{2}-1}+\frac{p_{2}\left(p_{2}-1\right)}{2} \int_{0}^{t} d u C\left(t^{\prime}, u\right) R(t, u) C(t, u)^{p_{2}-2} \\
& +\beta_{2} \frac{p_{2}}{2}\left(C\left(t^{\prime}, 0\right) C(t, 0)^{p_{2}-1}-\underline{K\left(0, t^{\prime}\right) K(0, t)^{p_{2}-1}}\right) \\
& +\frac{p_{4}}{2} \int_{0}^{t^{t^{\prime}}} d u R\left(t^{\prime}, u\right) C(t, u)^{p_{4}-1}+\frac{p_{4}\left(p_{4}-1\right)}{2} \int_{0}^{t} d u C\left(t^{\prime}, u\right) R(t, u) C(t, u)^{p_{4}-2} \\
+ & \beta_{4} \frac{p_{4}}{2}\left(C\left(t^{\prime}, 0\right) C(t, 0)^{p_{4}-1}-\underline{K\left(0, t^{\prime}\right) K(0, t)^{p_{4}-1}}\right) \\
\frac{\partial^{2} R\left(t, t^{\prime}\right)}{\partial t^{2}}= & \frac{-\mu_{x}(t) R\left(t, t^{\prime}\right)+\frac{p_{2}\left(p_{2}-1\right)}{2} \int_{t^{\prime}}^{t} d u R\left(u, t^{\prime}\right) R(t, u) C(t, u)^{p_{2}-2}}{} \\
& +\frac{p_{4}\left(p_{4}-1\right)}{2} \int_{t^{\prime}}^{t} d u R\left(u, t^{\prime}\right) R(t, u) C(t, u)^{p_{4}-2}
\end{aligned}
\]

Where we introduced the Pseudo-Correlation
\[
K(0, t)=\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{i}\left\langle s_{i}(0)\right\rangle_{e q}\left\langle s_{i}(t)\right\rangle
\]

And we assumed
self averaging of correlation, response and pseudo-correlation mean-field approximation

\section*{Equation for the Pseudo-Correlation}
FPU problem
Potential Method
2+4 p-spin
spherical Model
Potential Method
Disorder and
replicas
Looking for minima

Hamiltonian
dynamics
Generic equation
of dynamics
Correlation and
Response
Lagrangian
multiplier
3ep-spin
spherical Model
Potential Method
Correlation and
Response

To determine the equation for the Pseudo-Correlation
\[
K(0, t)=\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{i}\left\langle s_{i}(0)\right\rangle_{e q}\left\langle s_{i}(t)\right\rangle
\]

\section*{Main equation of dynamics:}
\[
\begin{aligned}
\mathbb{E}\left\langle\tilde{s}_{i} A\left(s\left(t^{\prime}\right)\right)\right\rangle= & -\mathbb{E}\left\langle\mu_{x}(t) s_{i}(t) A\left(s\left(t^{\prime}\right)\right)\right\rangle+\sum_{j} \mathbb{E}\left(J_{i j}^{2}\right)\left[\int_{0}^{t} d u \mathbb{E}\left\langle i \hat{s}_{i}(u) s_{j} A\left(s\left(t^{\prime}\right)\right) s_{j}(t)\right\rangle\right. \\
& \left.+\int_{0}^{t} d u \mathbb{E}\left\langle s_{i} i \hat{s}_{j} A\left(s\left(t^{\prime}\right)\right) s_{j}\right\rangle+\mathbb{E}\left\langle\beta_{2}\left(s_{i}^{0} s_{j}^{0}+\left\langle s_{i}^{0} s_{j}^{0}\right\rangle_{e q}\right) A\left(s\left(t^{\prime}\right)\right) s_{j}(t)\right\rangle\right] \\
& +\sum_{j<k<l} \mathbb{E}\left(J_{i j k l}^{2}\right)\left[\int_{0}^{t} d u \mathbb{E}\left\langle i \hat{s}_{i}(u) s_{j} s_{k} s_{l} A\left(s\left(t^{\prime}\right)\right) s_{j} s_{k} s_{l}\right\rangle\right. \\
& +\int_{0}^{t} d u \mathbb{E}\left\langle s_{i}\left(i \hat{s}_{j} s_{k} s_{l}+s_{j} i \hat{s}_{k} s_{l}+s_{j} s_{k} i \hat{s}_{l}\right) A\left(s\left(t^{\prime}\right)\right) s_{j} s_{k} s_{l}\right\rangle \\
& \left.+\mathbb{E}\left\langle\beta_{4}\left(s_{i}^{0} s_{j}^{0} s_{k}^{0} s_{l}^{0}+\left\langle s_{i}^{0} s_{j}^{0} s_{k}^{0} s_{l}^{0}\right\rangle_{e q}\right) A\left(s\left(t^{\prime}\right)\right) s_{j} s_{k} s_{l}\right\rangle\right]
\end{aligned}
\]

\section*{Equation for the Pseudo-Correlation}
FPU problem
Potential Method
2+4 p-spin
spherical Model
Potential Method
Disorder and
replicas
Looking for minima

Hamiltonian
dynamics
Generic equation
of dynamics
Correlation and
Response
Lagrangian
multiplier
3=p-spin
spherical Model
Potential Method
Correlation and
Response

To determine the equation for the Pseudo-Correlation
\[
K(0, t)=\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{i}\left\langle s_{i}(0)\right\rangle_{e q}\left\langle s_{i}(t)\right\rangle
\]

We choose \(\longrightarrow A\left(s_{i}\left(t^{\prime}\right)\right)=\left\langle s_{i}(0)\right\rangle_{e q}\)

\section*{Main equation of dynamics:}
\[
\begin{aligned}
\mathbb{E}\left\langle\ddot{s}_{i} A\left(s\left(t^{\prime}\right)\right)\right\rangle & -\mathbb{E}\left\langle\mu_{x}(t) s_{i}(t) A\left(s\left(t^{\prime}\right)\right)\right\rangle \\
& +\sum_{j} \mathbb{E}\left(J_{i j}^{2}\right)\left[\int _ { 0 } ^ { t } d u \mathbb { E } \left\langle\left\langle\hat{s}_{i}(u) s_{j} A\left(s\left(t^{\prime}\right)\right) s_{j}(t)\right\rangle\right.\right. \\
& +\int_{0}^{t} d u \mathbb{E}\left\langle s_{i} i_{j} \underline{\left.\left.\underline{A\left(s\left(t^{\prime}\right)\right)} s_{j}\right\rangle+\mathbb{E}\left\langle\beta_{2}\left(s_{i}^{0} s_{j}^{0}+\left\langle s_{i}^{0} s_{j}^{0}\right\rangle e_{e q}\right) A\left(s\left(t^{\prime}\right)\right) s_{j}(t)\right\rangle\right]}\right. \\
& +\sum_{j<k<l} \mathbb{E}\left(J_{i j k l}^{2}\right)\left[\int_{0}^{t} d u \mathbb{E}\left\langle i \hat{s}_{i}(u) s_{j} s_{k} s_{l} A\left(s\left(t^{\prime}\right)\right) s_{j} s_{k} s_{l}\right\rangle\right. \\
& +\int_{0}^{t} d u \mathbb{E}\left\langle s_{i}\left(i \hat{s}_{j} s_{k} s_{l}+s_{j} i \hat{s}_{k} s_{l}+s_{j} s_{k} i \hat{s}_{l}\right) A\left(s\left(t^{\prime}\right)\right) s_{j} s_{k} s_{l}\right\rangle \\
& \left.+\mathbb{E}\left\langle\beta_{4}\left(s_{i}^{0} s_{j}^{0} s_{k}^{0} s_{l}^{0}+\left\langle s_{i}^{0} s_{j}^{0} s_{k}^{0} s_{l}^{0}\right\rangle_{e q}\right) A\left(s\left(t^{\prime}\right)\right) s_{j} s_{k} s_{l}\right\rangle\right]
\end{aligned}
\]

