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even in the absence of a rigorous demonstration, so that the ergodic problem was
considered essentially solved.1

After the Second World War, Fermi had the possibility to reconsider the problem
of ergodicity thanks to the development of digital computers and their applications,
as discussed in the introduction of the FPU paper by Ulam.2 In 1952/3, Fermi,
Pasta and Ulam, pioneering modern computer simulations, studied the time evo-
lution of a system composed by N particles of mass m interacting with slightly
nonlinear springs, described by the Hamiltonian

H =
N∑

i=0

[
p2

i

2m
+

K

2
(
qi+1 − qi

)2 +
ε

α

(
qi+1 − qi

)α
]

, (14.1)

where K controls the strength of the springs and ε the degree of anharmonicity
with α = 3 or α = 4. They used fixed boundary conditions q0 = qN+1 = p0 =
pN+1 = 0; later studies confirmed FPU results with different boundary conditions
(e.g. periodic).

When ε = 0 the Hamiltonian (14.1) is integrable. Indeed, in such a limit, using
the normal modes:

ak =
√

2
N + 1

∑

n

qn sin
(

n k π

N + 1

)
(k = 1, . . . , N) ,

the system reduces to N non-interacting harmonic oscillators with frequencies

ωk = 2
√

K

m
sin

(
k π

2(N + 1)

)

and energies

Ek =
1
2

[(
dak

dt

)2

+ ω2
ka2

k

]
= const .

When ε "= 0, the Hamiltonian (14.1) is a typical example of perturbed integrable
system.

Before examining FPU numerical experiment, it is worth recalling some basic
issues of statistical mechanics and ergodic theory.

As previously discussed, the ergodic hypothesis is crucial for the statistical me-
chanics description of Hamiltonian systems. Ergodic hypothesis (Sec. 4.3) states
that the time averages of an observable of an isolated system at equilibrium can be
computed as phase averages over the constant-energy hyper-surface, i.e. over the
microcanonical ensemble.3 Clearly, whenever the ergodic hypothesis can be proved,
1One may wonder why Fermi was not very worried about the lacking rigor of his “proof”. Likely,

the reason is that, at that time, his main interest was the development of quantum physics.
2This paper, written as an internal report of the Los Alamos Laboratories, was completed in

May 1955, after Fermi’s death, but it was made public only in 1965 in the anthology of Fermi’s
writings Note e Memorie (Collected Papers).
3Notice that the microcanonical ensemble can be considered, at conceptual level, the basic one.

For instance, the canonical ensemble, describing equilibrium statistics of a small but macroscopic
subsystem, can be derived, under rather general conditions, from the microcanonical ensemble.

[ Fermi, E., Pasta, J., & Ulam, S. (1955). Studies of nonlinear problems. Los Alamos Scientific Laboratory Report No. LA-1940 ]
 [ Cencini, M., Cecconi, F., & Vulpiani, A. (2009). Chaos. From simple Models to Complex Systems. World Scientific. ]
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the reason is that, at that time, his main interest was the development of quantum physics.
2This paper, written as an internal report of the Los Alamos Laboratories, was completed in

May 1955, after Fermi’s death, but it was made public only in 1965 in the anthology of Fermi’s
writings Note e Memorie (Collected Papers).
3Notice that the microcanonical ensemble can be considered, at conceptual level, the basic one.

For instance, the canonical ensemble, describing equilibrium statistics of a small but macroscopic
subsystem, can be derived, under rather general conditions, from the microcanonical ensemble.
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[ Fermi, E., Pasta, J., & Ulam, S. (1955). Studies of nonlinear problems. Los Alamos Scientific Laboratory Report No. LA-1940 ]
 [ Cencini, M., Cecconi, F., & Vulpiani, A. (2009). Chaos. From simple Models to Complex Systems. World Scientific. ]
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Fig. 14.1 Normalized modes energies Ek(t)/Etot for k = 1 (solid line), k = 2 (dashed line)
and k = 3 (dotted line) obtained with N = 32, α = 3 and ε = 0.1. The initial condition is
E1(0) = Etot = 2.24 and Ek(0) = 0 for k = 2, . . . , 32. [Courtesy of G. Benettin]

it provides a dynamical justification to statistical ensembles. It should be stressed
that the ergodic hypothesis is not a mere technical requirement but, unlike ensem-
bles, has a strong physical motivation, as in experiments thermodynamic quantities
are measured through a long time average. For instance, the pressure of a gas is
measured by a manometer through a process that takes a time much longer than
the microscopic one (e.g. the mean collision time). Therefore, from a physical point
of view, time averages are the basic quantities, while the ensembles approach can be
considered a useful algorithmic tool for computing averages without the knowledge
of trajectories.

Back to the FPU system, for small values of ε, it is easy to compute the thermo-
dynamic quantities using the microcanonical (or canonical) ensemble. In particular,
in the integrable limit (ε = 0), it is easy to obtain the equipartition law:

〈Ek〉 =
Etot

N
, (14.2)

where 〈·〉 denotes the microcanonical (or canonical) ensemble average. In the pres-
ence of a small anharmonic perturbation (ε #= 0), we have small corrections to
(14.2), 〈Ek〉 = Etot/N + O(ε).

However in the integrable limit ε = 0, normal modes are decoupled and thus
cannot exchange energy, which remains constant for each mode, so that equipar-
tition (14.2) is just a formal result of the ensemble approach, and the system is

equipartition law

[ Fermi, E., Pasta, J., & Ulam, S. (1955). Studies of nonlinear problems. Los Alamos Scientific Laboratory Report No. LA-1940 ]
 [ Cencini, M., Cecconi, F., & Vulpiani, A. (2009). Chaos. From simple Models to Complex Systems. World Scientific. ]
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even in the absence of a rigorous demonstration, so that the ergodic problem was
considered essentially solved.1

After the Second World War, Fermi had the possibility to reconsider the problem
of ergodicity thanks to the development of digital computers and their applications,
as discussed in the introduction of the FPU paper by Ulam.2 In 1952/3, Fermi,
Pasta and Ulam, pioneering modern computer simulations, studied the time evo-
lution of a system composed by N particles of mass m interacting with slightly
nonlinear springs, described by the Hamiltonian

H =
N∑

i=0

[
p2

i

2m
+

K

2
(
qi+1 − qi

)2 +
ε

α

(
qi+1 − qi

)α
]

, (14.1)

where K controls the strength of the springs and ε the degree of anharmonicity
with α = 3 or α = 4. They used fixed boundary conditions q0 = qN+1 = p0 =
pN+1 = 0; later studies confirmed FPU results with different boundary conditions
(e.g. periodic).

When ε = 0 the Hamiltonian (14.1) is integrable. Indeed, in such a limit, using
the normal modes:

ak =
√

2
N + 1

∑

n

qn sin
(

n k π

N + 1

)
(k = 1, . . . , N) ,

the system reduces to N non-interacting harmonic oscillators with frequencies

ωk = 2
√

K

m
sin

(
k π

2(N + 1)

)

and energies

Ek =
1
2

[(
dak

dt

)2

+ ω2
ka2

k

]
= const .

When ε "= 0, the Hamiltonian (14.1) is a typical example of perturbed integrable
system.

Before examining FPU numerical experiment, it is worth recalling some basic
issues of statistical mechanics and ergodic theory.

As previously discussed, the ergodic hypothesis is crucial for the statistical me-
chanics description of Hamiltonian systems. Ergodic hypothesis (Sec. 4.3) states
that the time averages of an observable of an isolated system at equilibrium can be
computed as phase averages over the constant-energy hyper-surface, i.e. over the
microcanonical ensemble.3 Clearly, whenever the ergodic hypothesis can be proved,
1One may wonder why Fermi was not very worried about the lacking rigor of his “proof”. Likely,

the reason is that, at that time, his main interest was the development of quantum physics.
2This paper, written as an internal report of the Los Alamos Laboratories, was completed in

May 1955, after Fermi’s death, but it was made public only in 1965 in the anthology of Fermi’s
writings Note e Memorie (Collected Papers).
3Notice that the microcanonical ensemble can be considered, at conceptual level, the basic one.

For instance, the canonical ensemble, describing equilibrium statistics of a small but macroscopic
subsystem, can be derived, under rather general conditions, from the microcanonical ensemble.
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Fig. 14.1 Normalized modes energies Ek(t)/Etot for k = 1 (solid line), k = 2 (dashed line)
and k = 3 (dotted line) obtained with N = 32, α = 3 and ε = 0.1. The initial condition is
E1(0) = Etot = 2.24 and Ek(0) = 0 for k = 2, . . . , 32. [Courtesy of G. Benettin]

it provides a dynamical justification to statistical ensembles. It should be stressed
that the ergodic hypothesis is not a mere technical requirement but, unlike ensem-
bles, has a strong physical motivation, as in experiments thermodynamic quantities
are measured through a long time average. For instance, the pressure of a gas is
measured by a manometer through a process that takes a time much longer than
the microscopic one (e.g. the mean collision time). Therefore, from a physical point
of view, time averages are the basic quantities, while the ensembles approach can be
considered a useful algorithmic tool for computing averages without the knowledge
of trajectories.

Back to the FPU system, for small values of ε, it is easy to compute the thermo-
dynamic quantities using the microcanonical (or canonical) ensemble. In particular,
in the integrable limit (ε = 0), it is easy to obtain the equipartition law:

〈Ek〉 =
Etot

N
, (14.2)

where 〈·〉 denotes the microcanonical (or canonical) ensemble average. In the pres-
ence of a small anharmonic perturbation (ε #= 0), we have small corrections to
(14.2), 〈Ek〉 = Etot/N + O(ε).

However in the integrable limit ε = 0, normal modes are decoupled and thus
cannot exchange energy, which remains constant for each mode, so that equipar-
tition (14.2) is just a formal result of the ensemble approach, and the system is
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measured by a manometer through a process that takes a time much longer than
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of view, time averages are the basic quantities, while the ensembles approach can be
considered a useful algorithmic tool for computing averages without the knowledge
of trajectories.
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where 〈·〉 denotes the microcanonical (or canonical) ensemble average. In the pres-
ence of a small anharmonic perturbation (ε #= 0), we have small corrections to
(14.2), 〈Ek〉 = Etot/N + O(ε).

However in the integrable limit ε = 0, normal modes are decoupled and thus
cannot exchange energy, which remains constant for each mode, so that equipar-
tition (14.2) is just a formal result of the ensemble approach, and the system is
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Fig. 14.2 Time averaged fraction of energy, in modes k = 1, 2, 3, 4 (bold lines, from top to below),
the dashed line shows the time average of the sum from k = 5 to N = 32. The parameters of the
system are the same as in Fig. 14.1. [Courtesy of G. Benettin]

not truly ergodic. This means that the statistical mechanics treatment can be well
founded only in the non-integrable case, and that the time average computed along
the trajectory over a long observation time T (→ ∞)

Ek
T =

1
T

∫ T

0
dt Ek(t) (14.3)

can coincide with the ensemble average 〈Ek〉 only when ε %= 0.
We can now appreciate the importance of FPU numerical experiment. What

does it happen to the evolution of the system (14.1) with ε %= 0 if energy is initially
concentrated only in a few normal modes, for instance E1(0) %= 0 and Ek(0) = 0 for
k > 1? Before FPU, from Poincaré’s result as well as Fermi’s generalization, the
general expectation would have been that the first normal mode should progressively
transfer energy to the other modes and, after a thermalization time,4 the energy of
each mode Ek(t) would fluctuate around the equilibrium value Etot/N . Indeed, as
Ulam wrote in the introduction to FPU, Fermi’s motivation [. . .] was to observe the
rates of mixing and “thermalization”.

FPU numerical experiment was performed, for small ε and system sizes N =
16, 32 and 64, with the energy initially concentrated in one or two normal modes.
4Basically the thermalization time is the characteristic relaxation (or mixing) time, see Sec. 4.4.
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can coincide with the ensemble average 〈Ek〉 only when ε %= 0.
We can now appreciate the importance of FPU numerical experiment. What

does it happen to the evolution of the system (14.1) with ε %= 0 if energy is initially
concentrated only in a few normal modes, for instance E1(0) %= 0 and Ek(0) = 0 for
k > 1? Before FPU, from Poincaré’s result as well as Fermi’s generalization, the
general expectation would have been that the first normal mode should progressively
transfer energy to the other modes and, after a thermalization time,4 the energy of
each mode Ek(t) would fluctuate around the equilibrium value Etot/N . Indeed, as
Ulam wrote in the introduction to FPU, Fermi’s motivation [. . .] was to observe the
rates of mixing and “thermalization”.

FPU numerical experiment was performed, for small ε and system sizes N =
16, 32 and 64, with the energy initially concentrated in one or two normal modes.
4Basically the thermalization time is the characteristic relaxation (or mixing) time, see Sec. 4.4.
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[ Cencini, M., Cecconi, F., & Vulpiani, A. (2009). Chaos. From simple Models to Complex Systems. World Scientific. ]
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even in the absence of a rigorous demonstration, so that the ergodic problem was
considered essentially solved.1

After the Second World War, Fermi had the possibility to reconsider the problem
of ergodicity thanks to the development of digital computers and their applications,
as discussed in the introduction of the FPU paper by Ulam.2 In 1952/3, Fermi,
Pasta and Ulam, pioneering modern computer simulations, studied the time evo-
lution of a system composed by N particles of mass m interacting with slightly
nonlinear springs, described by the Hamiltonian

H =
N∑

i=0

[
p2

i

2m
+

K

2
(
qi+1 − qi

)2 +
ε

α

(
qi+1 − qi

)α
]

, (14.1)

where K controls the strength of the springs and ε the degree of anharmonicity
with α = 3 or α = 4. They used fixed boundary conditions q0 = qN+1 = p0 =
pN+1 = 0; later studies confirmed FPU results with different boundary conditions
(e.g. periodic).

When ε = 0 the Hamiltonian (14.1) is integrable. Indeed, in such a limit, using
the normal modes:

ak =
√

2
N + 1

∑

n
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(

n k π

N + 1

)
(k = 1, . . . , N) ,

the system reduces to N non-interacting harmonic oscillators with frequencies

ωk = 2
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(
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2(N + 1)

)

and energies

Ek =
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2

[(
dak

dt

)2

+ ω2
ka2
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]
= const .

When ε "= 0, the Hamiltonian (14.1) is a typical example of perturbed integrable
system.

Before examining FPU numerical experiment, it is worth recalling some basic
issues of statistical mechanics and ergodic theory.

As previously discussed, the ergodic hypothesis is crucial for the statistical me-
chanics description of Hamiltonian systems. Ergodic hypothesis (Sec. 4.3) states
that the time averages of an observable of an isolated system at equilibrium can be
computed as phase averages over the constant-energy hyper-surface, i.e. over the
microcanonical ensemble.3 Clearly, whenever the ergodic hypothesis can be proved,
1One may wonder why Fermi was not very worried about the lacking rigor of his “proof”. Likely,

the reason is that, at that time, his main interest was the development of quantum physics.
2This paper, written as an internal report of the Los Alamos Laboratories, was completed in

May 1955, after Fermi’s death, but it was made public only in 1965 in the anthology of Fermi’s
writings Note e Memorie (Collected Papers).
3Notice that the microcanonical ensemble can be considered, at conceptual level, the basic one.

For instance, the canonical ensemble, describing equilibrium statistics of a small but macroscopic
subsystem, can be derived, under rather general conditions, from the microcanonical ensemble.
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Fig. 14.1 Normalized modes energies Ek(t)/Etot for k = 1 (solid line), k = 2 (dashed line)
and k = 3 (dotted line) obtained with N = 32, α = 3 and ε = 0.1. The initial condition is
E1(0) = Etot = 2.24 and Ek(0) = 0 for k = 2, . . . , 32. [Courtesy of G. Benettin]

it provides a dynamical justification to statistical ensembles. It should be stressed
that the ergodic hypothesis is not a mere technical requirement but, unlike ensem-
bles, has a strong physical motivation, as in experiments thermodynamic quantities
are measured through a long time average. For instance, the pressure of a gas is
measured by a manometer through a process that takes a time much longer than
the microscopic one (e.g. the mean collision time). Therefore, from a physical point
of view, time averages are the basic quantities, while the ensembles approach can be
considered a useful algorithmic tool for computing averages without the knowledge
of trajectories.

Back to the FPU system, for small values of ε, it is easy to compute the thermo-
dynamic quantities using the microcanonical (or canonical) ensemble. In particular,
in the integrable limit (ε = 0), it is easy to obtain the equipartition law:

〈Ek〉 =
Etot

N
, (14.2)

where 〈·〉 denotes the microcanonical (or canonical) ensemble average. In the pres-
ence of a small anharmonic perturbation (ε #= 0), we have small corrections to
(14.2), 〈Ek〉 = Etot/N + O(ε).

However in the integrable limit ε = 0, normal modes are decoupled and thus
cannot exchange energy, which remains constant for each mode, so that equipar-
tition (14.2) is just a formal result of the ensemble approach, and the system is
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the microscopic one (e.g. the mean collision time). Therefore, from a physical point
of view, time averages are the basic quantities, while the ensembles approach can be
considered a useful algorithmic tool for computing averages without the knowledge
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where 〈·〉 denotes the microcanonical (or canonical) ensemble average. In the pres-
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(14.2), 〈Ek〉 = Etot/N + O(ε).

However in the integrable limit ε = 0, normal modes are decoupled and thus
cannot exchange energy, which remains constant for each mode, so that equipar-
tition (14.2) is just a formal result of the ensemble approach, and the system is
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Fig. 14.2 Time averaged fraction of energy, in modes k = 1, 2, 3, 4 (bold lines, from top to below),
the dashed line shows the time average of the sum from k = 5 to N = 32. The parameters of the
system are the same as in Fig. 14.1. [Courtesy of G. Benettin]

not truly ergodic. This means that the statistical mechanics treatment can be well
founded only in the non-integrable case, and that the time average computed along
the trajectory over a long observation time T (→ ∞)

Ek
T =

1
T

∫ T

0
dt Ek(t) (14.3)

can coincide with the ensemble average 〈Ek〉 only when ε %= 0.
We can now appreciate the importance of FPU numerical experiment. What

does it happen to the evolution of the system (14.1) with ε %= 0 if energy is initially
concentrated only in a few normal modes, for instance E1(0) %= 0 and Ek(0) = 0 for
k > 1? Before FPU, from Poincaré’s result as well as Fermi’s generalization, the
general expectation would have been that the first normal mode should progressively
transfer energy to the other modes and, after a thermalization time,4 the energy of
each mode Ek(t) would fluctuate around the equilibrium value Etot/N . Indeed, as
Ulam wrote in the introduction to FPU, Fermi’s motivation [. . .] was to observe the
rates of mixing and “thermalization”.

FPU numerical experiment was performed, for small ε and system sizes N =
16, 32 and 64, with the energy initially concentrated in one or two normal modes.
4Basically the thermalization time is the characteristic relaxation (or mixing) time, see Sec. 4.4.
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does it happen to the evolution of the system (14.1) with ε %= 0 if energy is initially
concentrated only in a few normal modes, for instance E1(0) %= 0 and Ek(0) = 0 for
k > 1? Before FPU, from Poincaré’s result as well as Fermi’s generalization, the
general expectation would have been that the first normal mode should progressively
transfer energy to the other modes and, after a thermalization time,4 the energy of
each mode Ek(t) would fluctuate around the equilibrium value Etot/N . Indeed, as
Ulam wrote in the introduction to FPU, Fermi’s motivation [. . .] was to observe the
rates of mixing and “thermalization”.

FPU numerical experiment was performed, for small ε and system sizes N =
16, 32 and 64, with the energy initially concentrated in one or two normal modes.
4Basically the thermalization time is the characteristic relaxation (or mixing) time, see Sec. 4.4.
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even in the absence of a rigorous demonstration, so that the ergodic problem was
considered essentially solved.1

After the Second World War, Fermi had the possibility to reconsider the problem
of ergodicity thanks to the development of digital computers and their applications,
as discussed in the introduction of the FPU paper by Ulam.2 In 1952/3, Fermi,
Pasta and Ulam, pioneering modern computer simulations, studied the time evo-
lution of a system composed by N particles of mass m interacting with slightly
nonlinear springs, described by the Hamiltonian

H =
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+
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where K controls the strength of the springs and ε the degree of anharmonicity
with α = 3 or α = 4. They used fixed boundary conditions q0 = qN+1 = p0 =
pN+1 = 0; later studies confirmed FPU results with different boundary conditions
(e.g. periodic).

When ε = 0 the Hamiltonian (14.1) is integrable. Indeed, in such a limit, using
the normal modes:
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When ε "= 0, the Hamiltonian (14.1) is a typical example of perturbed integrable
system.

Before examining FPU numerical experiment, it is worth recalling some basic
issues of statistical mechanics and ergodic theory.

As previously discussed, the ergodic hypothesis is crucial for the statistical me-
chanics description of Hamiltonian systems. Ergodic hypothesis (Sec. 4.3) states
that the time averages of an observable of an isolated system at equilibrium can be
computed as phase averages over the constant-energy hyper-surface, i.e. over the
microcanonical ensemble.3 Clearly, whenever the ergodic hypothesis can be proved,
1One may wonder why Fermi was not very worried about the lacking rigor of his “proof”. Likely,

the reason is that, at that time, his main interest was the development of quantum physics.
2This paper, written as an internal report of the Los Alamos Laboratories, was completed in

May 1955, after Fermi’s death, but it was made public only in 1965 in the anthology of Fermi’s
writings Note e Memorie (Collected Papers).
3Notice that the microcanonical ensemble can be considered, at conceptual level, the basic one.

For instance, the canonical ensemble, describing equilibrium statistics of a small but macroscopic
subsystem, can be derived, under rather general conditions, from the microcanonical ensemble.
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- Effective Potential Method -

Kac models xxix

qualitative changes take place. Two of them are the mean-field dynamical transition
temperature Td and the static transition temperature Tc. In addition there is a third
temperature T ∗, with T ∗ > Td > Tc, first identified in (52). Above T ∗ the function
V is a convex function with a single minimum at p = 0. At T ∗ and inflection point
appears, and below that temperature the potential is non-convex. For temperature
between Td and T ∗, the function continues to have a single minimum for p = 0. At Td

a local minimum at a value p = qEA > 0 develops. In the interval [Tc, Td], the point
p = 0 is still the absolute minimum of V . The two minima structure below Td reflects
the partition of the equilibrium measure in disjoint metastable states. The value qEA is
the typical overlap between configurations belonging to the same metastable state. For
p = qEA σ is in the state specified by σ(0). Different metastable states have zero mutual
overlap. For p = 0 all but the metastable state specified by σ(0) contribute to the free-
energy and V (0) = 0. Correspondingly, the difference in free-energy between the two
minima equals the system’s configurational entropy Σ∞(T ) multiplied by temperature.
The configurational entropy vanishes linearly on approaching Tc, Σ∞(T ) ∼ T −Tc and
the two minima become degenerate. Below that temperature the mean field model is
in an ideal glassy state and the two minima remain degenerate.
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Fig. 0.8 The function V (p) at different temperatures. For comparison with the case

of Kac model we consider a Hamiltonian with two body and 4 body interactions with
φ(p) = 1/2(0.1 × p2 + p4). From top to bottom T = 0.703486 > T ∗, T = T ∗ = 0.633137,

T = Td = 0.57525, T = 0.558049, T = Tc = 0.541847. The function is convex for T > T ∗.

It has an inflection point with positive slope for Td < T < T ∗. In the interval Tc < T < Td,
V (q) has a local minimum for a temperature dependent value p = qEA. The difference

V (qEA)− V (0) is (T times) the bulk configurational entropy V (qEA)− V (0) = TΣ∞(T ).

We now generalize the previous construction to Kac models. As before, we use
the overlap with an equilibrium reference configuration σ(0) as an order parameter.
In this case however, we are interested in considering the free-energy as a functional
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1 The Potential Method

In this section we will review a method introduced by Franz and Parisi in [1] which intro-
duces a ’potential function’ defined as the free energy of a system at a given temperature
T constrained to have a fixed overlap with a reference configuration of equilibrium at
temperature T 0. The potential is nothing but the large deviation function of the overlap
between configuration of spins and hence the method establishes a correspondence among
local minima of the potential and metastable states. In the following sections, we will
also study the relaxation dynamics at temperature T of a system starting from an initial
configuration equilibrated at a different temperature T 0 and we will compare the results
obtained from the dynamic approach which those obtained from the potential method.

The basic assumption of the potential method is that if, in spin glass models, the
relevant order parameter is the overlap among configurations then we must be able to
construct a large deviation function for it. Let us then consider the free energy of a system
�, considered at temperature � and taken at a fixed overlap p̃ with another configuration
s of the same system, namely:

F (s,�, p̃) = lim

N!1
� 1

�N
ln

Z

d� e

��H[�] �(p̃�Q(s,�)) (1)

Now we want to assume that this free energy is self-averaging with respect to the canonical
Boltzmann-Gibbs probability distribution of a reference configuration s drawn at temper-
ature T 0, namely P (s) = exp (��0H[s])/Z(T 0

). If we also assume self-averaging respect to
the disorder contained in the hamiltonian, we have the potential function defined as:

V (p̃,�,�0
) = lim

N!1
� 1

�N

Z

ds
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) =

Z

ds e��

0H[s] (3)

The (. . . ) indicates the average respect to the disorder, Q(s,�) = 1
N

P

i

s
i

�
i

is the overlap
among the two spin configurations and � is taken in general different from �0. The poten-
tial can then be interpreted as the cost in free energy at temperature T to keep the system
(defined by the configuration �) at a fixed overlap p̃ = Q(s,�) with s.

The average respect to the disorder can be performed using the replica trick. The
starting point of this strategy is the formula:

NV = �T lim

n!0
lim

m!0

Z

ds exp (��0H[s])Z[�0
]

n�1
⇣Z[s, p̃]m � 1

m

⌘

(4)

where we used the notation:

Z[s, p̃] =

Z

d� e

��H[�] �(p̃�Q(s,�)) (5)

Now by defining the replicated partition function as:

Z(n,m)
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ds1e�
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)
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Z[s, p̃]m =

Z

ds

1
e
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e
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is it possible to show, by direct calculation, that the expression in (4) can be derived as:

NV = �T
@

@m
lnZ(n,m)
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m=0
n=0

(7)
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Potential Function 

[ Franz, S., & Parisi, G. (1995). Recipes for metastable states in spin glasses. Journal de Physique I, 5(11), 1401-1415 ]
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1 The Potential Method

In this section we will review a method introduced by Franz and Parisi in [1] which intro-
duces a ’potential function’ defined as the free energy of a system at a given temperature
T constrained to have a fixed overlap with a reference configuration of equilibrium at
temperature T 0. The potential is nothing but the large deviation function of the overlap
between configuration of spins and hence the method establishes a correspondence among
local minima of the potential and metastable states. In the following sections, we will
also study the relaxation dynamics at temperature T of a system starting from an initial
configuration equilibrated at a different temperature T 0 and we will compare the results
obtained from the dynamic approach which those obtained from the potential method.
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For the 4-spin case, we get instead:
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For the 4-spin case,
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Kac models xxix

qualitative changes take place. Two of them are the mean-field dynamical transition
temperature Td and the static transition temperature Tc. In addition there is a third
temperature T ∗, with T ∗ > Td > Tc, first identified in (52). Above T ∗ the function
V is a convex function with a single minimum at p = 0. At T ∗ and inflection point
appears, and below that temperature the potential is non-convex. For temperature
between Td and T ∗, the function continues to have a single minimum for p = 0. At Td

a local minimum at a value p = qEA > 0 develops. In the interval [Tc, Td], the point
p = 0 is still the absolute minimum of V . The two minima structure below Td reflects
the partition of the equilibrium measure in disjoint metastable states. The value qEA is
the typical overlap between configurations belonging to the same metastable state. For
p = qEA σ is in the state specified by σ(0). Different metastable states have zero mutual
overlap. For p = 0 all but the metastable state specified by σ(0) contribute to the free-
energy and V (0) = 0. Correspondingly, the difference in free-energy between the two
minima equals the system’s configurational entropy Σ∞(T ) multiplied by temperature.
The configurational entropy vanishes linearly on approaching Tc, Σ∞(T ) ∼ T −Tc and
the two minima become degenerate. Below that temperature the mean field model is
in an ideal glassy state and the two minima remain degenerate.
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Fig. 0.8 The function V (p) at different temperatures. For comparison with the case

of Kac model we consider a Hamiltonian with two body and 4 body interactions with
φ(p) = 1/2(0.1 × p2 + p4). From top to bottom T = 0.703486 > T ∗, T = T ∗ = 0.633137,

T = Td = 0.57525, T = 0.558049, T = Tc = 0.541847. The function is convex for T > T ∗.

It has an inflection point with positive slope for Td < T < T ∗. In the interval Tc < T < Td,
V (q) has a local minimum for a temperature dependent value p = qEA. The difference

V (qEA)− V (0) is (T times) the bulk configurational entropy V (qEA)− V (0) = TΣ∞(T ).

We now generalize the previous construction to Kac models. As before, we use
the overlap with an equilibrium reference configuration σ(0) as an order parameter.
In this case however, we are interested in considering the free-energy as a functional

[S. Franz and G. Semerjian. Analytical approaches to time and length scales in models of 
glasses in  Dynamical heterogeneities in glasses, colloids and granular materials. Oxford 
University Press, 2011.]
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1 The Potential Method

In this section we will review a method introduced by Franz and Parisi in [1] which intro-
duces a ’potential function’ defined as the free energy of a system at a given temperature
T constrained to have a fixed overlap with a reference configuration of equilibrium at
temperature T 0. The potential is nothing but the large deviation function of the overlap
between configuration of spins and hence the method establishes a correspondence among
local minima of the potential and metastable states. In the following sections, we will
also study the relaxation dynamics at temperature T of a system starting from an initial
configuration equilibrated at a different temperature T 0 and we will compare the results
obtained from the dynamic approach which those obtained from the potential method.