\section*{Equation for the Pseudo-Correlation}

\section*{FPU problem}
2+4 p-spin spherical Model
Potential Method
Disorder and replicas
Looking for minima
Hamiltonian dynamics
Generic equation of dynamics
Correlation and Response
Lagrangian multiplier
3=p-spin spherical Model Potential Method
\[
\begin{aligned}
\frac{\partial^{2} K(0, t)}{\partial t^{2}}= & -\mu_{x}(t) K(0, t)+\frac{p_{2}\left(p_{2}-1\right)}{2} \int_{0}^{t} d u K(0, u) R(t, u) C(t, u)^{p_{2}-2}+\beta_{2} \frac{p_{2}}{2}\left(K(0,0) C(t, 0)^{p_{2}-1}-\bar{q} K(0, t)^{p_{2}-1}\right) \\
& +\frac{p_{4}\left(p_{4}-1\right)}{2} \int_{0}^{t} d u K(0, u) R(t, u) C(t, u)^{p_{4}-2}+\beta_{4} \frac{p_{4}}{2}\left(K(0,0) C(t, 0)^{p_{4}-1}-\bar{q} K(0, t)^{p_{4}-1}\right)
\end{aligned}
\]

To determine the equation for the Pseudo-Correlation
\[
K(0, t)=\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{i}\left\langle s_{i}(0)\right\rangle_{e q}\left\langle s_{i}(t)\right\rangle
\]

We choose \(\longrightarrow A\left(s_{i}\left(t^{\prime}\right)\right)=\left\langle s_{i}(0)\right\rangle_{e q}\)

\section*{Main equation of dynamics:}
\[
\begin{aligned}
\mathbb{E}\left\langle\ddot{s}_{i} A\left(s\left(t^{\prime}\right)\right)\right\rangle & -\mathbb{E}\left\langle\mu_{x}(t) s_{i}(t) A\left(s\left(t^{\prime}\right)\right)\right\rangle \\
& +\sum_{j} \mathbb{E}\left(J_{i j}^{2}\right)\left[\int_{0}^{t} d u \mathbb{E}\left\langle i \hat{s}_{l}(u) s_{j} \underline{A\left(s\left(t^{\prime}\right)\right)} s_{j}(t)\right\rangle\right. \\
& \left.+\int_{0}^{t} d u \mathbb{E}\left\langle s_{i} i \hat{s}_{j} \underline{\left.\underline{A\left(s\left(t^{\prime}\right)\right)} s_{j}\right\rangle+\mathbb{E}\left\langle\beta_{2}\left(s_{i}^{0} s_{j}^{0}+\left\langle s_{i}^{0} s_{j}^{0}\right\rangle e_{e q}\right) A\left(s\left(t^{\prime}\right)\right)\right.} s_{j}(t)\right\rangle\right] \\
& +\sum_{j<k<l} \mathbb{E}\left(J_{i j k l}^{2}\right)\left[\int _ { 0 } ^ { t } d u \mathbb { E } \left\langlei \hat{s}_{i}(u) s_{j} s_{k} s_{l} \underline{\left.\underline{A\left(s\left(t^{\prime}\right)\right)} s_{j} s_{k} s_{l}\right\rangle}\right.\right. \\
& +\int_{0}^{t} d u \mathbb{E}\left\langle s_{i}\left(i \hat{s}_{j} s_{k} s_{l}+s_{j} \hat{s}_{k} s_{l}+s_{j} s_{k} i \hat{s}_{l}\right) A\left(s\left(t^{\prime}\right)\right) s_{j} s_{k} s_{l}\right\rangle \\
& \left.+\mathbb{E}\left\langle\beta_{4}\left(s_{i}^{0} s_{j}^{0} s_{k}^{0} s_{l}^{0}+\left\langle s_{i}^{0} s_{j}^{0} s_{k}^{0} s_{l}^{0}\right\rangle_{e q}\right) A\left(s\left(t^{\prime}\right)\right) s_{j} s_{k} s_{l}\right\rangle\right]
\end{aligned}
\]

The differential equation for the Pseudo-Correlation

\section*{Equation for the lagrangian multiplier}
```

FPU problem
Potential Method
2+4 p-spin
spherical Model
Potential Method
Disorder and
replicas
Looking for minima
Hamiltonian
dynamics
Generic equation
of dynamics
Correlation and
Response
Lagrangian
multiplier
3=p-spin
spherical Model
Potential Method
Correlation and
Response

Hamiltonian:

$$
H(s)=\frac{1}{2} \sum_{i} p_{i}^{2}+V_{J}(s)+\frac{\mu_{x}(t)}{2}\left(\sum_{i} s_{i}^{2}-N\right) \quad \longrightarrow \quad \sum_{i} p_{i}^{2}=2\left(H-V_{J}\right)
$$

Hamilton's equations

$$
\begin{aligned}
& \frac{\partial H}{\partial p_{i}}=\dot{s}_{i}=p_{i} \\
& \frac{\partial H}{\partial s_{i}}=-\dot{p}_{i}=\frac{\partial V}{\partial s_{i}}+\mu_{x} s_{i}
\end{aligned}
$$

Equation for the lagrangian multiplier

```
FPU problem
Potential Method
    2+4 p-spin
spherical Model
Potential Method
    Disorder and
        replicas
Looking for minima
    Hamiltonian
    dynamics
Generic equation
    of dynamics
Correlation and
    Response
    Lagrangian
    multiplier

Potential Method

2+4 p-spin
spherical Model
Potential Method
Disorder and
replicas
Looking for minima

Hamiltonian
dynamics
Generic equation of dynamics

Correlation and Response
Lagrangian multiplier

Hamiltonian:
\[
H(s)=\frac{1}{2} \sum_{i} p_{i}^{2}+V_{J}(s)+\frac{\mu_{x}(t)}{2}\left(\sum_{i} s_{i}^{2}-N\right) \quad \rightarrow \quad \sum_{i} p_{i}^{2}=2\left(H-V_{J}\right)
\]