The basic assumption of the potential method is that if, in spin glass models, the
relevant order parameter is the overlap among configurations then we must be able to
construct a large deviation function for it. Let us then consider the free energy of a system
�, considered at temperature � and taken at a fixed overlap p̃ with another configuration
s of the same system, namely:

F (s,�, p̃) = lim

N!1
� 1

�N
ln

Z

d� e

��H[�] �(p̃�Q(s,�)) (1)

Now we want to assume that this free energy is self-averaging with respect to the canonical
Boltzmann-Gibbs probability distribution of a reference configuration s drawn at temper-
ature T 0, namely P (s) = exp (��0H[s])/Z(T 0

). If we also assume self-averaging respect to
the disorder contained in the hamiltonian, we have the potential function defined as:

V (p̃,�,�0
) = lim

N!1
� 1

�N

Z

ds
e

��

0H[s]

Z(�0
)

ln

Z

d� e

��H[�] �(p̃�Q(s,�)) (2)

with
Z(�0

) =

Z

ds e��

0H[s] (3)

The (. . . ) indicates the average respect to the disorder, Q(s,�) = 1
N

P

i

s
i

�
i

is the overlap
among the two spin configurations and � is taken in general different from �0. The poten-
tial can then be interpreted as the cost in free energy at temperature T to keep the system
(defined by the configuration �) at a fixed overlap p̃ = Q(s,�) with s.

The average respect to the disorder can be performed using the replica trick. The
starting point of this strategy is the formula:

NV = �T lim

n!0
lim

m!0

Z

ds exp (��0H[s])Z[�0
]

n�1
⇣Z[s, p̃]m � 1

m

⌘

(4)

where we used the notation:

Z[s, p̃] =

Z

d� e

��H[�] �(p̃�Q(s,�)) (5)

Now by defining the replicated partition function as:

Z(n,m)
=
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ds1e�
0H(s1)

Z(�0
)

n�1
Z[s, p̃]m =

Z

ds

1
e
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0H(s1)
Z(�0

)

n�1
e

m lnZ[s,p̃] (6)

is it possible to show, by direct calculation, that the expression in (4) can be derived as:

NV = �T
@

@m
lnZ(n,m)

�

�

�

m=0
n=0

(7)
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and similarly for the others similar terms for the 2-spin model. Let us observe that instead, under this
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V (p, T )� F (T ) (23)

3

Kac models xxix

qualitative changes take place. Two of them are the mean-field dynamical transition
temperature Td and the static transition temperature Tc. In addition there is a third
temperature T ∗, with T ∗ > Td > Tc, first identified in (52). Above T ∗ the function
V is a convex function with a single minimum at p = 0. At T ∗ and inflection point
appears, and below that temperature the potential is non-convex. For temperature
between Td and T ∗, the function continues to have a single minimum for p = 0. At Td

a local minimum at a value p = qEA > 0 develops. In the interval [Tc, Td], the point
p = 0 is still the absolute minimum of V . The two minima structure below Td reflects
the partition of the equilibrium measure in disjoint metastable states. The value qEA is
the typical overlap between configurations belonging to the same metastable state. For
p = qEA σ is in the state specified by σ(0). Different metastable states have zero mutual
overlap. For p = 0 all but the metastable state specified by σ(0) contribute to the free-
energy and V (0) = 0. Correspondingly, the difference in free-energy between the two
minima equals the system’s configurational entropy Σ∞(T ) multiplied by temperature.
The configurational entropy vanishes linearly on approaching Tc, Σ∞(T ) ∼ T −Tc and
the two minima become degenerate. Below that temperature the mean field model is
in an ideal glassy state and the two minima remain degenerate.
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Fig. 0.8 The function V (p) at different temperatures. For comparison with the case

of Kac model we consider a Hamiltonian with two body and 4 body interactions with
φ(p) = 1/2(0.1 × p2 + p4). From top to bottom T = 0.703486 > T ∗, T = T ∗ = 0.633137,

T = Td = 0.57525, T = 0.558049, T = Tc = 0.541847. The function is convex for T > T ∗.

It has an inflection point with positive slope for Td < T < T ∗. In the interval Tc < T < Td,
V (q) has a local minimum for a temperature dependent value p = qEA. The difference

V (qEA)− V (0) is (T times) the bulk configurational entropy V (qEA)− V (0) = TΣ∞(T ).

We now generalize the previous construction to Kac models. As before, we use
the overlap with an equilibrium reference configuration σ(0) as an order parameter.
In this case however, we are interested in considering the free-energy as a functional

[S. Franz and G. Semerjian. Analytical approaches to time and length scales in models of 
glasses in  Dynamical heterogeneities in glasses, colloids and granular materials. Oxford 
University Press, 2011.]
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1 The Potential Method

In this section we will review a method introduced by Franz and Parisi in [1] which intro-
duces a ’potential function’ defined as the free energy of a system at a given temperature
T constrained to have a fixed overlap with a reference configuration of equilibrium at
temperature T 0. The potential is nothing but the large deviation function of the overlap
between configuration of spins and hence the method establishes a correspondence among
local minima of the potential and metastable states. In the following sections, we will
also study the relaxation dynamics at temperature T of a system starting from an initial
configuration equilibrated at a different temperature T 0 and we will compare the results
obtained from the dynamic approach which those obtained from the potential method.

The basic assumption of the potential method is that if, in spin glass models, the
relevant order parameter is the overlap among configurations then we must be able to
construct a large deviation function for it. Let us then consider the free energy of a system
�, considered at temperature � and taken at a fixed overlap p̃ with another configuration
s of the same system, namely:

F (s,�, p̃) = lim

N!1
� 1

�N
ln

Z

d� e

��H[�] �(p̃�Q(s,�)) (1)

Now we want to assume that this free energy is self-averaging with respect to the canonical
Boltzmann-Gibbs probability distribution of a reference configuration s drawn at temper-
ature T 0, namely P (s) = exp (��0H[s])/Z(T 0

). If we also assume self-averaging respect to
the disorder contained in the hamiltonian, we have the potential function defined as:

V (p̃,�,�0
) = lim

N!1
� 1

�N

Z
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e
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Z(�0
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ln

Z

d� e
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Z(�0

) =

Z

ds e��

0H[s] (3)

The (. . . ) indicates the average respect to the disorder, Q(s,�) = 1
N

P

i

s
i

�
i

is the overlap
among the two spin configurations and � is taken in general different from �0. The poten-
tial can then be interpreted as the cost in free energy at temperature T to keep the system
(defined by the configuration �) at a fixed overlap p̃ = Q(s,�) with s.

The average respect to the disorder can be performed using the replica trick. The
starting point of this strategy is the formula:

NV = �T lim

n!0
lim

m!0

Z

ds exp (��0H[s])Z[�0
]

n�1
⇣Z[s, p̃]m � 1

m

⌘

(4)

where we used the notation:

Z[s, p̃] =

Z

d� e

��H[�] �(p̃�Q(s,�)) (5)

Now by defining the replicated partition function as:
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is it possible to show, by direct calculation, that the expression in (4) can be derived as:
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iŝ
j

A(s(t0))s
j

i
⌘

+ E
⇣D@ logµ(s(0))

@J
ij

A(s(t0))s
j

(t)
E⌘

(18)

For the 4-spin case, we get instead:
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For the 4-spin case,
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dŝ
i

(u)

2⇡

⌘

exp

n

X

i

Z

t

0
du

h

iŝ
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iŝ
k

s
l

+ s
j

s
k

iŝ
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Kac models xxix

qualitative changes take place. Two of them are the mean-field dynamical transition
temperature Td and the static transition temperature Tc. In addition there is a third
temperature T ∗, with T ∗ > Td > Tc, first identified in (52). Above T ∗ the function
V is a convex function with a single minimum at p = 0. At T ∗ and inflection point
appears, and below that temperature the potential is non-convex. For temperature
between Td and T ∗, the function continues to have a single minimum for p = 0. At Td

a local minimum at a value p = qEA > 0 develops. In the interval [Tc, Td], the point
p = 0 is still the absolute minimum of V . The two minima structure below Td reflects
the partition of the equilibrium measure in disjoint metastable states. The value qEA is
the typical overlap between configurations belonging to the same metastable state. For
p = qEA σ is in the state specified by σ(0). Different metastable states have zero mutual
overlap. For p = 0 all but the metastable state specified by σ(0) contribute to the free-
energy and V (0) = 0. Correspondingly, the difference in free-energy between the two
minima equals the system’s configurational entropy Σ∞(T ) multiplied by temperature.
The configurational entropy vanishes linearly on approaching Tc, Σ∞(T ) ∼ T −Tc and
the two minima become degenerate. Below that temperature the mean field model is
in an ideal glassy state and the two minima remain degenerate.
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Fig. 0.8 The function V (p) at different temperatures. For comparison with the case

of Kac model we consider a Hamiltonian with two body and 4 body interactions with
φ(p) = 1/2(0.1 × p2 + p4). From top to bottom T = 0.703486 > T ∗, T = T ∗ = 0.633137,

T = Td = 0.57525, T = 0.558049, T = Tc = 0.541847. The function is convex for T > T ∗.

It has an inflection point with positive slope for Td < T < T ∗. In the interval Tc < T < Td,
V (q) has a local minimum for a temperature dependent value p = qEA. The difference

V (qEA)− V (0) is (T times) the bulk configurational entropy V (qEA)− V (0) = TΣ∞(T ).

We now generalize the previous construction to Kac models. As before, we use
the overlap with an equilibrium reference configuration σ(0) as an order parameter.
In this case however, we are interested in considering the free-energy as a functional

[S. Franz and G. Semerjian. Analytical approaches to time and length scales in models of 
glasses in  Dynamical heterogeneities in glasses, colloids and granular materials. Oxford 
University Press, 2011.]
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1 The Potential Method

In this section we will review a method introduced by Franz and Parisi in [1] which intro-
duces a ’potential function’ defined as the free energy of a system at a given temperature
T constrained to have a fixed overlap with a reference configuration of equilibrium at
temperature T 0. The potential is nothing but the large deviation function of the overlap
between configuration of spins and hence the method establishes a correspondence among
local minima of the potential and metastable states. In the following sections, we will
also study the relaxation dynamics at temperature T of a system starting from an initial
configuration equilibrated at a different temperature T 0 and we will compare the results
obtained from the dynamic approach which those obtained from the potential method.

The basic assumption of the potential method is that if, in spin glass models, the
relevant order parameter is the overlap among configurations then we must be able to
construct a large deviation function for it. Let us then consider the free energy of a system
�, considered at temperature � and taken at a fixed overlap p̃ with another configuration
s of the same system, namely:

F (s,�, p̃) = lim

N!1
� 1

�N
ln

Z

d� e

��H[�] �(p̃�Q(s,�)) (1)

Now we want to assume that this free energy is self-averaging with respect to the canonical
Boltzmann-Gibbs probability distribution of a reference configuration s drawn at temper-
ature T 0, namely P (s) = exp (��0H[s])/Z(T 0

). If we also assume self-averaging respect to
the disorder contained in the hamiltonian, we have the potential function defined as:

V (p̃,�,�0
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ln
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d� e

��H[�] �(p̃�Q(s,�)) (2)

with
Z(�0

) =

Z

ds e��

0H[s] (3)

The (. . . ) indicates the average respect to the disorder, Q(s,�) = 1
N

P

i

s
i

�
i

is the overlap
among the two spin configurations and � is taken in general different from �0. The poten-
tial can then be interpreted as the cost in free energy at temperature T to keep the system
(defined by the configuration �) at a fixed overlap p̃ = Q(s,�) with s.

The average respect to the disorder can be performed using the replica trick. The
starting point of this strategy is the formula:

NV = �T lim

n!0
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m!0

Z

ds exp (��0H[s])Z[�0
]

n�1
⇣Z[s, p̃]m � 1

m
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(4)

where we used the notation:

Z[s, p̃] =

Z

d� e

��H[�] �(p̃�Q(s,�)) (5)

Now by defining the replicated partition function as:
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is it possible to show, by direct calculation, that the expression in (4) can be derived as:
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For the 4-spin case, we get instead:
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i

(t0)ihs
j

(t)ihs
k

(t)ihs
l

(t)i = 0

V
J

= H2 +H4 = �
X

i<j

J
ij

s
i

s
j

�
X

i<j<k<l

J
ijkl

s
i

s
j

s
k

s
l

(21)

T < T
d

T = T
d

T > T
d

T = T
K

(22)

V (p, T )� F (T ) (23)

3

Kac models xxix

qualitative changes take place. Two of them are the mean-field dynamical transition
temperature Td and the static transition temperature Tc. In addition there is a third
temperature T ∗, with T ∗ > Td > Tc, first identified in (52). Above T ∗ the function
V is a convex function with a single minimum at p = 0. At T ∗ and inflection point
appears, and below that temperature the potential is non-convex. For temperature
between Td and T ∗, the function continues to have a single minimum for p = 0. At Td

a local minimum at a value p = qEA > 0 develops. In the interval [Tc, Td], the point
p = 0 is still the absolute minimum of V . The two minima structure below Td reflects
the partition of the equilibrium measure in disjoint metastable states. The value qEA is
the typical overlap between configurations belonging to the same metastable state. For
p = qEA σ is in the state specified by σ(0). Different metastable states have zero mutual
overlap. For p = 0 all but the metastable state specified by σ(0) contribute to the free-
energy and V (0) = 0. Correspondingly, the difference in free-energy between the two
minima equals the system’s configurational entropy Σ∞(T ) multiplied by temperature.
The configurational entropy vanishes linearly on approaching Tc, Σ∞(T ) ∼ T −Tc and
the two minima become degenerate. Below that temperature the mean field model is
in an ideal glassy state and the two minima remain degenerate.
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Fig. 0.8 The function V (p) at different temperatures. For comparison with the case

of Kac model we consider a Hamiltonian with two body and 4 body interactions with
φ(p) = 1/2(0.1 × p2 + p4). From top to bottom T = 0.703486 > T ∗, T = T ∗ = 0.633137,

T = Td = 0.57525, T = 0.558049, T = Tc = 0.541847. The function is convex for T > T ∗.

It has an inflection point with positive slope for Td < T < T ∗. In the interval Tc < T < Td,
V (q) has a local minimum for a temperature dependent value p = qEA. The difference

V (qEA)− V (0) is (T times) the bulk configurational entropy V (qEA)− V (0) = TΣ∞(T ).

We now generalize the previous construction to Kac models. As before, we use
the overlap with an equilibrium reference configuration σ(0) as an order parameter.
In this case however, we are interested in considering the free-energy as a functional

[S. Franz and G. Semerjian. Analytical approaches to time and length scales in models of 
glasses in  Dynamical heterogeneities in glasses, colloids and granular materials. Oxford 
University Press, 2011.]

Potential Method

FPU problem

2+4 p-spin 
spherical Model

Potential Method
Disorder and 

replicas

Looking for minima

Hamiltonian 
dynamics

Generic equation 
of dynamics

Correlation and 
Response

Lagrangian 
multiplier

3=p-spin 
spherical Model

Potential Method

Correlation and 
Response

Future 
developments

3=p-spin 
spherical Model

Potential Method

Correlation and 
Response

Future 
developments

Potential Method

FPU problem

2+4 p-spin 
spherical Model

Potential Method
Disorder and 

replicas

Looking for minima

Hamiltonian 
dynamics

Generic equation 
of dynamics

Correlation and 
Response

Lagrangian 
multiplier

Friday, September 5, 14



1 The Potential Method

In this section we will review a method introduced by Franz and Parisi in [1] which intro-
duces a ’potential function’ defined as the free energy of a system at a given temperature
T constrained to have a fixed overlap with a reference configuration of equilibrium at
temperature T 0. The potential is nothing but the large deviation function of the overlap
between configuration of spins and hence the method establishes a correspondence among
local minima of the potential and metastable states. In the following sections, we will
also study the relaxation dynamics at temperature T of a system starting from an initial
configuration equilibrated at a different temperature T 0 and we will compare the results
obtained from the dynamic approach which those obtained from the potential method.

The basic assumption of the potential method is that if, in spin glass models, the
relevant order parameter is the overlap among configurations then we must be able to
construct a large deviation function for it. Let us then consider the free energy of a system
�, considered at temperature � and taken at a fixed overlap p̃ with another configuration
s of the same system, namely:

F (s,�, p̃) = lim

N!1
� 1

�N
ln

Z

d� e

��H[�] �(p̃�Q(s,�)) (1)

Now we want to assume that this free energy is self-averaging with respect to the canonical
Boltzmann-Gibbs probability distribution of a reference configuration s drawn at temper-
ature T 0, namely P (s) = exp (��0H[s])/Z(T 0

). If we also assume self-averaging respect to
the disorder contained in the hamiltonian, we have the potential function defined as:
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Z

ds e��

0H[s] (3)

The (. . . ) indicates the average respect to the disorder, Q(s,�) = 1
N

P

i

s
i

�
i

is the overlap
among the two spin configurations and � is taken in general different from �0. The poten-
tial can then be interpreted as the cost in free energy at temperature T to keep the system
(defined by the configuration �) at a fixed overlap p̃ = Q(s,�) with s.

The average respect to the disorder can be performed using the replica trick. The
starting point of this strategy is the formula:
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n�1
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where we used the notation:

Z[s, p̃] =

Z

d� e

��H[�] �(p̃�Q(s,�)) (5)

Now by defining the replicated partition function as:
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is it possible to show, by direct calculation, that the expression in (4) can be derived as:
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i

(t0)s
j

(t)s
k

(t)s
l

(t)i = 1

N4

X

i,j,k,l

hs0
i

i
eq

hs0
j

i
eq

hs0
k

i
eq

hs0
l

i
eq

hiŝ
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i

(t0)s
j

(t)s
k

(t)s
l

(t)i = 1

N4

X

i,j,k,l

hs0
i

i
eq

hs0
j

i
eq

hs0
k

i
eq

hs0
l

i
eq

hiŝ
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dŝ
i

(u)

2⇡

⌘

exp

n

X

i

Z

t

0
du

h

iŝ
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i

(t0)

1

N4

X

i,j,k,l

hs0
i

s0
j

s0
k

s0
l

i
eq

hs
i

(t0)s
j

(t)s
k

(t)s
l

(t)i = 1

N4

X

i,j,k,l

hs0
i

i
eq

hs0
j

i
eq

hs0
k

i
eq

hs0
l

i
eq

hs
i

(t0)ihs
j

(t)ihs
k

(t)ihs
l

(t)i

and similarly for the others similar terms for the 2-spin model. Let us observe that instead, under this

approximation, the quantities

1

N4

X

i,j,k,l

hs0
i

s0
j

s0
k

s0
l

i
eq

hiŝ
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dŝ
i

(u)

2⇡

⌘

exp

n

X

i

Z

t

0
du

h

iŝ
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and similarly for the others similar terms for the 2-spin model. Let us observe that instead, under this
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Kauzmann temperature
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and similarly for the others similar terms for the 2-spin model. Let us observe that instead, under this
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i

(t0)s
j

(t)s
k

(t)s
l

(t)i = 1

N4

X

i,j,k,l

hs0
i

i
eq

hs0
j

i
eq

hs0
k

i
eq

hs0
l

i
eq

hiŝ
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Kac models xxix

qualitative changes take place. Two of them are the mean-field dynamical transition
temperature Td and the static transition temperature Tc. In addition there is a third
temperature T ∗, with T ∗ > Td > Tc, first identified in (52). Above T ∗ the function
V is a convex function with a single minimum at p = 0. At T ∗ and inflection point
appears, and below that temperature the potential is non-convex. For temperature
between Td and T ∗, the function continues to have a single minimum for p = 0. At Td

a local minimum at a value p = qEA > 0 develops. In the interval [Tc, Td], the point
p = 0 is still the absolute minimum of V . The two minima structure below Td reflects
the partition of the equilibrium measure in disjoint metastable states. The value qEA is
the typical overlap between configurations belonging to the same metastable state. For
p = qEA σ is in the state specified by σ(0). Different metastable states have zero mutual
overlap. For p = 0 all but the metastable state specified by σ(0) contribute to the free-
energy and V (0) = 0. Correspondingly, the difference in free-energy between the two
minima equals the system’s configurational entropy Σ∞(T ) multiplied by temperature.
The configurational entropy vanishes linearly on approaching Tc, Σ∞(T ) ∼ T −Tc and
the two minima become degenerate. Below that temperature the mean field model is
in an ideal glassy state and the two minima remain degenerate.
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Fig. 0.8 The function V (p) at different temperatures. For comparison with the case

of Kac model we consider a Hamiltonian with two body and 4 body interactions with
φ(p) = 1/2(0.1 × p2 + p4). From top to bottom T = 0.703486 > T ∗, T = T ∗ = 0.633137,

T = Td = 0.57525, T = 0.558049, T = Tc = 0.541847. The function is convex for T > T ∗.

It has an inflection point with positive slope for Td < T < T ∗. In the interval Tc < T < Td,
V (q) has a local minimum for a temperature dependent value p = qEA. The difference

V (qEA)− V (0) is (T times) the bulk configurational entropy V (qEA)− V (0) = TΣ∞(T ).

We now generalize the previous construction to Kac models. As before, we use
the overlap with an equilibrium reference configuration σ(0) as an order parameter.
In this case however, we are interested in considering the free-energy as a functional

[S. Franz and G. Semerjian. Analytical approaches to time and length scales in models of 
glasses in  Dynamical heterogeneities in glasses, colloids and granular materials. Oxford 
University Press, 2011.]
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1 The Potential Method

In this section we will review a method introduced by Franz and Parisi in [1] which intro-
duces a ’potential function’ defined as the free energy of a system at a given temperature
T constrained to have a fixed overlap with a reference configuration of equilibrium at
temperature T 0. The potential is nothing but the large deviation function of the overlap
between configuration of spins and hence the method establishes a correspondence among
local minima of the potential and metastable states. In the following sections, we will
also study the relaxation dynamics at temperature T of a system starting from an initial
configuration equilibrated at a different temperature T 0 and we will compare the results
obtained from the dynamic approach which those obtained from the potential method.

The basic assumption of the potential method is that if, in spin glass models, the
relevant order parameter is the overlap among configurations then we must be able to
construct a large deviation function for it. Let us then consider the free energy of a system
�, considered at temperature � and taken at a fixed overlap p̃ with another configuration
s of the same system, namely:

F (s,�, p̃) = lim

N!1
� 1

�N
ln

Z

d� e

��H[�] �(p̃�Q(s,�)) (1)

Now we want to assume that this free energy is self-averaging with respect to the canonical
Boltzmann-Gibbs probability distribution of a reference configuration s drawn at temper-
ature T 0, namely P (s) = exp (��0H[s])/Z(T 0

). If we also assume self-averaging respect to
the disorder contained in the hamiltonian, we have the potential function defined as:

V (p̃,�,�0
) = lim

N!1
� 1

�N

Z

ds
e

��

0H[s]

Z(�0
)

ln

Z

d� e

��H[�] �(p̃�Q(s,�)) (2)

with
Z(�0

) =

Z

ds e��

0H[s] (3)

The (. . . ) indicates the average respect to the disorder, Q(s,�) = 1
N

P

i

s
i

�
i

is the overlap
among the two spin configurations and � is taken in general different from �0. The poten-
tial can then be interpreted as the cost in free energy at temperature T to keep the system
(defined by the configuration �) at a fixed overlap p̃ = Q(s,�) with s.

The average respect to the disorder can be performed using the replica trick. The
starting point of this strategy is the formula:

NV = �T lim

n!0
lim

m!0

Z

ds exp (��0H[s])Z[�0
]

n�1
⇣Z[s, p̃]m � 1

m

⌘

(4)

where we used the notation:

Z[s, p̃] =

Z

d� e

��H[�] �(p̃�Q(s,�)) (5)

Now by defining the replicated partition function as:

Z(n,m)
=

Z

ds1e�
0H(s1)

Z(�0
)

n�1
Z[s, p̃]m =

Z

ds

1
e

�

0H(s1)
Z(�0

)

n�1
e

m lnZ[s,p̃] (6)

is it possible to show, by direct calculation, that the expression in (4) can be derived as:

NV = �T
@

@m
lnZ(n,m)

�

�

�

m=0
n=0

(7)
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For the 4-spin case, we get instead:
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iŝ
l

)A(s(t0))s
j

s
k

s
l

i
⌘

+ E
⇣D@ logµ(s(0))

@J
ijkl

A(s(t0)) s
j

s
k

s
l

E⌘

(19)

E( @

@J
ij

hA(s(t0)) s
j

i) =
Z

t

0
duE

⇣

hiŝ
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For the 4-spin case,
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and similarly for the others similar terms for the 2-spin model. Let us observe that instead, under this

approximation, the quantities

1

N4

X

i,j,k,l

hs0
i

s0
j

s0
k

s0
l

i
eq

hiŝ
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iŝ
i

(u)
⇣

�s̈
i

(u)�µ
x

(u)s
i

(u)+
X

j

J
ij

s
j

+

X

j<k<l

J
ijkl

s
j

s
k

s
l

+h
i

(u)
⌘io

µ(s(0))

h. . .i

E( @

@J
ij

hA(s(t0)) s
j

i) =
Z

t

0
duE

⇣

hiŝ
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For the 4-spin case, we get instead:
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For the 4-spin case, we get instead:
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i

(u)s
j

A(s(t0))s
j

(t)i
⌘

+

Z

t

0
duE

⇣

hs
i

iŝ
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iŝ
k

s
l

+ s
j

s
k

iŝ
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V (p, T )� F (T ) (23)
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qualitative changes take place. Two of them are the mean-field dynamical transition
temperature Td and the static transition temperature Tc. In addition there is a third
temperature T ∗, with T ∗ > Td > Tc, first identified in (52). Above T ∗ the function
V is a convex function with a single minimum at p = 0. At T ∗ and inflection point
appears, and below that temperature the potential is non-convex. For temperature
between Td and T ∗, the function continues to have a single minimum for p = 0. At Td

a local minimum at a value p = qEA > 0 develops. In the interval [Tc, Td], the point
p = 0 is still the absolute minimum of V . The two minima structure below Td reflects
the partition of the equilibrium measure in disjoint metastable states. The value qEA is
the typical overlap between configurations belonging to the same metastable state. For
p = qEA σ is in the state specified by σ(0). Different metastable states have zero mutual
overlap. For p = 0 all but the metastable state specified by σ(0) contribute to the free-
energy and V (0) = 0. Correspondingly, the difference in free-energy between the two
minima equals the system’s configurational entropy Σ∞(T ) multiplied by temperature.
The configurational entropy vanishes linearly on approaching Tc, Σ∞(T ) ∼ T −Tc and
the two minima become degenerate. Below that temperature the mean field model is
in an ideal glassy state and the two minima remain degenerate.
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Fig. 0.8 The function V (p) at different temperatures. For comparison with the case

of Kac model we consider a Hamiltonian with two body and 4 body interactions with
φ(p) = 1/2(0.1 × p2 + p4). From top to bottom T = 0.703486 > T ∗, T = T ∗ = 0.633137,

T = Td = 0.57525, T = 0.558049, T = Tc = 0.541847. The function is convex for T > T ∗.

It has an inflection point with positive slope for Td < T < T ∗. In the interval Tc < T < Td,
V (q) has a local minimum for a temperature dependent value p = qEA. The difference

V (qEA)− V (0) is (T times) the bulk configurational entropy V (qEA)− V (0) = TΣ∞(T ).

We now generalize the previous construction to Kac models. As before, we use
the overlap with an equilibrium reference configuration σ(0) as an order parameter.
In this case however, we are interested in considering the free-energy as a functional

[S. Franz and G. Semerjian. Analytical approaches to time and length scales in models of 
glasses in  Dynamical heterogeneities in glasses, colloids and granular materials. Oxford 
University Press, 2011.]
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1 The Potential Method

In this section we will review a method introduced by Franz and Parisi in [1] which intro-
duces a ’potential function’ defined as the free energy of a system at a given temperature
T constrained to have a fixed overlap with a reference configuration of equilibrium at
temperature T 0. The potential is nothing but the large deviation function of the overlap
between configuration of spins and hence the method establishes a correspondence among
local minima of the potential and metastable states. In the following sections, we will
also study the relaxation dynamics at temperature T of a system starting from an initial
configuration equilibrated at a different temperature T 0 and we will compare the results
obtained from the dynamic approach which those obtained from the potential method.

The basic assumption of the potential method is that if, in spin glass models, the
relevant order parameter is the overlap among configurations then we must be able to
construct a large deviation function for it. Let us then consider the free energy of a system
�, considered at temperature � and taken at a fixed overlap p̃ with another configuration
s of the same system, namely:

F (s,�, p̃) = lim

N!1
� 1

�N
ln

Z

d� e

��H[�] �(p̃�Q(s,�)) (1)

Now we want to assume that this free energy is self-averaging with respect to the canonical
Boltzmann-Gibbs probability distribution of a reference configuration s drawn at temper-
ature T 0, namely P (s) = exp (��0H[s])/Z(T 0

). If we also assume self-averaging respect to
the disorder contained in the hamiltonian, we have the potential function defined as:

V (p̃,�,�0
) = lim

N!1
� 1

�N

Z

ds
e

��

0H[s]

Z(�0
)

ln

Z

d� e

��H[�] �(p̃�Q(s,�)) (2)

with
Z(�0

) =

Z

ds e��

0H[s] (3)

The (. . . ) indicates the average respect to the disorder, Q(s,�) = 1
N

P

i

s
i

�
i

is the overlap
among the two spin configurations and � is taken in general different from �0. The poten-
tial can then be interpreted as the cost in free energy at temperature T to keep the system
(defined by the configuration �) at a fixed overlap p̃ = Q(s,�) with s.