\section*{Hamilton's equations}
\[
\begin{aligned}
& \frac{\partial H}{\partial p_{i}}=\dot{s}_{i}=p_{i} \\
& \frac{\partial H}{\partial s_{i}}=-\dot{p}_{i}=\frac{\partial V}{\partial s_{i}}+\mu_{x} s_{i}
\end{aligned}
\]
\[
\sum_{i} \dot{p}_{i} s_{i}=\sum_{i} \ddot{s}_{i} s_{i}=\frac{1}{2} \frac{d}{d t} \sum_{i} s_{i}^{2}-\sum_{i} \dot{s}_{i}^{2}=-\sum_{i} \dot{s}_{i}^{2}
\]

\section*{Equation for the lagrangian multiplier}
```

FPU problem
Potential Method
2+4 p-spin
spherical Model
Potential Method
Disorder and
replicas
Looking for minima
Hamiltonian
dynamics
Generic equation
of dynamics
Correlation and
Response
Lagrangian
multiplier

```Potential Method
spherical ModelDisorder andreplicas
```

 Response
    ```

Hamiltonian:
\[
H(s)=\frac{1}{2} \sum_{i} p_{i}^{2}+V_{J}(s)+\frac{\mu_{x}(t)}{2}\left(\sum_{i} s_{i}^{2}-N\right) \quad \longrightarrow \quad \sum_{i} p_{i}^{2}=2\left(H-V_{J}\right)
\]

\section*{Hamilton's equations}
\[
\begin{aligned}
& \frac{\partial H}{\partial p_{i}}=\dot{s}_{i}=p_{i} \\
& \frac{\partial H}{\partial s_{i}}=-\dot{p}_{i}=\frac{\partial V}{\partial s_{i}}+\mu_{x} s_{i}
\end{aligned}
\]
\[
\sum_{i} \dot{p}_{i} s_{i}=\sum_{i} \ddot{s}_{i} s_{i}=\frac{1}{2} \frac{d}{d t} \sum_{N}^{\sum_{N} s_{i}^{2}}-\sum_{i} \dot{s}_{i}^{2}=-\sum_{i} \dot{s}_{i}^{2}
\]

\section*{Equation for the lagrangian multiplier}
```

FPU problem
Potential Method
2+4 p-spin
spherical Model
Potential Method
Disorder and
replicas
Looking for minima
Hamiltonian
dynamics
Generic equation
of dynamics
Correlation and
Response
Lagrangian
multiplier

Hamiltonian:

$$
H(s)=\frac{1}{2} \sum_{i} p_{i}^{2}+V_{J}(s)+\frac{\mu_{x}(t)}{2}\left(\sum_{i} s_{i}^{2}-N\right) \quad \longrightarrow \quad \sum_{i} p_{i}^{2}=2\left(H-V_{J}\right)
$$

Hamilton's equations

$$
\begin{aligned}
& \frac{\partial H}{\partial p_{i}}=\dot{s}_{i}=p_{i} \\
& \frac{\partial H}{\partial s_{i}}=-\dot{p}_{i}=\frac{\partial V}{\partial s_{i}}+\mu_{x} s_{i}
\end{aligned}
$$

$$
\sum_{i} \ddot{s}_{i} s_{i}=-\sum_{i} \frac{\partial V}{\partial s_{i}} s_{i}-N \mu_{x}=-\sum_{i} \dot{s}_{i}^{2}=\sum_{i} p_{i}^{2}=2\left(H-V_{J}\right)
$$

Equation for the lagrangian multiplier

```
FPU problem
Potential Method
    2+4 p-spin
spherical Model
Potential Method
    Disorder and
        replicas
Looking for minima
    Hamiltonian
    dynamics
Generic equation
    of dynamics
Correlation and
    Response
Lagrangian multiplier

Hamiltonian:
\[
H(s)=\frac{1}{2} \sum_{i} p_{i}^{2}+V_{J}(s)+\frac{\mu_{x}(t)}{2}\left(\sum_{i} s_{i}^{2}-N\right) \quad \rightarrow \quad \sum_{i} p_{i}^{2}=2\left(H-V_{J}\right)
\]

\section*{Hamilton's equations \\ Hamilton's equations}
\[
\begin{aligned}
& \frac{\partial H}{\partial p_{i}}=\dot{s}_{i}=p_{i} \\
& \frac{\partial H}{\partial s_{i}}=-\dot{p}_{i}=\frac{\partial V}{\partial s_{i}}+\mu_{x} s_{i}
\end{aligned}
\]
\[
\sum_{i} \ddot{s}_{i} s_{i}=-\sum_{i} \frac{\partial V}{\partial s_{i}} s_{i}-N \mu_{x}=-\sum_{i} \dot{s}_{i}^{2}=\sum_{i} p_{i}^{2}=2\left(H-V_{J}\right)
\]

\section*{Equation for the lagrangian multiplier}
FPU problem
Potential Method
2+4 p-spin
spherical Model
Potential Method
Disorder and
replicas
Looking for minima
Hamiltonian
dynamics
Generic equation
of dynamics
Correlation and
Response
Lagrangian
multiplier
3ep-spin
spherical Model
Potential Method
Correlation and
Response

Hamiltonian:
\[
H(s)=\frac{1}{2} \sum_{i} p_{i}^{2}+V_{J}(s)+\frac{\mu_{x}(t)}{2}\left(\sum_{i} s_{i}^{2}-N\right) \quad \rightarrow \quad \sum_{i} p_{i}^{2}=2\left(H-V_{J}\right)
\]

\section*{Hamilton's equations}
\[
\sum_{i} \dot{p}_{i} s_{i}=\sum_{i} \ddot{s}_{i} s_{i}=\frac{1}{2} \frac{d}{d t} \sum_{N}^{\sum_{N}^{2}}-\sum_{i} \dot{s}_{i}^{2}=-\sum_{i} \dot{s}_{i}^{2}
\]
\[
\begin{aligned}
& \frac{\partial H}{\partial p_{i}}=\dot{s}_{i}=p_{i} \\
& \frac{\partial H}{\partial s_{i}}=-\dot{p}_{i}=\frac{\partial V}{\partial s_{i}}+\mu_{x} s_{i}
\end{aligned}
\]
\[
\sum_{i} \ddot{s}_{i} s_{i}=-\sum_{i} \frac{\partial V}{\partial s_{i}} s_{i}-N \mu_{x}=-\sum_{i} \dot{s}_{i}^{2}=\sum_{i} p_{i}^{2}=2\left(H-V_{J}\right)
\]

We obtain the relation desired
\[
N \mu_{x}=-\sum_{i} \frac{\partial V_{J}}{\partial s_{i}} s_{i}+2\left(H-V_{J}\right)
\]

Averaging
\[
N \mu_{x}=-\sum_{i} \mathbb{E}\left\langle\frac{\partial V_{J}}{\partial s_{i}} s_{i}\right\rangle+2\left(E-\mathbb{E}\left\langle V_{J}\right\rangle\right)
\]

\section*{Equation for the lagrangian multiplier}
\begin{tabular}{l} 
FPU problem \\
Potential Method \\
2+4 p-spin \\
spherical Model \\
Potential Method \\
Disorder and \\
replicas \\
Looking for minima \\
\\
Hamiltonian \\
dynamics \\
Generic equation \\
of dynamics \\
Correlation and \\
Response \\
Lagrangian \\
multiplier \\
3=p-spin \\
spherical Model \\
Potential Method \\
Correlation and \\
Response \\
Future \\
developments \\
\hline
\end{tabular}
\[
N \mu_{x}=-\sum_{i} \mathbb{E}\left\langle\frac{\partial V_{J}}{\partial s_{i}} s_{i}\right\rangle+2\left(E-\mathbb{E}\left\langle V_{J}\right\rangle\right)
\]

\section*{Equation for the lagrangian multiplier}
```