The average respect to the disorder can be performed using the replica trick. The
starting point of this strategy is the formula:

NV = �T lim

n!0
lim

m!0

Z

ds exp (��0H[s])Z[�0
]

n�1
⇣Z[s, p̃]m � 1

m

⌘

(4)

where we used the notation:

Z[s, p̃] =

Z

d� e

��H[�] �(p̃�Q(s,�)) (5)

Now by defining the replicated partition function as:

Z(n,m)
=

Z

ds1e�
0H(s1)

Z(�0
)

n�1
Z[s, p̃]m =

Z

ds

1
e

�

0H(s1)
Z(�0

)

n�1
e

m lnZ[s,p̃] (6)

is it possible to show, by direct calculation, that the expression in (4) can be derived as:

NV = �T
@

@m
lnZ(n,m)

�

�

�

m=0
n=0

(7)
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For the 4-spin case, we get instead:
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For the 4-spin case,
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iŝ
j

A(s(t0))s
j

i
⌘

+ E
⇣D@ logµ(s(0))

@J
ij

A(s(t0))s
j

(t)
E⌘

(18)

For the 4-spin case, we get instead:

E( @

@J
ijkl

hA(s(t0)) s
j

s
k

s
l

i) =
Z

t

0
duE

⇣

hiŝ
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iŝ
j

A(s(t0))s
j

i
⌘

+ E
⇣D@ logµ(s(0))

@J
ij

A(s(t0))s
j

(t)
E⌘

(20)

For the 4-spin case,

A(s(t0)) = s
i

(t0)

A(s(t0)) = i ŝ
i

(t0)

1

N4

X

i,j,k,l

hs0
i

s0
j

s0
k

s0
l

i
eq

hs
i

(t0)s
j

(t)s
k

(t)s
l

(t)i = 1

N4

X

i,j,k,l

hs0
i

i
eq

hs0
j

i
eq

hs0
k

i
eq

hs0
l

i
eq

hs
i

(t0)ihs
j

(t)ihs
k

(t)ihs
l

(t)i

and similarly for the others similar terms for the 2-spin model. Let us observe that instead, under this

approximation, the quantities

1

N4

X

i,j,k,l

hs0
i

s0
j

s0
k

s0
l

i
eq

hiŝ
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iŝ
j

A(s(t0))s
j

i
⌘

+ E
⇣D@ logµ(s(0))

@J
ij

A(s(t0))s
j

(t)
E⌘

(20)

For the 4-spin case,

A(s(t0)) = s
i

(t0)

A(s(t0)) = i ŝ
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i

(u)s
j

A(s(t0))s
j

(t)i
⌘

+

Z

t

0
duE

⇣

hs
i

iŝ
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iŝ
j

A(s(t0))s
j

i
⌘

+ E
⇣D@ logµ(s(0))

@J
ij

A(s(t0))s
j

(t)
E⌘

(20)

For the 4-spin case,

A(s(t0)) = s
i

(t0)

A(s(t0)) = i ŝ
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qualitative changes take place. Two of them are the mean-field dynamical transition
temperature Td and the static transition temperature Tc. In addition there is a third
temperature T ∗, with T ∗ > Td > Tc, first identified in (52). Above T ∗ the function
V is a convex function with a single minimum at p = 0. At T ∗ and inflection point
appears, and below that temperature the potential is non-convex. For temperature
between Td and T ∗, the function continues to have a single minimum for p = 0. At Td

a local minimum at a value p = qEA > 0 develops. In the interval [Tc, Td], the point
p = 0 is still the absolute minimum of V . The two minima structure below Td reflects
the partition of the equilibrium measure in disjoint metastable states. The value qEA is
the typical overlap between configurations belonging to the same metastable state. For
p = qEA σ is in the state specified by σ(0). Different metastable states have zero mutual
overlap. For p = 0 all but the metastable state specified by σ(0) contribute to the free-
energy and V (0) = 0. Correspondingly, the difference in free-energy between the two
minima equals the system’s configurational entropy Σ∞(T ) multiplied by temperature.
The configurational entropy vanishes linearly on approaching Tc, Σ∞(T ) ∼ T −Tc and
the two minima become degenerate. Below that temperature the mean field model is
in an ideal glassy state and the two minima remain degenerate.
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Fig. 0.8 The function V (p) at different temperatures. For comparison with the case

of Kac model we consider a Hamiltonian with two body and 4 body interactions with
φ(p) = 1/2(0.1 × p2 + p4). From top to bottom T = 0.703486 > T ∗, T = T ∗ = 0.633137,

T = Td = 0.57525, T = 0.558049, T = Tc = 0.541847. The function is convex for T > T ∗.

It has an inflection point with positive slope for Td < T < T ∗. In the interval Tc < T < Td,
V (q) has a local minimum for a temperature dependent value p = qEA. The difference

V (qEA)− V (0) is (T times) the bulk configurational entropy V (qEA)− V (0) = TΣ∞(T ).

We now generalize the previous construction to Kac models. As before, we use
the overlap with an equilibrium reference configuration σ(0) as an order parameter.
In this case however, we are interested in considering the free-energy as a functional

[S. Franz and G. Semerjian. Analytical approaches to time and length scales in models of 
glasses in  Dynamical heterogeneities in glasses, colloids and granular materials. Oxford 
University Press, 2011.]

Potential Method

FPU problem

2+4 p-spin 
spherical Model

Potential Method
Disorder and 

replicas

Looking for minima

Hamiltonian 
dynamics

Generic equation 
of dynamics

Correlation and 
Response

Lagrangian 
multiplier

3=p-spin 
spherical Model

Potential Method

Correlation and 
Response

Future 
developments

3=p-spin 
spherical Model

Potential Method

Correlation and 
Response

Future 
developments

Potential Method

FPU problem

2+4 p-spin 
spherical Model

Potential Method
Disorder and 

replicas

Looking for minima

Hamiltonian 
dynamics

Generic equation 
of dynamics

Correlation and 
Response

Lagrangian 
multiplier

Friday, September 5, 14



1 The Potential Method

In this section we will review a method introduced by Franz and Parisi in [1] which intro-
duces a ’potential function’ defined as the free energy of a system at a given temperature
T constrained to have a fixed overlap with a reference configuration of equilibrium at
temperature T 0. The potential is nothing but the large deviation function of the overlap
between configuration of spins and hence the method establishes a correspondence among
local minima of the potential and metastable states. In the following sections, we will
also study the relaxation dynamics at temperature T of a system starting from an initial
configuration equilibrated at a different temperature T 0 and we will compare the results
obtained from the dynamic approach which those obtained from the potential method.

The basic assumption of the potential method is that if, in spin glass models, the
relevant order parameter is the overlap among configurations then we must be able to
construct a large deviation function for it. Let us then consider the free energy of a system
�, considered at temperature � and taken at a fixed overlap p̃ with another configuration
s of the same system, namely:

F (s,�, p̃) = lim

N!1
� 1

�N
ln

Z

d� e

��H[�] �(p̃�Q(s,�)) (1)

Now we want to assume that this free energy is self-averaging with respect to the canonical
Boltzmann-Gibbs probability distribution of a reference configuration s drawn at temper-
ature T 0, namely P (s) = exp (��0H[s])/Z(T 0

). If we also assume self-averaging respect to
the disorder contained in the hamiltonian, we have the potential function defined as:

V (p̃,�,�0
) = lim

N!1
� 1

�N

Z

ds
e

��

0H[s]

Z(�0
)

ln

Z

d� e

��H[�] �(p̃�Q(s,�)) (2)

with
Z(�0

) =

Z

ds e��

0H[s] (3)

The (. . . ) indicates the average respect to the disorder, Q(s,�) = 1
N

P

i

s
i

�
i

is the overlap
among the two spin configurations and � is taken in general different from �0. The poten-
tial can then be interpreted as the cost in free energy at temperature T to keep the system
(defined by the configuration �) at a fixed overlap p̃ = Q(s,�) with s.

The average respect to the disorder can be performed using the replica trick. The
starting point of this strategy is the formula:

NV = �T lim

n!0
lim

m!0

Z

ds exp (��0H[s])Z[�0
]

n�1
⇣Z[s, p̃]m � 1

m

⌘

(4)

where we used the notation:

Z[s, p̃] =

Z

d� e

��H[�] �(p̃�Q(s,�)) (5)

Now by defining the replicated partition function as:

Z(n,m)
=

Z

ds1e�
0H(s1)

Z(�0
)

n�1
Z[s, p̃]m =

Z

ds

1
e

�

0H(s1)
Z(�0

)

n�1
e

m lnZ[s,p̃] (6)

is it possible to show, by direct calculation, that the expression in (4) can be derived as:

NV = �T
@

@m
lnZ(n,m)

�

�

�

m=0
n=0

(7)
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qualitative changes take place. Two of them are the mean-field dynamical transition
temperature Td and the static transition temperature Tc. In addition there is a third
temperature T ∗, with T ∗ > Td > Tc, first identified in (52). Above T ∗ the function
V is a convex function with a single minimum at p = 0. At T ∗ and inflection point
appears, and below that temperature the potential is non-convex. For temperature
between Td and T ∗, the function continues to have a single minimum for p = 0. At Td

a local minimum at a value p = qEA > 0 develops. In the interval [Tc, Td], the point
p = 0 is still the absolute minimum of V . The two minima structure below Td reflects
the partition of the equilibrium measure in disjoint metastable states. The value qEA is
the typical overlap between configurations belonging to the same metastable state. For
p = qEA σ is in the state specified by σ(0). Different metastable states have zero mutual
overlap. For p = 0 all but the metastable state specified by σ(0) contribute to the free-
energy and V (0) = 0. Correspondingly, the difference in free-energy between the two
minima equals the system’s configurational entropy Σ∞(T ) multiplied by temperature.
The configurational entropy vanishes linearly on approaching Tc, Σ∞(T ) ∼ T −Tc and
the two minima become degenerate. Below that temperature the mean field model is
in an ideal glassy state and the two minima remain degenerate.
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Fig. 0.8 The function V (p) at different temperatures. For comparison with the case

of Kac model we consider a Hamiltonian with two body and 4 body interactions with
φ(p) = 1/2(0.1 × p2 + p4). From top to bottom T = 0.703486 > T ∗, T = T ∗ = 0.633137,

T = Td = 0.57525, T = 0.558049, T = Tc = 0.541847. The function is convex for T > T ∗.

It has an inflection point with positive slope for Td < T < T ∗. In the interval Tc < T < Td,
V (q) has a local minimum for a temperature dependent value p = qEA. The difference

V (qEA)− V (0) is (T times) the bulk configurational entropy V (qEA)− V (0) = TΣ∞(T ).

We now generalize the previous construction to Kac models. As before, we use
the overlap with an equilibrium reference configuration σ(0) as an order parameter.
In this case however, we are interested in considering the free-energy as a functional

[S. Franz and G. Semerjian. Analytical approaches to time and length scales in models of 
glasses in  Dynamical heterogeneities in glasses, colloids and granular materials. Oxford 
University Press, 2011.]
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For the 4-spin case, we get instead:
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For the 4-spin case,
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i

(t0)

1

N4

X

i,j,k,l

hs0
i

s0
j

s0
k

s0
l

i
eq

hs
i

(t0)s
j

(t)s
k

(t)s
l

(t)i = 1

N4

X

i,j,k,l

hs0
i

i
eq

hs0
j

i
eq

hs0
k

i
eq

hs0
l

i
eq

hs
i

(t0)ihs
j

(t)ihs
k

(t)ihs
l

(t)i

and similarly for the others similar terms for the 2-spin model. Let us observe that instead, under this
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i

(t0)ihs
j

(t)ihs
k

(t)ihs
l

(t)i = 0

V
J

= H2 +H4 = �
X

i<j

J
ij

s
i

s
j

�
X

i<j<k<l

J
ijkl

s
i

s
j

s
k

s
l

(21)

T < T
d

T = T
d

T > T
d

(22)

3

P [s]µ(s(0)) =

Z 1

�1

⇣

t

Y

u=0

dŝ
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dŝ
i

(u)

2⇡

⌘

exp

n

X

i

Z

t

0
du

h

iŝ
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dŝ
i

(u)

2⇡

⌘

exp

n

X

i

Z

t

0
du

h

iŝ
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i

(t0)s
j

(t)s
k

(t)s
l

(t)i = 1

N4

X

i,j,k,l

hs0
i

i
eq

hs0
j

i
eq

hs0
k

i
eq

hs0
l

i
eq

hiŝ
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1 The Potential Method

In this section we will review a method introduced by Franz and Parisi in [1] which intro-
duces a ’potential function’ defined as the free energy of a system at a given temperature
T constrained to have a fixed overlap with a reference configuration of equilibrium at
temperature T 0. The potential is nothing but the large deviation function of the overlap
between configuration of spins and hence the method establishes a correspondence among
local minima of the potential and metastable states. In the following sections, we will
also study the relaxation dynamics at temperature T of a system starting from an initial
configuration equilibrated at a different temperature T 0 and we will compare the results
obtained from the dynamic approach which those obtained from the potential method.

The basic assumption of the potential method is that if, in spin glass models, the
relevant order parameter is the overlap among configurations then we must be able to
construct a large deviation function for it. Let us then consider the free energy of a system
�, considered at temperature � and taken at a fixed overlap p̃ with another configuration
s of the same system, namely:

F (s,�, p̃) = lim

N!1
� 1

�N
ln

Z

d� e

��H[�] �(p̃�Q(s,�)) (1)

Now we want to assume that this free energy is self-averaging with respect to the canonical
Boltzmann-Gibbs probability distribution of a reference configuration s drawn at temper-
ature T 0, namely P (s) = exp (��0H[s])/Z(T 0

). If we also assume self-averaging respect to
the disorder contained in the hamiltonian, we have the potential function defined as:

V (p̃,�,�0
) = lim

N!1
� 1

�N

Z

ds
e

��

0H[s]

Z(�0
)

ln

Z

d� e

��H[�] �(p̃�Q(s,�)) (2)

with
Z(�0

) =

Z

ds e��

0H[s] (3)

The (. . . ) indicates the average respect to the disorder, Q(s,�) = 1
N

P

i

s
i

�
i

is the overlap
among the two spin configurations and � is taken in general different from �0. The poten-
tial can then be interpreted as the cost in free energy at temperature T to keep the system
(defined by the configuration �) at a fixed overlap p̃ = Q(s,�) with s.

The average respect to the disorder can be performed using the replica trick. The
starting point of this strategy is the formula:

NV = �T lim

n!0
lim

m!0

Z

ds exp (��0H[s])Z[�0
]

n�1
⇣Z[s, p̃]m � 1

m

⌘

(4)

where we used the notation:

Z[s, p̃] =

Z

d� e

��H[�] �(p̃�Q(s,�)) (5)

Now by defining the replicated partition function as:

Z(n,m)
=

Z

ds1e�
0H(s1)

Z(�0
)

n�1
Z[s, p̃]m =

Z

ds

1
e

�

0H(s1)
Z(�0

)

n�1
e

m lnZ[s,p̃] (6)

is it possible to show, by direct calculation, that the expression in (4) can be derived as:

NV = �T
@

@m
lnZ(n,m)

�

�

�

m=0
n=0

(7)
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→

→

t ∞→

Figure 4.1 Behaviour of the correlation function at low temperature, as a function
of the time difference τ = t − tw. Different curves correspond to different waiting
times tw

scaling only holds for tw/t " 1, where (4.59) has been evaluated. Therefore, we prefer
to leave explicit the dependence on tw and t or, equivalently, tw and τ .

For consistency the aging regime must match with the equilibrium one when
τ/tw is small, and indeed we find

lim
τ/tw→0

Cag = QEA = lim
τ→∞

Cas(τ ). (4.60)

The opposite limit of this time regime is reached when τ % tw, i.e. when we
look at a very old system on scales much larger than the waiting time. From (4.59)
one finds

lim
tw/τ→0

Cag

(
tw
τ

)
∼ 2QEA

(
tw
τ

)3/4

→ 0. (4.61)

Note that this limit is also recovered from Eq. (4.53) when sending t ′ to infinity
after t .

In Fig. (4.1), we can see the typical dynamical pattern of the correlation function
as a function of the time difference τ , at a given fixed value of tw. For values of τ

small compared to tw the system exhibits an equilibrium-like behaviour, and seems
to equilibrate at a plateau value QEA. However, when τ becomes of the order of
tw the asymptotic regime changes and the system drifts away from the plateau,
ultimately decaying to zero with a power law. Note that the change of regime
depends upon tw and the age of the system: the longer we wait, the longer it will
take for the correlations to decay.