FPU problem
Potential Method
2+4 p-spin
spherical Model
Potential Method
Disorder and
replicas
Looking for minima

```

Hamiltonian dynamics

Generic equation of dynamics

Correlation and Response
Lagrangian multiplier
\[
N \mu_{x}=-\sum_{i} \mathbb{E}\left\langle\frac{\partial V_{J}}{\partial s_{i}} s_{i}\right\rangle+2\left(E-\mathbb{E}\left\langle V_{J}\right\rangle\right)
\]

With computations analogous to those previously seen for correlation and response
Equation for the lagrangian multiplier that enforces the spherical constraint
\[
\begin{aligned}
\mu_{x}(t)= & 2 e+4 \frac{p_{2}}{2} \int_{0}^{t} d u R(t, u) C(t, u)^{p_{2}-1}+\beta_{2}\left(C(t, 0)^{p_{2}}-K(0, t)^{p_{2}}\right) \\
& +6 \frac{p_{4}}{2} \int_{0}^{t} d u R(t, u) C(t, u)^{p_{4}-1}+\beta_{4}\left(C(t, 0)^{p_{4}}-K(0, t)^{p_{4}}\right)
\end{aligned}
\]

\section*{Equations for dynamics}

\section*{FPU problem \\ Potential Method \\ 2+4 p-spin spherical Model Potential Method \\ Disorder and replicas \\ Looking for minima \\ Hamiltonian dynamics \\ Generic equation of dynamics \\ Correlation and \\ Response \\ Lagrangian multiplier \\ 3=p-spin spherical Model \\ Correlation and Response}

\section*{Correlation}
\[
\begin{aligned}
\frac{\partial^{2} C\left(t, t^{\prime}\right)}{\partial t^{2}} & =-\mu_{x}(t) C\left(t, t^{\prime}\right) \\
& +\frac{p_{2}}{2} \int_{0}^{t^{\prime}} d u R\left(t^{\prime}, u\right) C(t, u)^{p_{2}-1}+\frac{p_{2}\left(p_{2}-1\right)}{2} \int_{0}^{t} d u C\left(t^{\prime}, u\right) R(t, u) C(t, u)^{p_{2}-2} \\
& +\beta_{2} \frac{p_{2}}{2}\left(C\left(t^{\prime}, 0\right) C(t, 0)^{p_{2}-1}-K\left(0, t^{\prime}\right) K(0, t)^{p_{2}-1}\right) \\
& +\frac{p_{4}}{2} \int_{0}^{t^{\prime}} d u R\left(t^{\prime}, u\right) C(t, u)^{p_{4}-1}+\frac{p_{4}\left(p_{4}-1\right)}{2} \int_{0}^{t} d u C\left(t^{\prime}, u\right) R(t, u) C(t, u)^{p_{4}-2} \\
& +\beta_{4} \frac{p_{4}}{2}\left(C\left(t^{\prime}, 0\right) C(t, 0)^{p_{4}-1}-K\left(0, t^{\prime}\right) K(0, t)^{p_{4}-1}\right)
\end{aligned}
\]

Response
\[
\begin{aligned}
\frac{\partial^{2} R\left(t, t^{\prime}\right)}{\partial t^{2}}= & -\mu_{x}(t) R\left(t, t^{\prime}\right)+\frac{p_{2}\left(p_{2}-1\right)}{2} \int_{t^{\prime}}^{t} d u R\left(u, t^{\prime}\right) R(t, u) C(t, u)^{p_{2}-2} \\
& +\frac{p_{4}\left(p_{4}-1\right)}{2} \int_{t^{\prime}}^{t} d u R\left(u, t^{\prime}\right) R(t, u) C(t, u)^{p_{4}-2}
\end{aligned}
\]

\section*{Pseudo-Correlation}
\[
\begin{aligned}
\frac{\partial^{2} K(0, t)}{\partial t^{2}}= & -\mu_{x}(t) K(0, t)+\frac{p_{2}\left(p_{2}-1\right)}{2} \int_{0}^{t} d u K(0, u) R(t, u) C(t, u)^{p_{2}-2}+\beta_{2} \frac{p_{2}}{2}\left(K(0,0) C(t, 0)^{p_{2}-1}-\bar{q} K(0, t)^{p_{2}-1}\right) \\
& +\frac{p_{4}\left(p_{4}-1\right)}{2} \int_{0}^{t} d u K(0, u) R(t, u) C(t, u)^{p_{4}-2}+\beta_{4} \frac{p_{4}}{2}\left(K(0,0) C(t, 0)^{p_{4}-1}-\bar{q} K(0, t)^{p_{4}-1}\right)
\end{aligned}
\]

Lagrangian multiplier
\[
\begin{aligned}
\mu_{x}(t)= & 2 e+4 \frac{p_{2}}{2} \int_{0}^{t} d u R(t, u) C(t, u)^{p_{2}-1}+\beta_{2}\left(C(t, 0)^{p_{2}}-K(0, t)^{p_{2}}\right) \\
& +6 \frac{p_{4}}{2} \int_{0}^{t} d u R(t, u) C(t, u)^{p_{4}-1}+\beta_{4}\left(C(t, 0)^{p_{4}}-K(0, t)^{p_{4}}\right)
\end{aligned}
\]

\section*{\(\mathrm{P}=3\) spin spherical model partitioned in two subsystems}
FPU problem
Potential Method
2+4 p-spin
spherical Model
Potential Method
Disorder and
replicas
Looking for minima

Hamiltonian
dynamics
Generic equation
of dynamics
Correlation and
Response
Lagrangian
multiplier
3=p-spin
spherical Model
Potential Method
Correlation and
Response
Future
developments
\[
V_{J}=H_{1}+H_{12}+H_{21}+H_{2}
\]
\[
=-\sum_{i<j<k}^{\gamma N, \gamma N, \gamma N} J_{i j k}^{(1)} s_{i}^{(1)} s_{j}^{(1)} s_{k}^{(1)}-\sum_{i<j, k}^{\substack{\gamma N, \gamma N,(1-\gamma) N}} J_{i j k}^{(12)} s_{i}^{(1)} s_{j}^{(1)} s_{k}^{(2)}-\sum_{i<j, k}^{\substack{\gamma N,(1-\gamma) N,(1-\gamma) N}} J_{i j k}^{(21)} s_{i}^{(1)} s_{j}^{(2)} s_{k}^{(2)}-\sum_{i<j<k}^{\substack{(1-\gamma) N,(1-\gamma) N,(1-\gamma) N}} J_{i j k}^{(2)} s_{i}^{(2)} s_{j}^{(2)} s_{k}^{(2)}
\]

\section*{\(\mathrm{P}=3\) spin spherical model partitioned in two subsystems}