Kac models xxix

qualitative changes take place. Two of them are the mean-field dynamical transition
temperature Td and the static transition temperature Tc. In addition there is a third
temperature T ∗, with T ∗ > Td > Tc, first identified in (52). Above T ∗ the function
V is a convex function with a single minimum at p = 0. At T ∗ and inflection point
appears, and below that temperature the potential is non-convex. For temperature
between Td and T ∗, the function continues to have a single minimum for p = 0. At Td

a local minimum at a value p = qEA > 0 develops. In the interval [Tc, Td], the point
p = 0 is still the absolute minimum of V . The two minima structure below Td reflects
the partition of the equilibrium measure in disjoint metastable states. The value qEA is
the typical overlap between configurations belonging to the same metastable state. For
p = qEA σ is in the state specified by σ(0). Different metastable states have zero mutual
overlap. For p = 0 all but the metastable state specified by σ(0) contribute to the free-
energy and V (0) = 0. Correspondingly, the difference in free-energy between the two
minima equals the system’s configurational entropy Σ∞(T ) multiplied by temperature.
The configurational entropy vanishes linearly on approaching Tc, Σ∞(T ) ∼ T −Tc and
the two minima become degenerate. Below that temperature the mean field model is
in an ideal glassy state and the two minima remain degenerate.
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Fig. 0.8 The function V (p) at different temperatures. For comparison with the case

of Kac model we consider a Hamiltonian with two body and 4 body interactions with
φ(p) = 1/2(0.1 × p2 + p4). From top to bottom T = 0.703486 > T ∗, T = T ∗ = 0.633137,

T = Td = 0.57525, T = 0.558049, T = Tc = 0.541847. The function is convex for T > T ∗.

It has an inflection point with positive slope for Td < T < T ∗. In the interval Tc < T < Td,
V (q) has a local minimum for a temperature dependent value p = qEA. The difference

V (qEA)− V (0) is (T times) the bulk configurational entropy V (qEA)− V (0) = TΣ∞(T ).

We now generalize the previous construction to Kac models. As before, we use
the overlap with an equilibrium reference configuration σ(0) as an order parameter.
In this case however, we are interested in considering the free-energy as a functional

[S. Franz and G. Semerjian. Analytical approaches to time and length scales in models of 
glasses in  Dynamical heterogeneities in glasses, colloids and granular materials. Oxford 
University Press, 2011.]
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j

s
k

s
l

+ s
j

iŝ
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i

(u)s
j

A(s(t0))s
j

(t)i
⌘

+

Z

t

0
duE

⇣

hs
i

iŝ
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i

(t0)s
j

(t)s
k

(t)s
l

(t)i = 1

N4

X

i,j,k,l

hs0
i

i
eq

hs0
j

i
eq

hs0
k

i
eq

hs0
l

i
eq

hiŝ
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i

(u)s
j

A(s(t0))s
j

(t)i
⌘

+

Z

t

0
duE

⇣

hs
i

iŝ
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1 The Potential Method

In this section we will review a method introduced by Franz and Parisi in [1] which intro-
duces a ’potential function’ defined as the free energy of a system at a given temperature
T constrained to have a fixed overlap with a reference configuration of equilibrium at
temperature T 0. The potential is nothing but the large deviation function of the overlap
between configuration of spins and hence the method establishes a correspondence among
local minima of the potential and metastable states. In the following sections, we will
also study the relaxation dynamics at temperature T of a system starting from an initial
configuration equilibrated at a different temperature T 0 and we will compare the results
obtained from the dynamic approach which those obtained from the potential method.

The basic assumption of the potential method is that if, in spin glass models, the
relevant order parameter is the overlap among configurations then we must be able to
construct a large deviation function for it. Let us then consider the free energy of a system
�, considered at temperature � and taken at a fixed overlap p̃ with another configuration
s of the same system, namely:

F (s,�, p̃) = lim

N!1
� 1

�N
ln

Z

d� e

��H[�] �(p̃�Q(s,�)) (1)

Now we want to assume that this free energy is self-averaging with respect to the canonical
Boltzmann-Gibbs probability distribution of a reference configuration s drawn at temper-
ature T 0, namely P (s) = exp (��0H[s])/Z(T 0

). If we also assume self-averaging respect to
the disorder contained in the hamiltonian, we have the potential function defined as:

V (p̃,�,�0
) = lim

N!1
� 1

�N

Z

ds
e

��

0H[s]

Z(�0
)

ln

Z

d� e

��H[�] �(p̃�Q(s,�)) (2)

with
Z(�0

) =

Z

ds e��

0H[s] (3)

The (. . . ) indicates the average respect to the disorder, Q(s,�) = 1
N

P

i

s
i

�
i

is the overlap
among the two spin configurations and � is taken in general different from �0. The poten-
tial can then be interpreted as the cost in free energy at temperature T to keep the system
(defined by the configuration �) at a fixed overlap p̃ = Q(s,�) with s.

The average respect to the disorder can be performed using the replica trick. The
starting point of this strategy is the formula:

NV = �T lim

n!0
lim

m!0

Z

ds exp (��0H[s])Z[�0
]

n�1
⇣Z[s, p̃]m � 1

m

⌘

(4)

where we used the notation:

Z[s, p̃] =

Z

d� e

��H[�] �(p̃�Q(s,�)) (5)

Now by defining the replicated partition function as:

Z(n,m)
=

Z

ds1e�
0H(s1)

Z(�0
)

n�1
Z[s, p̃]m =

Z

ds

1
e

�

0H(s1)
Z(�0

)

n�1
e

m lnZ[s,p̃] (6)

is it possible to show, by direct calculation, that the expression in (4) can be derived as:

NV = �T
@

@m
lnZ(n,m)

�

�

�

m=0
n=0

(7)
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Figure 4.1 Behaviour of the correlation function at low temperature, as a function
of the time difference τ = t − tw. Different curves correspond to different waiting
times tw

scaling only holds for tw/t " 1, where (4.59) has been evaluated. Therefore, we prefer
to leave explicit the dependence on tw and t or, equivalently, tw and τ .

For consistency the aging regime must match with the equilibrium one when
τ/tw is small, and indeed we find

lim
τ/tw→0

Cag = QEA = lim
τ→∞

Cas(τ ). (4.60)

The opposite limit of this time regime is reached when τ % tw, i.e. when we
look at a very old system on scales much larger than the waiting time. From (4.59)
one finds

lim
tw/τ→0

Cag

(
tw
τ

)
∼ 2QEA

(
tw
τ

)3/4

→ 0. (4.61)

Note that this limit is also recovered from Eq. (4.53) when sending t ′ to infinity
after t .

In Fig. (4.1), we can see the typical dynamical pattern of the correlation function
as a function of the time difference τ , at a given fixed value of tw. For values of τ

small compared to tw the system exhibits an equilibrium-like behaviour, and seems
to equilibrate at a plateau value QEA. However, when τ becomes of the order of
tw the asymptotic regime changes and the system drifts away from the plateau,
ultimately decaying to zero with a power law. Note that the change of regime
depends upon tw and the age of the system: the longer we wait, the longer it will
take for the correlations to decay.

Kac models xxix

qualitative changes take place. Two of them are the mean-field dynamical transition
temperature Td and the static transition temperature Tc. In addition there is a third
temperature T ∗, with T ∗ > Td > Tc, first identified in (52). Above T ∗ the function
V is a convex function with a single minimum at p = 0. At T ∗ and inflection point
appears, and below that temperature the potential is non-convex. For temperature
between Td and T ∗, the function continues to have a single minimum for p = 0. At Td

a local minimum at a value p = qEA > 0 develops. In the interval [Tc, Td], the point
p = 0 is still the absolute minimum of V . The two minima structure below Td reflects
the partition of the equilibrium measure in disjoint metastable states. The value qEA is
the typical overlap between configurations belonging to the same metastable state. For
p = qEA σ is in the state specified by σ(0). Different metastable states have zero mutual
overlap. For p = 0 all but the metastable state specified by σ(0) contribute to the free-
energy and V (0) = 0. Correspondingly, the difference in free-energy between the two
minima equals the system’s configurational entropy Σ∞(T ) multiplied by temperature.
The configurational entropy vanishes linearly on approaching Tc, Σ∞(T ) ∼ T −Tc and
the two minima become degenerate. Below that temperature the mean field model is
in an ideal glassy state and the two minima remain degenerate.
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Fig. 0.8 The function V (p) at different temperatures. For comparison with the case

of Kac model we consider a Hamiltonian with two body and 4 body interactions with
φ(p) = 1/2(0.1 × p2 + p4). From top to bottom T = 0.703486 > T ∗, T = T ∗ = 0.633137,

T = Td = 0.57525, T = 0.558049, T = Tc = 0.541847. The function is convex for T > T ∗.

It has an inflection point with positive slope for Td < T < T ∗. In the interval Tc < T < Td,
V (q) has a local minimum for a temperature dependent value p = qEA. The difference

V (qEA)− V (0) is (T times) the bulk configurational entropy V (qEA)− V (0) = TΣ∞(T ).

We now generalize the previous construction to Kac models. As before, we use
the overlap with an equilibrium reference configuration σ(0) as an order parameter.
In this case however, we are interested in considering the free-energy as a functional

[S. Franz and G. Semerjian. Analytical approaches to time and length scales in models of 
glasses in  Dynamical heterogeneities in glasses, colloids and granular materials. Oxford 
University Press, 2011.]
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iŝ
j

A(s(t0))s
j

i
⌘

+ E
⇣D@ logµ(s(0))

@J
ij

A(s(t0))s
j

(t)
E⌘

(18)

For the 4-spin case, we get instead:
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i

(t0)s
j

(t)s
k

(t)s
l

(t)i = 1

N4

X

i,j,k,l

hs0
i

i
eq

hs0
j

i
eq

hs0
k

i
eq

hs0
l

i
eq

hiŝ
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3

dynamical transition

Kauzmann temperature
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1 The Potential Method

In this section we will review a method introduced by Franz and Parisi in [1] which intro-
duces a ’potential function’ defined as the free energy of a system at a given temperature
T constrained to have a fixed overlap with a reference configuration of equilibrium at
temperature T 0. The potential is nothing but the large deviation function of the overlap
between configuration of spins and hence the method establishes a correspondence among
local minima of the potential and metastable states. In the following sections, we will
also study the relaxation dynamics at temperature T of a system starting from an initial
configuration equilibrated at a different temperature T 0 and we will compare the results
obtained from the dynamic approach which those obtained from the potential method.

The basic assumption of the potential method is that if, in spin glass models, the
relevant order parameter is the overlap among configurations then we must be able to
construct a large deviation function for it. Let us then consider the free energy of a system
�, considered at temperature � and taken at a fixed overlap p̃ with another configuration
s of the same system, namely:

F (s,�, p̃) = lim

N!1
� 1

�N
ln

Z

d� e

��H[�] �(p̃�Q(s,�)) (1)

Now we want to assume that this free energy is self-averaging with respect to the canonical
Boltzmann-Gibbs probability distribution of a reference configuration s drawn at temper-
ature T 0, namely P (s) = exp (��0H[s])/Z(T 0

). If we also assume self-averaging respect to
the disorder contained in the hamiltonian, we have the potential function defined as:

V (p̃,�,�0
) = lim

N!1
� 1

�N

Z

ds
e

��

0H[s]

Z(�0
)

ln

Z

d� e

��H[�] �(p̃�Q(s,�)) (2)

with
Z(�0

) =

Z

ds e��

0H[s] (3)

The (. . . ) indicates the average respect to the disorder, Q(s,�) = 1
N

P

i

s
i

�
i

is the overlap
among the two spin configurations and � is taken in general different from �0. The poten-
tial can then be interpreted as the cost in free energy at temperature T to keep the system
(defined by the configuration �) at a fixed overlap p̃ = Q(s,�) with s.

The average respect to the disorder can be performed using the replica trick. The
starting point of this strategy is the formula:

NV = �T lim

n!0
lim

m!0

Z

ds exp (��0H[s])Z[�0
]

n�1
⇣Z[s, p̃]m � 1

m

⌘

(4)

where we used the notation:

Z[s, p̃] =

Z

d� e

��H[�] �(p̃�Q(s,�)) (5)

Now by defining the replicated partition function as:

Z(n,m)
=

Z

ds1e�
0H(s1)

Z(�0
)

n�1
Z[s, p̃]m =

Z

ds

1
e

�

0H(s1)
Z(�0

)

n�1
e

m lnZ[s,p̃] (6)

is it possible to show, by direct calculation, that the expression in (4) can be derived as:

NV = �T
@

@m
lnZ(n,m)

�

�

�

m=0
n=0

(7)
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lnC(t + tw; tw)

→

→

t ∞→

Figure 4.1 Behaviour of the correlation function at low temperature, as a function
of the time difference τ = t − tw. Different curves correspond to different waiting
times tw

scaling only holds for tw/t " 1, where (4.59) has been evaluated. Therefore, we prefer
to leave explicit the dependence on tw and t or, equivalently, tw and τ .

For consistency the aging regime must match with the equilibrium one when
τ/tw is small, and indeed we find

lim
τ/tw→0

Cag = QEA = lim
τ→∞

Cas(τ ). (4.60)

The opposite limit of this time regime is reached when τ % tw, i.e. when we
look at a very old system on scales much larger than the waiting time. From (4.59)
one finds

lim
tw/τ→0

Cag

(
tw
τ

)
∼ 2QEA

(
tw
τ

)3/4

→ 0. (4.61)

Note that this limit is also recovered from Eq. (4.53) when sending t ′ to infinity
after t .

In Fig. (4.1), we can see the typical dynamical pattern of the correlation function
as a function of the time difference τ , at a given fixed value of tw. For values of τ

small compared to tw the system exhibits an equilibrium-like behaviour, and seems
to equilibrate at a plateau value QEA. However, when τ becomes of the order of
tw the asymptotic regime changes and the system drifts away from the plateau,
ultimately decaying to zero with a power law. Note that the change of regime
depends upon tw and the age of the system: the longer we wait, the longer it will
take for the correlations to decay.

Kac models xxix

qualitative changes take place. Two of them are the mean-field dynamical transition
temperature Td and the static transition temperature Tc. In addition there is a third
temperature T ∗, with T ∗ > Td > Tc, first identified in (52). Above T ∗ the function
V is a convex function with a single minimum at p = 0. At T ∗ and inflection point
appears, and below that temperature the potential is non-convex. For temperature
between Td and T ∗, the function continues to have a single minimum for p = 0. At Td

a local minimum at a value p = qEA > 0 develops. In the interval [Tc, Td], the point
p = 0 is still the absolute minimum of V . The two minima structure below Td reflects
the partition of the equilibrium measure in disjoint metastable states. The value qEA is
the typical overlap between configurations belonging to the same metastable state. For
p = qEA σ is in the state specified by σ(0). Different metastable states have zero mutual
overlap. For p = 0 all but the metastable state specified by σ(0) contribute to the free-
energy and V (0) = 0. Correspondingly, the difference in free-energy between the two
minima equals the system’s configurational entropy Σ∞(T ) multiplied by temperature.
The configurational entropy vanishes linearly on approaching Tc, Σ∞(T ) ∼ T −Tc and
the two minima become degenerate. Below that temperature the mean field model is
in an ideal glassy state and the two minima remain degenerate.
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Fig. 0.8 The function V (p) at different temperatures. For comparison with the case

of Kac model we consider a Hamiltonian with two body and 4 body interactions with
φ(p) = 1/2(0.1 × p2 + p4). From top to bottom T = 0.703486 > T ∗, T = T ∗ = 0.633137,

T = Td = 0.57525, T = 0.558049, T = Tc = 0.541847. The function is convex for T > T ∗.