```

Potential Method
2+4 p-spin spherical Model
Potential Method
Disorder and replicas
Looking for minima
Hamiltonian
dynamics
Generic equation of dynamics
Correlation and Response
Lagrangian multiplier

$$
\begin{aligned}
V_{J} & =H_{1}+H_{12}+H_{21}+H_{2} \\
& =-\sum_{i<j<k}^{\gamma N, \gamma N, \gamma N} J_{i j k}^{(1)} s_{i}^{(1)} s_{j}^{(1)} s_{k}^{(1)}-\sum_{i<j, k}^{\substack{\gamma N, \gamma N,(1-\gamma) N}} J_{i j k}^{(12)} s_{i}^{(1)} s_{j}^{(1)} s_{k}^{(2)}-\sum_{i<j, k}^{\substack{\gamma N,(1-\gamma) N,(1-\gamma) N}} J_{i j k}^{(21)} s_{i}^{(1)} s_{j}^{(2)} s_{k}^{(2)}-\sum_{i<j<k}^{\substack{(1-\gamma) N,(1-\gamma) N,(1-\gamma) N}} J_{i j k}^{(2)} s_{i}^{(2)} s_{j}^{(2)} s_{k}^{(2)},
\end{aligned}
$$

Replicated partition function

$$
Z^{(n, m)}=\overline{\int D s^{a} \int D \sigma^{\alpha} \exp \left[\beta^{\prime} \sum_{a}^{n} H\left(s^{a}\right)+\beta \sum_{\alpha}^{m} H\left(\sigma^{\alpha}\right)\right] \prod_{\alpha=1}^{m} \delta\left(\sum_{i}^{\gamma N} s_{i}^{1(1)} \sigma_{i}^{\alpha(1)}-N \tilde{p}_{1}\right) \delta\left(\sum_{i}^{(1-\gamma) N} s_{i}^{1(2)} \sigma_{i}^{\alpha(2)}-N \tilde{p}_{2}\right)}
$$

$\mathrm{P}=3$ spin spherical model partitioned in two subsystems

FPU problem
Potential Method
2+4 p-spin
spherical Model
Potential Method
Disorder and
replicas
Looking for minima

Hamiltonian
dynamics
Generic equation
of dynamics
Correlation and
Response
Lagrangian
multiplier
3ep-spin
spherical Model
Potential Method
Correlation and
Response

$$
\begin{aligned}
V_{J} & =H_{1}+H_{12}+H_{21}+H_{2} \\
& =-\sum_{i<j<k}^{\gamma N, \gamma N, \gamma N} J_{i j k}^{(1)} s_{i}^{(1)} s_{j}^{(1)} s_{k}^{(1)}-\sum_{i<j, k}^{\substack{\gamma N, \gamma N,(1-\gamma) N}} J_{i j k}^{(12)} s_{i}^{(1)} s_{j}^{(1)} s_{k}^{(2)}-\sum_{i<j, k}^{\substack{\gamma N,(1-\gamma) N,(1-\gamma) N}} J_{i j k}^{(21)} s_{i}^{(1)} s_{j}^{(2)} s_{k}^{(2)}-\sum_{i<j<k}^{\substack{(1-\gamma) N,(1-\gamma) N,(1-\gamma) N}} J_{i j k}^{(2)} s_{i}^{(2)} s_{j}^{(2)} s_{k}^{(2)},
\end{aligned}
$$

Replicated partition function

$$
Z^{(n, m)}=\bar{\int} s^{a} \int D \sigma^{\alpha} \exp \left[\beta^{\prime} \sum_{a}^{n} H\left(s^{a}\right)+\beta \sum_{\alpha}^{m} H\left(\sigma^{\alpha}\right)\right] \underbrace{\prod_{\alpha=1}^{m} \delta\left(\sum_{i}^{\gamma N} s_{i}^{1(1)} \sigma_{i}^{\alpha(1)}-N \tilde{p}_{1}\right) \delta \underbrace{\left.\sum_{i}^{(1-\gamma) N} s_{i}^{1(2)} \sigma_{i}^{\alpha(2)}-N \tilde{p}_{2}\right)}_{\begin{array}{c}
\text { fixed distance between } \\
\text { the two subsystems 2 }
\end{array}}}_{\begin{array}{c}
\text { fixed distance between } \\
\text { the two subsystems } 1
\end{array}}
$$

$\mathrm{P}=3$ spin spherical model partitioned in two subsystems

FPU problem
Potential Method
2+4 p-spin
spherical Model
Potential Method
Disorder and
replicas
Looking for minima
Hamiltonian
dynamics
Generic equation
of dynamics
Correlation and
Response
Lagrangian
multiplier
3=p-spin
spherical Model
Potential Method
Correlation and
Response
Future
developments

$$
\begin{aligned}
V_{J} & =H_{1}+H_{12}+H_{21}+H_{2} \\
& =-\sum_{i<j<k}^{\gamma N, \gamma N, \gamma N} J_{i j k}^{(1)} s_{i}^{(1)} s_{j}^{(1)} s_{k}^{(1)}-\sum_{i<j, k}^{\substack{\gamma N, \gamma N,(1-\gamma) N}} J_{i j k}^{(12)} s_{i}^{(1)} s_{j}^{(1)} s_{k}^{(2)}-\sum_{i<j, k}^{\substack{\gamma N,(1-\gamma) N,(1-\gamma) N}} J_{i j k}^{(21)} s_{i}^{(1)} s_{j}^{(2)} s_{k}^{(2)}-\sum_{i<j<k}^{\substack{(1-\gamma) N,(1-\gamma) N,(1-\gamma) N}} J_{i j k}^{(2)} s_{i}^{(2)} s_{j}^{(2)} s_{k}^{(2)},
\end{aligned}
$$

Replicated partition function

$$
Z^{(n, m)}=\bar{\int} s^{a} \int D \sigma^{\alpha} \exp \left[\beta^{\prime} \sum_{a}^{n} H\left(s^{a}\right)+\beta \sum_{\alpha}^{m} H\left(\sigma^{\alpha}\right)\right] \prod_{\alpha=1}^{\prod_{\begin{array}{c}
\text { fixed distance between } \\
\text { the two subsystems 1 }
\end{array}}^{m} \delta\left(\sum_{i}^{\gamma N} s_{i}^{1(1)} \sigma_{i}^{\alpha(1)}-N \tilde{p}_{1}\right) \delta \underbrace{\left(\sum_{i}^{(1-\gamma) N} s_{i}^{1(2)} \sigma_{i}^{\alpha(2)}-N \tilde{p}_{2}\right)}_{\begin{array}{c}
\text { fixed distance between } \\
\text { the two subsystems 2 }
\end{array}}}
$$

- Average over disorder

$\mathrm{P}=3$ spin spherical model partitioned in two subsystems

FPU problem

Potential Method

2+4 p-spin spherical Model Potential Method Disorder and replicas
Looking for minima

Hamiltonian dynamics
Generic equation of dynamics
Correlation and Response
Lagrangian multiplier