It has an inflection point with positive slope for Td < T < T ∗. In the interval Tc < T < Td,
V (q) has a local minimum for a temperature dependent value p = qEA. The difference

V (qEA)− V (0) is (T times) the bulk configurational entropy V (qEA)− V (0) = TΣ∞(T ).

We now generalize the previous construction to Kac models. As before, we use
the overlap with an equilibrium reference configuration σ(0) as an order parameter.
In this case however, we are interested in considering the free-energy as a functional

[S. Franz and G. Semerjian. Analytical approaches to time and length scales in models of 
glasses in  Dynamical heterogeneities in glasses, colloids and granular materials. Oxford 
University Press, 2011.]
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iŝ
i

(u)
⇣

� s̈
i

(u)� @H
J

@s
i

(u)

⌘io

µ(s(0))

=

Z 1

�1

⇣

t

Y

u=0

dŝ
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For the 4-spin case, we get instead:
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iŝ
k

s
l

+ s
j

s
k

iŝ
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iŝ
j

A(s(t0))s
j

i
⌘

+ E
⇣D@ logµ(s(0))

@J
ij

A(s(t0))s
j

(t)
E⌘

(20)

For the 4-spin case,

A(s(t0)) = s
i

(t0)

A(s(t0)) = i ŝ
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dŝ
i

(u)

2⇡

⌘

exp

n

X

i

Z

t

0
du

h

iŝ
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dŝ
i

(u)

2⇡

⌘

exp

n

X

i

Z

t

0
du

h

iŝ
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iŝ
k

s
l

+ s
j

s
k

iŝ
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iŝ
l

)A(s(t0))s
j

s
k

s
l

i
⌘

+ E
⇣D@ logµ(s(0))

@J
ijkl

A(s(t0)) s
j

s
k

s
l

E⌘

(19)

E( @

@J
ij

hA(s(t0)) s
j

i) =
Z

t

0
duE

⇣

hiŝ
i

(u)s
j

A(s(t0))s
j

(t)i
⌘

+

Z

t

0
duE

⇣

hs
i

iŝ
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1 The Potential Method

In this section we will review a method introduced by Franz and Parisi in [1] which intro-
duces a ’potential function’ defined as the free energy of a system at a given temperature
T constrained to have a fixed overlap with a reference configuration of equilibrium at
temperature T 0. The potential is nothing but the large deviation function of the overlap
between configuration of spins and hence the method establishes a correspondence among
local minima of the potential and metastable states. In the following sections, we will
also study the relaxation dynamics at temperature T of a system starting from an initial
configuration equilibrated at a different temperature T 0 and we will compare the results
obtained from the dynamic approach which those obtained from the potential method.

The basic assumption of the potential method is that if, in spin glass models, the
relevant order parameter is the overlap among configurations then we must be able to
construct a large deviation function for it. Let us then consider the free energy of a system
�, considered at temperature � and taken at a fixed overlap p̃ with another configuration
s of the same system, namely:

F (s,�, p̃) = lim

N!1
� 1

�N
ln

Z

d� e

��H[�] �(p̃�Q(s,�)) (1)

Now we want to assume that this free energy is self-averaging with respect to the canonical
Boltzmann-Gibbs probability distribution of a reference configuration s drawn at temper-
ature T 0, namely P (s) = exp (��0H[s])/Z(T 0

). If we also assume self-averaging respect to
the disorder contained in the hamiltonian, we have the potential function defined as:
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The (. . . ) indicates the average respect to the disorder, Q(s,�) = 1
N

P

i

s
i

�
i

is the overlap
among the two spin configurations and � is taken in general different from �0. The poten-
tial can then be interpreted as the cost in free energy at temperature T to keep the system
(defined by the configuration �) at a fixed overlap p̃ = Q(s,�) with s.

The average respect to the disorder can be performed using the replica trick. The
starting point of this strategy is the formula:

NV = �T lim

n!0
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m!0

Z

ds exp (��0H[s])Z[�0
]

n�1
⇣Z[s, p̃]m � 1

m

⌘

(4)

where we used the notation:
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Now by defining the replicated partition function as:
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is it possible to show, by direct calculation, that the expression in (4) can be derived as:
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Average over disorder: Replica trick

1 The Potential Method

In this section we will review a method introduced by Franz and Parisi in [1] which intro-
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T constrained to have a fixed overlap with a reference configuration of equilibrium at
temperature T 0. The potential is nothing but the large deviation function of the overlap
between configuration of spins and hence the method establishes a correspondence among
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With the use of the replica trick

1 The Potential Method

In this section we will review a method introduced by Franz and Parisi in [1] which intro-
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T constrained to have a fixed overlap with a reference configuration of equilibrium at
temperature T 0. The potential is nothing but the large deviation function of the overlap
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1 The Potential Method

In this section we will review a method introduced by Franz and Parisi in [1] which intro-
duces a ’potential function’ defined as the free energy of a system at a given temperature
T constrained to have a fixed overlap with a reference configuration of equilibrium at
temperature T 0. The potential is nothing but the large deviation function of the overlap
between configuration of spins and hence the method establishes a correspondence among
local minima of the potential and metastable states. In the following sections, we will
also study the relaxation dynamics at temperature T of a system starting from an initial
configuration equilibrated at a different temperature T 0 and we will compare the results
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Define the ‘replicated partition function’

1 The Potential Method

In this section we will review a method introduced by Franz and Parisi in [1] which intro-
duces a ’potential function’ defined as the free energy of a system at a given temperature
T constrained to have a fixed overlap with a reference configuration of equilibrium at
temperature T 0. The potential is nothing but the large deviation function of the overlap
between configuration of spins and hence the method establishes a correspondence among
local minima of the potential and metastable states. In the following sections, we will
also study the relaxation dynamics at temperature T of a system starting from an initial
configuration equilibrated at a different temperature T 0 and we will compare the results
obtained from the dynamic approach which those obtained from the potential method.

The basic assumption of the potential method is that if, in spin glass models, the
relevant order parameter is the overlap among configurations then we must be able to
construct a large deviation function for it. Let us then consider the free energy of a system
�, considered at temperature � and taken at a fixed overlap p̃ with another configuration
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F (s,�, p̃) = lim

N!1
� 1

�N
ln

Z

d� e

��H[�] �(p̃�Q(s,�)) (1)

Now we want to assume that this free energy is self-averaging with respect to the canonical
Boltzmann-Gibbs probability distribution of a reference configuration s drawn at temper-
ature T 0, namely P (s) = exp (��0H[s])/Z(T 0

). If we also assume self-averaging respect to
the disorder contained in the hamiltonian, we have the potential function defined as:

V (p̃,�,�0
) = lim

N!1
� 1

�N

Z

ds
e

��

0H[s]

Z(�0
)

ln

Z

d� e

��H[�] �(p̃�Q(s,�)) (2)

with
Z(�0

) =

Z

ds e��

0H[s] (3)

The (. . . ) indicates the average respect to the disorder, Q(s,�) = 1
N

P

i

s
i

�
i

is the overlap
among the two spin configurations and � is taken in general different from �0. The poten-
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The average respect to the disorder can be performed using the replica trick. The
starting point of this strategy is the formula:

NV = �T lim

n!0
lim

m!0

Z

ds exp (��0H[s])Z[�0
]

n�1
⇣Z[s, p̃]m � 1

m

⌘

(4)

where we used the notation:

Z[s, p̃] =

Z

d� e

��H[�] �(p̃�Q(s,�)) (5)

Now by defining the replicated partition function as:

Z(n,m)
=

Z

ds1e�
0H(s1)

Z(�0
)

n�1
Z[s, p̃]m =

Z

ds

1
e

�

0H(s1)
Z(�0

)

n�1
e

m lnZ[s,p̃] (6)

is it possible to show, by direct calculation, that the expression in (4) can be derived as:

NV = �T
@

@m
lnZ(n,m)

�

�

�

m=0
n=0

(7)

1

The potential can be recovered with

3=p-spin 
spherical Model

Potential Method

Correlation and 
Response

Future 
developments

Potential Method

FPU problem

2+4 p-spin 
spherical Model

Potential Method
Disorder and 

replicas

Looking for minima

Hamiltonian 
dynamics

Generic equation 
of dynamics

Correlation and 
Response

Lagrangian 
multiplier

Friday, September 5, 14



2+4 spin Hamiltonian: averaging over disorder

2+4 p-spin spherical Hamiltonian
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and hence, in the following, we will concentrate on the computation of the replicated
partition function (6) as central object to compute the average over the disorder of the
potential function.

1.1 2+4 spin spherical model

In this subsection we want to consider a fully connected spherical p-spin model, at the mean
field level, with an Hamiltonian which is the sum of the 2-spin and the 4-spin spherical
model, namely:

H(�) = �2H2(�) + �4H4(�) = ��2
X

i<j

J
ij

�
i

�
j

� �4
X

i<j<k<l

J
ijkl

�
i

�
j

�
k

�
l

(8)

with the spherical constraint for the spins
X

i

�2
i

= N (9)

and where �2 and �4 are constant that are used to weight one hamiltonian respect to the
other. When �2 � �4 the model is FRSB, when �2h�4 the model is 1RSB.
The constrained replicated partition function for this model reads:
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where we defined �2�
0
= �2 and �4�

0
= �4 because we want to fix the relative temperatures

in the system s, enforcing the conservation of the energies in each hamiltonian, i.e. hH2i =
E2 and hH4i = E4, while �2 = �4 = 1 in the system � that is instead left free to equilibrate
without constraint. Now we introduce the probability distribution of the disorder contained
in the Hamiltonian, in order to average over it, as a gaussian distribution:
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Introducing explicitly the average over the disorder, the replicated partition function reads:
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dŝ
i

(u)

2⇡

⌘

exp

n

X

i

Z

t

0
du

h

iŝ
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iŝ
i

(u)
⇣

�s̈
i

(u)�µ
x

(u)s
i

(u)+
X

j

J
ij

s
j

+

X

j<k<l

J
ijkl

s
j

s
k

s
l

+h
i

(u)
⌘io

µ(s(0))

h. . .i

E( @

@J
ij

hA(s(t0)) s
j

i) =
Z

t

0
duE

⇣

hiŝ
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2+4 spin Hamiltonian: averaging over disorder

2+4 p-spin spherical Hamiltonian
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and hence, in the following, we will concentrate on the computation of the replicated
partition function (6) as central object to compute the average over the disorder of the
potential function.

1.1 2+4 spin spherical model

In this subsection we want to consider a fully connected spherical p-spin model, at the mean
field level, with an Hamiltonian which is the sum of the 2-spin and the 4-spin spherical
model, namely:
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where we defined �2�
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0
= �4 because we want to fix the relative temperatures

in the system s, enforcing the conservation of the energies in each hamiltonian, i.e. hH2i =
E2 and hH4i = E4, while �2 = �4 = 1 in the system � that is instead left free to equilibrate
without constraint. Now we introduce the probability distribution of the disorder contained
in the Hamiltonian, in order to average over it, as a gaussian distribution:
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dŝ
i

(u)

2⇡

⌘

exp

n

X

i

Z

t

0
du

h

iŝ
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For the 4-spin case, we get instead:
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i

(u)s
j

s
k

s
l

A(s(t0))s
j

s
k

s
l

i
⌘

+

Z

t

0
duE

⇣

hs
i

(iŝ
j

s
k

s
l

+ s
j

iŝ
k

s
l

+ s
j

s
k

iŝ
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After averaging over the disorder

2+4 spin Hamiltonian: averaging over disorder

2+4 p-spin spherical Hamiltonian
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and hence, in the following, we will concentrate on the computation of the replicated
partition function (6) as central object to compute the average over the disorder of the
potential function.

1.1 2+4 spin spherical model

In this subsection we want to consider a fully connected spherical p-spin model, at the mean
field level, with an Hamiltonian which is the sum of the 2-spin and the 4-spin spherical
model, namely:
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and where �2 and �4 are constant that are used to weight one hamiltonian respect to the
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where we defined �2�
0
= �2 and �4�

0
= �4 because we want to fix the relative temperatures

in the system s, enforcing the conservation of the energies in each hamiltonian, i.e. hH2i =
E2 and hH4i = E4, while �2 = �4 = 1 in the system � that is instead left free to equilibrate
without constraint. Now we introduce the probability distribution of the disorder contained
in the Hamiltonian, in order to average over it, as a gaussian distribution:
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Replicated partition function
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For the 4-spin case, we get instead:
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Performing the Gaussian integral over the J ’s variables, we obtain:
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We can now move the two products over the index i, j and i, j, k, l into the argument of
the exponential functions and observe that
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with a, b = 1, . . . , n and ↵,� = 1, . . . ,m. In the following we combine the order parameters
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Q =

✓

Q P
P T R

◆

(16)

and by defining the n+m dimensional vector v = (s,�), we can introduce the three order
parameters in (15) into the replicated partition function by the following single identity:
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where the labels are �, ⌘ = 1, 2, . . . , n+m the results reads:
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Performing the Gaussian integral over the J ’s variables, we obtain:
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ṗ
i

= s̈
i

= �@H

@s
i

= �@V

@s
i

� µ
x

s
i

+ h
i

(t) (8)

Ehs̈
i

A(s(t0))i =� Ehµ
x

(t)s
i

(t)A(s(t0))i+
X

j

E(J
ij

hs
j

(t)A(s(t0))i) +
X

j<k<l

E(J
ijkl

hs
j

(t)s
k

(t)s
l

(t)A(s(t0))i)

J
ij

Z(n,m)
=

Z
Dsa

Z
D�↵

Z Y

i<j

dJ
ij

exp

h
� J2

ij

Np2�1

p2!
+ �2

nX

a

J
ij

sa
i

sa
j

+ �4

nX

a

J
ijkl

sa
i

sa
j

sa
k

sa
l

i

Z Y

i<j<k<l

dJ
ijkl

exp

h
� J2

ijkl

Np4�1

p4!
+ �

mX

↵

J
ij

�↵

i

�↵

j

+ �
mX

↵

J
ijkl

�↵

i

�↵

j

�↵

k

�↵

l

i mY

↵=1

�
�X

i

s1
i

�↵

i

�Np̃
�

Z(n,m)
=

Z
Dsa

Z
D�↵

Y

i<j

exp

h p2!

4Np2�1

⇣
�2

nX

a

sa
i

sa
j

+ �
mX

↵

�↵

i

�↵

j

⌘2i

Y

i<j<k<l

exp

h p4!