3=p-spin spherical Model
Potential Method
Correlation and Response

$$
V_{J}=H_{1}+H_{12}+H_{21}+H_{2}
$$

$$
=-\sum_{i<j<k}^{\gamma N, \gamma N, \gamma N} J_{i j k}^{(1)} s_{i}^{(1)} s_{j}^{(1)} s_{k}^{(1)}-\sum_{i<j, k}^{\substack{\gamma N, \gamma N,(1-\gamma) N}} J_{i j k}^{(12)} s_{i}^{(1)} s_{j}^{(1)} s_{k}^{(2)}-\sum_{i<j, k}^{\substack{\gamma N,(1-\gamma) N,(1-\gamma) N}} J_{i j k}^{(21)} s_{i}^{(1)} s_{j}^{(2)} s_{k}^{(2)}-\sum_{i<j<k}^{\substack{(1-\gamma) N,(1-\gamma) N,(1-\gamma) N}} J_{i j k}^{(2)} s_{i}^{(2)} s_{j}^{(2)} s_{k}^{(2)}
$$

Replicated partition function

$$
Z^{(n, m)}=\int D s^{a} \int D \sigma^{\alpha} \exp \left[\beta^{\prime} \sum_{a}^{n} H\left(s^{a}\right)+\beta \sum_{\alpha}^{m} H\left(\sigma^{\alpha}\right)\right] \underbrace{\prod_{\alpha=1}^{m} \delta\left(\sum_{i}^{\gamma N} s_{i}^{1(1)} \sigma_{i}^{\alpha(1)}-N \tilde{p}_{1}\right) \delta \underbrace{\left.\sum_{i}^{(1-\gamma) N} s_{i}^{1(2)} \sigma_{i}^{\alpha(2)}-N \tilde{p}_{2}\right)}_{\begin{array}{c}
\text { fixed distance between } \\
\text { the two subsystems 2 }
\end{array}}}_{\begin{array}{c}
\text { fixed distance between } \\
\text { the two subsystems } 1
\end{array}}
$$

- Average over disorder

Introduce

Order parameter matrices

$$
\begin{aligned}
Q_{a b}^{(1)} & =\frac{1}{\gamma N} \sum_{i} s_{i}^{(1) a} s_{i}^{(1) b} & Q_{a b}^{(2)} & =\frac{1}{(1-\gamma) N} \sum_{i} s_{i}^{(2) a} s_{i}^{(2) b} \\
R_{\alpha \beta}^{(1)} & =\frac{1}{\gamma N} \sum_{i} \sigma_{i}^{(1) \alpha} \sigma_{i}^{(1) \beta} & R_{\alpha \beta}^{(2)} & =\frac{1}{(1-\gamma) N} \sum_{i} \sigma_{i}^{(2) \alpha} \sigma_{i}^{(2) \beta} \\
P_{a \alpha}^{(1)} & =\frac{1}{\gamma N} \sum_{i} s_{i}^{(1) a} \sigma_{i}^{(1) \alpha} & P_{a \alpha}^{(2)} & =\frac{1}{(1-\gamma) N} \sum_{i} s_{i}^{(2) a} \sigma_{i}^{(2) \alpha}
\end{aligned}
$$

Single matrices for system 1 and 2

$$
\begin{aligned}
& \mathbf{Q}^{(1)}=\left(\begin{array}{cc}
Q^{(1)} & P^{(1)} \\
P^{(1) T} & R^{(1)}
\end{array}\right) \\
& \mathbf{Q}^{(2)}=\left(\begin{array}{cc}
Q^{(2)} & P^{(2)} \\
P^{(2) T} & R^{(2)}
\end{array}\right)
\end{aligned}
$$

Generalized RS ansatz

```
FPU problem
Potential Method
    2+4 p-spin
spherical Model
Potential Method
    Disorder and
        replicas
Looking for minima
    Hamiltonian
    dynamics
Generic equation
    of dynamics
Correlation and
    Response
    Lagrangian
    multiplier
3=p-spin
\[
\begin{aligned}
\frac{1}{N} \ln Z^{n, m}= & +\frac{1}{4} \gamma^{3}\left(\beta_{1}^{2} \sum_{a, b}^{n} Q_{a b}^{(1) 3}+2 \beta_{1} \beta \sum_{a, \alpha} P_{a, \alpha}^{(1) 3}+\beta^{2} \sum_{\alpha, \beta} R_{\alpha, \beta}^{(1) 3}\right)+\frac{1}{4}(1-\gamma)^{3}\left(\beta_{2}^{2} \sum_{a, b}^{n} Q_{a b}^{(2) 3}+2 \beta_{2} \beta \sum_{a, \alpha} P_{a, \alpha}^{(2) 3}+\beta^{2} \sum_{\alpha, \beta} R_{\alpha, \beta}^{(2) 3}\right) \\
& +\frac{3}{4} \gamma^{2}(1-\gamma)\left(\beta_{12}^{2} \sum_{a, b}^{n} Q_{a b}^{(1) 2} Q_{a b}^{(2)}+2 \beta_{12} \beta \sum_{a, \alpha} P_{a, \alpha}^{(1) 2} P_{a, \alpha}^{(2)}+\beta^{2} \sum_{\alpha, \beta} R_{\alpha, \beta}^{(1) 2} R_{\alpha, \beta}^{(2)}\right) \\
& +\frac{3}{4} \gamma(1-\gamma)^{2}\left(\beta_{21}^{2} \sum_{a, b}^{n} Q_{a b}^{(1)} Q_{a b}^{(2) 2}+2 \beta_{21} \beta \sum_{a, \alpha} P_{a, \alpha}^{(1)} P_{a, \alpha}^{(2) 2}+\beta^{2} \sum_{\alpha, \beta} R_{\alpha, \beta}^{(1)} R_{\alpha, \beta}^{(2) 2}\right) \\
& +\frac{1}{2} \ln \operatorname{det}\left(\begin{array}{cc}
Q^{(1)} & P^{(1)} \\
P^{(1) T} & R^{(1)}
\end{array}\right)+\frac{1}{2} \ln \operatorname{det}\left(\begin{array}{cc}
Q^{(2)} & P^{(2)} \\
P^{(2) T} & R^{(2)}
\end{array}\right)
\end{aligned}
\]

The Effective Potential can be obtained using
\[
N V=-\left.T \frac{\partial}{\partial m} \ln Z^{(n, m)}\right|_{\substack{m=0 \\ n=0}}
\]

Using a saddle point technique to estimate the integral
\[
Z^{(n, m)}=\int D \mathbf{Q}_{\gamma \eta} \int D \lambda_{\gamma \eta} \exp [-N S(\lambda, \mathbf{Q})] \simeq \exp \left[-N S\left(\lambda^{*}, \mathbf{Q}^{*}\right)\right]
\]

\section*{Generalized RS ansatz}

\section*{FPU problem}

\section*{Potential Method}
2+4 p-spin spherical Model Potential Method
Disorder and replicas
Looking for minima
Hamiltonian dynamics
Generic equation of dynamics
Correlation and Response
Lagrangian multiplier
3=p-spin spherical Model Potential Method
 Response

Using a saddle point technique to estimate the integral
\[
Z^{(n, m)}=\int D \mathbf{Q}_{\gamma \eta} \int D \lambda_{\gamma \eta} \exp [-N S(\lambda, \mathbf{Q})] \simeq \exp \left[-N S\left(\lambda^{*}, \mathbf{Q}^{*}\right)\right]
\]
\[
\begin{aligned}
\frac{1}{N} \ln Z^{n, m}= & +\frac{1}{4} \gamma^{3}\left(\beta_{1}^{2} \sum_{a, b}^{n} Q_{a b}^{(1) 3}+2 \beta_{1} \beta \sum_{a, \alpha} P_{a, \alpha}^{(1) 3}+\beta^{2} \sum_{\alpha, \beta} R_{\alpha, \beta}^{(1) 3}\right)+\frac{1}{4}(1-\gamma)^{3}\left(\beta_{2}^{2} \sum_{a, b}^{n} Q_{a b}^{(2) 3}+2 \beta_{2} \beta \sum_{a, \alpha} P_{a, \alpha}^{(2) 3}+\beta^{2} \sum_{\alpha, \beta} R_{\alpha, \beta}^{(2) 3}\right) \\
& +\frac{3}{4} \gamma^{2}(1-\gamma)\left(\beta_{12}^{2} \sum_{a, b}^{n} Q_{a b}^{(1) 2} Q_{a b}^{(2)}+2 \beta_{12} \beta \sum_{a, \alpha} P_{a, \alpha}^{(1) 2} P_{a, \alpha}^{(2)}+\beta^{2} \sum_{\alpha, \beta} R_{\alpha, \beta}^{(1) 2} R_{\alpha, \beta}^{(2)}\right) \\
& +\frac{3}{4} \gamma(1-\gamma)^{2}\left(\beta_{21}^{2} \sum_{a, b}^{n} Q_{a b}^{(1)} Q_{a b}^{(2) 2}+2 \beta_{21} \beta \sum_{a, \alpha} P_{a, \alpha}^{(1)} P_{a, \alpha}^{(2) 2}+\beta^{2} \sum_{\alpha, \beta} R_{\alpha, \beta}^{(1)} R_{\alpha, \beta}^{(2) 2}\right) \\
& +\frac{1}{2} \ln \operatorname{det}\left(\begin{array}{cc}
Q^{(1)} & P^{(1)} \\
P^{(1) T} & R^{(1)}
\end{array}\right)+\frac{1}{2} \ln \operatorname{det}\left(\begin{array}{cc}
Q^{(2)} & P^{(2)} \\
P^{(2) T} & R^{(2)}
\end{array}\right)
\end{aligned}
\]

The Effective Potential can be obtained using
\[
N V=-\left.T \frac{\partial}{\partial m} \ln Z^{(n, m)}\right|_{\substack{m=0 \\ n=0}}
\]

RS Ansatz
for the Overlap Matrices
\[
\mathbf{Q}=\left(\begin{array}{cc}
Q & P \\
P^{T} & R
\end{array}\right)=\left(\begin{array}{cccccccc}
\overbrace{1} & q & \cdots & q \\
q & 1 & \cdots & q & \\
\vdots & \vdots & \ddots & \vdots & & \left.\begin{array}{cccccc}
0 & 0 & \cdots & \ddots & \vdots \\
q & q & \cdots & 1 & & \tilde{p} \\
& \tilde{p} & \cdots & 0 \\
0 & \cdots & 0 & \tilde{p} & 1 & r
\end{array}\right] & \cdots \\
\vdots & \ddots & \vdots & \vdots & r & 1 & \cdots & r \\
0 & \cdots & 0 & \tilde{p} & \vdots & \vdots & \ddots & \vdots \\
0 & \cdots & 0 & \tilde{p} & r & r & \cdots & 1
\end{array}\right)
\]

\section*{Effective Potential}

\section*{FPU problem}

\section*{Potential Method}
2+4 p-spin spherical Model Potential Method
Disorder and replicas
Looking for minima
Hamiltonian dynamics
Generic equation of dynamics
Correlation and Response
Lagrangian multiplier
3=p-spin spherical Model

\section*{Potential Method}
Correlation and Response
Future
developments

\section*{Potential Function}
\[
\begin{aligned}
\beta V\left(p_{1}, r_{1}, p_{2}, r_{2}\right)= & -\frac{1}{4} \gamma^{3}\left(\beta^{2}+2 \beta_{1} \beta p_{1}^{3}-\beta^{2} r_{1}^{3}\right) \\
& -\frac{1}{4}(1-\gamma)^{3}\left(\beta^{2}+2 \beta_{2} \beta p_{2}^{3}-\beta^{2} r_{2}^{3}\right) \\
& -\frac{3}{4}(1-\gamma)^{2} \gamma\left(\beta^{2}+2 \beta_{21} \beta p_{1} p_{2}^{2}-\beta^{2} r_{1} r_{2}^{2}\right) \\
& -\frac{3}{4} \gamma^{2}(1-\gamma)\left(\beta^{2}+2 \beta_{12} \beta p_{1}^{2} p_{2}-\beta^{2} r_{1}^{2} r_{2}\right) \\
& -\frac{1}{2} \gamma\left(\frac{r_{1}-p_{1}^{2}}{1-r 1}+\log \left[1-r_{1}\right]\right)-\frac{1}{2}(1-\gamma)\left(\frac{r_{2}-p_{2}^{2}}{1-r_{2}}+\log \left[1-r_{2}\right]\right)
\end{aligned}
\]


\section*{Hamiltonian dynamics}

\section*{FPU problem}
2+4 p-spin spherical Model Potential Method Disorder and replicas
Looking for minima
Hamiltonian dynamics
Generic equation of dynamics
Correlation and Response
Lagrangian multiplier
3=p-spin spherical Model Potential Method Correlation and Response
Future developments

Equation for the Hamiltonian dynamics of a generic p-spin spherical model

\section*{Correlation}
\[
\begin{aligned}
\frac{\partial^{2} C\left(t, t^{\prime}\right)}{\partial t^{2}} & =-\mu(t) C\left(t, t^{\prime}\right) \\
& +\frac{p}{2} \int_{0}^{t^{\prime}} d u R\left(t^{\prime}, u\right) C(t, u)^{p-1}+\frac{p(p-1)}{2} \int_{0}^{t} d u C\left(t^{\prime}, u\right) R(t, u) C(t, u)^{p-2} \\
& +\beta^{\prime} \frac{p}{2}\left(C\left(t^{\prime}, 0\right) C(t, 0)^{p-1}-K\left(0, t^{\prime}\right) K(0, t)^{p-1}\right)
\end{aligned}
\]

Response
\[
\begin{aligned}
\frac{\partial^{2} R\left(t, t^{\prime}\right)}{\partial t^{2}}= & -\mu(t) R\left(t, t^{\prime}\right)+\frac{p(p-1)}{2} \int_{t^{\prime}}^{t} d u R\left(u, t^{\prime}\right) R(t, u) C(t, u)^{p-2} \\
& +\frac{p(p-1)}{2} \int_{t^{\prime}}^{t} d u R\left(u, t^{\prime}\right) R(t, u) C(t, u)^{p-2}
\end{aligned}
\]

Pseudo-Correlation
\[
\begin{aligned}
\frac{\partial^{2} K(0, t)}{\partial t^{2}}= & -\mu_{x}(t) K(0, t)+\frac{p(p-1)}{2} \int_{0}^{t} d u K(0, u) R(t, u) C(t, u)^{p-2} \\
& +\beta^{\prime} \frac{p}{2}\left(K(0,0) C(t, 0)^{p-1}-\bar{q} K(0, t)^{p-1}\right)
\end{aligned}
\]

Substituting:
\[
\begin{aligned}
C\left(t, t^{\prime}\right) & \rightarrow \gamma C_{1}\left(t, t^{\prime}\right)+(1-\gamma) C_{2}\left(t, t^{\prime}\right) \\
R\left(t, t^{\prime}\right) & \rightarrow \gamma R_{1}\left(t, t^{\prime}\right)+(1-\gamma) R_{2}\left(t, t^{\prime}\right) \\
K\left(t, t^{\prime}\right) & \rightarrow \gamma K_{1}\left(t, t^{\prime}\right)+(1-\gamma) K_{2}\left(t, t^{\prime}\right) \\
\bar{q} & \rightarrow \gamma \bar{q}_{1}+(1-\gamma) \bar{q}_{2}
\end{aligned}
\]

\section*{Equations for the dynamics}

\section*{FPU problem}
2+4 p-spin
\[
+\frac{p(p-1)}{2}\left\{\gamma^{3} \int_{0}^{t} d u C_{1}(t, u) R_{1}(t, u)\left(C_{1}(t, u)+C_{1}\left(t^{\prime}, u\right)\right)+\gamma^{2}(1-\gamma) \int_{0}^{t} d u C_{1}\left(t^{\prime}, u\right)\left(C_{2}(t, u) R_{1}(t, u)+C_{1}(t, u) R_{2}(t, u)\right)\right.
\] spherical Model Potential Method
\[
\left.+\gamma^{2}(1-\gamma) \int_{0}^{t} d u C_{1}(t, u)\left(C_{2}\left(t^{\prime}, u\right) R_{1}(t, u)+C_{2}(t, u) R_{1}\left(t^{\prime}, u\right)+C_{1}(t, u) R_{2}\left(t^{\prime}, u\right)\right)\right\}
\] Disorder and replicas
\[
+\frac{p}{2}\left\{\beta_{1} \gamma^{3}\left(C_{1}(t, 0)^{2} C_{1}\left(t^{\prime}, 0\right)-K_{1}(t, 0)^{2} K_{1}\left(t^{\prime}, 0\right)\right)+2 \beta_{12} \gamma^{2}(1-\gamma)\left(C_{1}(t, 0) C_{1}\left(t^{\prime}, 0\right) C_{2}(t, 0)-K_{1}(t, 0) K_{1}\left(t^{\prime}, 0\right) K_{2}(t, 0)\right)\right.
\]
Looking for minima
\[
\left.+\beta_{12} \gamma^{2}(1-\gamma)\left(C_{1}(t, 0)^{2} C_{2}\left(t^{\prime}, 0\right)-K_{1}(t, 0)^{2} K_{2}\left(t^{\prime}, 0\right)\right)\right\}
\]
Hamiltonian dynamics
Generic equation of dynamics
Correlation and Response
Lagrangian multiplier
3=p-spin spherical Model Potential Method

\section*{Correlation and} Response
Future
developments

\section*{Correlation}
\[
\frac{\partial^{2} C_{1}\left(t, t^{\prime}\right)}{\partial t^{2}}=-\gamma \mu C_{1}\left(t, t^{\prime}\right)
\]

\section*{Response}
\[
\begin{aligned}
\frac{\partial^{2} R_{1}\left(t, t^{\prime}\right)}{\partial t^{2}}=-\mu(t) \gamma R_{1}\left(t, t^{\prime}\right)+\frac{p(p-1)}{2}[ & \int_{t^{\prime}}^{t} d u C_{1}(t, u) R_{1}(t, u)\left(\gamma^{3} R_{1}\left(u, t^{\prime}\right)+\gamma^{2}(1-\gamma) R_{2}\left(u, t^{\prime}\right)\right) \\
& \left.+\gamma^{2}(1-\gamma) \int_{t^{\prime}}^{t} d u R_{1}\left(u, t^{\prime}\right)\left(C_{2}(t, u) R_{1}(t, u)+C_{1}(t, u) R_{2}(t, u)\right)\right]
\end{aligned}
\]

\section*{Pseudo-Correlation}
\[
\begin{aligned}
\frac{\partial^{2} K_{1}\left(t, t^{\prime}\right)}{\partial t^{2}}= & -\gamma \mu(t) K_{1}(0, t) \\
& +\frac{p(p-1)}{2}\left[\int_{0}^{t} d u K_{1}(0, u) R_{1}(t, u)\left(\gamma^{3} C_{1}(t, u)+\gamma^{2}(1-\gamma) C_{2}(t, u)\right)+\gamma^{2}(1-\gamma) \int_{0}^{t} \operatorname{du} C_{1}(t, u)\left(K_{2}(0, u) R_{1}(t, u)+K_{1}(0, u) R_{2}(t, u)\right)\right] \\
& +\frac{p}{2}\left\{\beta_{1} \gamma^{3}\left(C_{1}(t, 0)^{2} K_{1}(0,0)-q_{1} K_{1}(0, t)^{2}\right)+\beta_{12} \gamma^{2}(1-\gamma)\left[\left(C_{1}(t, 0)^{2} K_{2}(0,0)-q_{2} K_{1}(0, t)^{2}\right)\right.\right. \\
& \left.\left.+2\left(C_{1}(t, 0) C_{2}(t, 0) K_{1}(0,0)-q_{1} K_{1}(0, t) K_{2}(0, t)\right)\right]\right\}
\end{aligned}
\]

\section*{Further developments}
```

FPU problem
Potential Method
2+4 p-spin
spherical Model
Potential Method
Disorder and
replicas
Looking for minima
Hamiltonian
dynamics
Generic equation
of dynamics
Correlation and
Response
Lagrangian
multiplier
3=p-spin
spherical Model
Potential Method
Correlation and
Response

- 1-RSB treatment of the potential for the static formulation in the $2+3$ spin spherical model
- Full RSB treatment of the potential for the static formulation in the $2+4$ spin spherical model
- Numerical results for the integro-differential equations for correlation, response, pseudo-correlation and lagrangian multiplier
- Comparison between static (using the effective potential) and dynamic results

Hopefully find some connections between Ergodicity Breaking in FPU and Spin Glasses

acknowledgments

Erik Aurell
Luca Leuzzi
Pierpaolo Vivo
Angelo Vulpiani

acknowledgments

Erik Aurell
Luca Leuzzi
Pierpaolo Vivo
Angelo Vulpiani

All of you for your attention!

[^0]: [S. Franz and G. Semerjian. Analytical approaches to time and length scales in models of glasses in Dynamical heterogeneities in glasses, colloids and granular materials. Oxford University Press, 2011.]