4Np4�1

⇣
�4

nX

a

sa
i

sa
j

sa
k

sa
l

+ �

mX

↵

�↵

i

�↵

j

�↵

k

�↵

l

⌘2i mY

↵=1

�
�X

i

s1
i

�↵

i

�Np̃
�

v = (v1, v2, . . . , vn+m

) (9)
= (s1, . . . , sn,�1, . . . ,�m) (10)

Z(n,m)
=

Z
Dv�

Z
DQ

�⌘

�
⇣
NQ

�⌘

�
X

i

v�
i

v⌘
i

⌘
exp

hN
4

⇣
�2
2

nX

a,b

Q2
ab

+ 2�2�
X

a,↵

P 2
a,↵

+ �2
X

↵,�

R2
↵,�

⌘i

exp

hN
4

⇣
�2
4

nX

a,b

Q4
ab

+ 2�4�
X

a,↵

P 4
a,↵

+ �2
X

↵,�

R4
↵,�

⌘i n+mY

�=n+1

�
�X

i

v1
i

v�
i

�Np̃
�

1

Introducing order parameters

Potential Method

FPU problem

2+4 p-spin 
spherical Model

Potential Method
Disorder and 

replicas

Looking for minima

Hamiltonian 
dynamics

Generic equation 
of dynamics

Correlation and 
Response

Lagrangian 
multiplier

3=p-spin 
spherical Model

Potential Method

Correlation and 
Response

Future 
developments

3=p-spin 
spherical Model

Potential Method

Correlation and 
Response

Future 
developments

Potential Method

FPU problem

2+4 p-spin 
spherical Model

Potential Method
Disorder and 

replicas

Looking for minima

Hamiltonian 
dynamics

Generic equation 
of dynamics

Correlation and 
Response

Lagrangian 
multiplier

Friday, September 5, 14
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We can now move the two products over the index i, j and i, j, k, l into the argument of
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Using a saddle point technique to estimate the integral

Generalized RS ansatz

1 The Potential Method

In this section we will review a method introduced by Franz and Parisi in [1] which intro-
duces a ’potential function’ defined as the free energy of a system at a given temperature
T constrained to have a fixed overlap with a reference configuration of equilibrium at
temperature T 0. The potential is nothing but the large deviation function of the overlap
between configuration of spins and hence the method establishes a correspondence among
local minima of the potential and metastable states. In the following sections, we will
also study the relaxation dynamics at temperature T of a system starting from an initial
configuration equilibrated at a different temperature T 0 and we will compare the results
obtained from the dynamic approach which those obtained from the potential method.

The basic assumption of the potential method is that if, in spin glass models, the
relevant order parameter is the overlap among configurations then we must be able to
construct a large deviation function for it. Let us then consider the free energy of a system
�, considered at temperature � and taken at a fixed overlap p̃ with another configuration
s of the same system, namely:
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is the overlap
among the two spin configurations and � is taken in general different from �0. The poten-
tial can then be interpreted as the cost in free energy at temperature T to keep the system
(defined by the configuration �) at a fixed overlap p̃ = Q(s,�) with s.

The average respect to the disorder can be performed using the replica trick. The
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Generalized RS ansatz

1 The Potential Method

In this section we will review a method introduced by Franz and Parisi in [1] which intro-
duces a ’potential function’ defined as the free energy of a system at a given temperature
T constrained to have a fixed overlap with a reference configuration of equilibrium at
temperature T 0. The potential is nothing but the large deviation function of the overlap
between configuration of spins and hence the method establishes a correspondence among
local minima of the potential and metastable states. In the following sections, we will
also study the relaxation dynamics at temperature T of a system starting from an initial
configuration equilibrated at a different temperature T 0 and we will compare the results
obtained from the dynamic approach which those obtained from the potential method.

The basic assumption of the potential method is that if, in spin glass models, the
relevant order parameter is the overlap among configurations then we must be able to
construct a large deviation function for it. Let us then consider the free energy of a system
�, considered at temperature � and taken at a fixed overlap p̃ with another configuration
s of the same system, namely:

F (s,�, p̃) = lim

N!1
� 1

�N
ln

Z

d� e

��H[�] �(p̃�Q(s,�)) (1)

Now we want to assume that this free energy is self-averaging with respect to the canonical
Boltzmann-Gibbs probability distribution of a reference configuration s drawn at temper-
ature T 0, namely P (s) = exp (��0H[s])/Z(T 0

). If we also assume self-averaging respect to
the disorder contained in the hamiltonian, we have the potential function defined as:

V (p̃,�,�0
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� 1

�N

Z

ds
e
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)

ln
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d� e
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with
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) =

Z

ds e��

0H[s] (3)

The (. . . ) indicates the average respect to the disorder, Q(s,�) = 1
N

P

i

s
i

�
i

is the overlap
among the two spin configurations and � is taken in general different from �0. The poten-
tial can then be interpreted as the cost in free energy at temperature T to keep the system
(defined by the configuration �) at a fixed overlap p̃ = Q(s,�) with s.

The average respect to the disorder can be performed using the replica trick. The
starting point of this strategy is the formula:

NV = �T lim

n!0
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Z

ds exp (��0H[s])Z[�0
]
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⇣Z[s, p̃]m � 1

m

⌘

(4)

where we used the notation:

Z[s, p̃] =

Z

d� e

��H[�] �(p̃�Q(s,�)) (5)

Now by defining the replicated partition function as:
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e

m lnZ[s,p̃] (6)

is it possible to show, by direct calculation, that the expression in (4) can be derived as:

NV = �T
@

@m
lnZ(n,m)

�

�

�

m=0
n=0

(7)
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The Effective Potential can be obtained using

matrix P
a↵

and then we can simply omit it for simplicity. Finally, using an exponential
representation for the remaining delta function we can write
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where in the last equality we use the saddle point method to estimate the integral and
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In (19) the integration over �
�⌘

includes also � = ⌘ and hence a = b and ↵ = � to enforce
the spherical constrain in both system s and �. At this point we can use a saddle point
technique to compute the integral (19) and from the saddle point equation for �

�⌘

one
obtains:
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and hence, neglecting vanishing constants in the thermodynamic limit, we get:
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1.2 Generalized RS ansatz

We now need to specify an ansatz for the symmetry of the matrix Q in order to continue
the calculation in (22). We will proceed using a replica-symmetric assumption, in a more
generalised way respect the usual one. We assume:

Q
ab

= �
ab

+ (1� �
ab

)q

P
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= p̃ �
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+ (1� �
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)s (23)
R
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↵�

+ (1� �
↵�

)r

The computation of the first two terms on the RHS of (22) is an easy task once the ansatz
for the matrix is specified, but we also need to compute the determinant of the matrix Q.
Choosing a vector w = (v, u) where v is an n-dimensional vector and u is a m-dimensional
one, from the eigenvalue equation we get:
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[ Franz, S., & Parisi, G. (1995). Recipes for metastable states in spin glasses. 
Journal de Physique I, 5(11), 1401-1415 ]
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[ Franz, S., & Parisi, G. (1995). Recipes for metastable states in spin glasses. 
Journal de Physique I, 5(11), 1401-1415 ]
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iŝ
i

(u)
⇣

�s̈
i

(u)�µ
x

(u)s
i

(u)+
X

j

J
ij

s
j

+

X

j<k<l

J
ijkl

s
j

s
k

s
l

+h
i

(u)
⌘io

µ(s(0))

h. . .i

E( @

@J
ij

hA(s(t0)) s
j

i) =
Z

t

0
duE

⇣

hiŝ
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iŝ
j

A(s(t0))s
j

i
⌘

+ E
⇣D@ logµ(s(0))

@J
ij

A(s(t0))s
j

(t)
E⌘

(18)

For the 4-spin case, we get instead:

E( @

@J
ijkl

hA(s(t0)) s
j

s
k

s
l

i) =
Z

t

0
duE

⇣

hiŝ
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[ Franz, S., & Parisi, G. (1995). Recipes for metastable states in spin glasses. 
Journal de Physique I, 5(11), 1401-1415 ]
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iŝ
j

A(s(t0))s
j

i
⌘

+ E
⇣D@ logµ(s(0))

@J
ij

A(s(t0))s
j

(t)
E⌘

(20)

For the 4-spin case,

A(s(t0)) = s
i

(t0)

A(s(t0)) = i ŝ
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[ Franz, S., & Parisi, G. (1995). Recipes for metastable states in spin glasses. 
Journal de Physique I, 5(11), 1401-1415 ]
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turn out to be relevant for the description of the physics of the model: Q∗
ab = 1

N

∑

i〈σa
i σb

i 〉 describing the overlap
statistics of the replicas at equilibrium at temperature T ′, Pa,α = 1

N

∑

i〈σa
i Sα

i 〉 describing the overlaps among the

replicas at temperature T ′ and the replicas at temperature T , and finally Qαβ = 1
N

∑

i〈Sα
i Sβ

i 〉 describing the overlaps
between replicas at temperature T . As is physically clear, it is found that the structure of the matrix Q∗

ab is not affected
at the leading order by the presence of the replicas Sα. In this paper we will restrict ourselves to the temperature
range T ≥ TS, where Q∗

ab = δab. In this regime it is sensible to assume Pa,α = δa,1q12 for all α. The structure of
the matrix Qαβ is more subtle. Assuming a single state picture in ref. [12] the form Qαβ = δαβ + q(1 − δαβ) was
taken. But it turns out also to be necessary to consider the possibility that ergodicity is broken for the system in a
“field”, with consequent replica symmetry breaking in Qαβ. The most general Ansatz we shall need is the “one step”
form (see e.g. [8]), characterized by the parameters (q0, q1, x). With this Ansatz it easy to find that the potential as
a function of all the order parameters is:

V (q12) = − 1
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{

2ββ′f(q12) − β2 ((1 − x)f(q1) + xf(q0)) +
x − 1

x
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(6)

where V has to be maximized with respect to q0, q1 and x. These saddle point equations read:

q2
12 = q0 − β2f ′(q0)(1 − (1 − x)q1 − xq0)

2,
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A numerical resolution allows to construct the curve V (q12) 1.
In general, this curve can be divided in three regions. There are a small and a large q12 regions (outside the interval

A − B in figure 1) where replica symmetry holds. In between the symmetry is broken. In the large q12 region, the
solution is q1 = q0 testifying ergodicity in a single state. In the point B a de Almeida Thouless instability develops.
The replica symmetry breaking region is interpreted as usual ergodicity breaking with dominance of small number
of valleys for typical samples. In the point A one finds x = 1, and the restoring of replica symmetry implies in
fact a number of valleys exponentially large N ∼ eNΣ(q12). In this region (between q12 = 0 and A), x = 1, the
Edwards-Anderson parameter inside the valleys is obtained as the value of q1 from the second equation of (7) divided
by (1−x) in x = 1, and is depicted with crosses in figure (2). The complexity Σ(q12) can be calculated as in the usual
case as ∂V

∂x |x=1, and is depicted in figure (3). For q12 = 0, where there is no effective constraint, the second replica
is at equilibrium at T and we find the total complexity at temperature T , and the equilibrium Edwards-Anderson
parameter at T .

The global situation is displayed for a typical example in figures (1) and (2).
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1In [12], the form Qαβ = δαβ +q(1−δαβ) yielded simplified equations, corresponding to q0 = q1 in (7). The resulting potential
will be denoted as “replica symmetric” potential.

4

1RSB treatment of the p>2 spin spherical model

Barrat, A., Franz, S., & Parisi, G. (1997). Temperature evolution and bifurcations of metastable states 
in mean-field spin glasses, with connections with structural glasses. Journal of Physics A: 

Mathematical and General, 30(16), 5593.
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12 = q0 − β2f ′(q0)(1 − (1 − x)q1 − xq0)

2,

β2(f ′(q1) − f ′(q0))(1 − x) = (1 − x)
q1 − q0

(1 − q1)(1 − (1 − x)q1 − xq0)
,

β2(f(q1) − f(q0)) +
1

x2
ln

(

1 − q1

1 − (1 − x)q1 − xq0

)

+ β2 (1 − q1)

x
f ′(q1) − β2 f ′(q0)

x
(1 − (1 − x)q1 − xq0) = 0. (7)

A numerical resolution allows to construct the curve V (q12) 1.
In general, this curve can be divided in three regions. There are a small and a large q12 regions (outside the interval

A − B in figure 1) where replica symmetry holds. In between the symmetry is broken. In the large q12 region, the
solution is q1 = q0 testifying ergodicity in a single state. In the point B a de Almeida Thouless instability develops.
The replica symmetry breaking region is interpreted as usual ergodicity breaking with dominance of small number
of valleys for typical samples. In the point A one finds x = 1, and the restoring of replica symmetry implies in
fact a number of valleys exponentially large N ∼ eNΣ(q12). In this region (between q12 = 0 and A), x = 1, the
Edwards-Anderson parameter inside the valleys is obtained as the value of q1 from the second equation of (7) divided
by (1−x) in x = 1, and is depicted with crosses in figure (2). The complexity Σ(q12) can be calculated as in the usual
case as ∂V

∂x |x=1, and is depicted in figure (3). For q12 = 0, where there is no effective constraint, the second replica
is at equilibrium at T and we find the total complexity at temperature T , and the equilibrium Edwards-Anderson
parameter at T .

The global situation is displayed for a typical example in figures (1) and (2).
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1In [12], the form Qαβ = δαβ +q(1−δαβ) yielded simplified equations, corresponding to q0 = q1 in (7). The resulting potential
will be denoted as “replica symmetric” potential.
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iŝ
i

(u)
⇣

�s̈
i

(u)�µ
x

(u)s
i

(u)+
X

j

J
ij

s
j

+

X

j<k<l

J
ijkl

s
j

s
k

s
l

+h
i

(u)
⌘io

µ(s(0))

h. . .i

E( @

@J
ij

hA(s(t0)) s
j

i) =
Z

t

0
duE

⇣

hiŝ
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For !2"!2
* the transition between the 1FRSB phase and the

FRSB takes place continuously in the order parameter func-
tion with q1−q0→0 and xc→m at the transition. The con-
tinuous transition between the 1FRSB and the FRSB phases
occurs on the line of end points of the 1FRSB m lines. In-
serting t=1 into Eqs. !59", !60" one easily gets the parametric
equations of the critical line
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Finally the 1FRSB phase is bounded by the transition line
with the 1RSB phase. Indeed by setting t=0 into Eqs. !59"
and !60" one recovers the parametric equations of the 1RSB
instability line $0

!3"=0 and q0=0. The transition is continu-
ous in both free energy and order parameter function since
q0→0 continuously as the transition line is approached from
the 1FRSB side.

All the transition lines, together with the m lines with m
=0.7 and m=0.5, and the phases of the 2+ p model with p
"3 are shown in Fig. 7. In the figure p=4, but the phase
diagram does not change qualitatively with the value of p,
provided that it remains larger than 3.

In the limit p→3 the 1FRSB and FRSB phases shrink to
zero while the transition lines separating the two phases col-
lapse smoothly onto the vertical line !0,!2" with !2%1 and
the horizontal line !1,!p" with 0#!p#1 where q0=q1=0,
see Fig. 8. One then smoothly recovers the phase diagram of
the 2+3 model, Fig. 2.

From Fig. 8 we see that the continuous transition line
between that 1FRSB and the FRSB phases displays a point
of vertical slope in the !!p ,!2" plane. Along the continuous
transition line between the 1FRSB and FRSB phases the
point of vertical slope is attained for

m!&" =
2
3

p − 3
p − 2

, !75"

where

FIG. 5. xc=x!q0" versus the q1−q0 in the 1FRSB phase for p
=4 and m=0.5,0.7,1.

FIG. 6. The order parameter function q!x" in the 1FRSB phase
of the 2+4 model. In the figure m=0.8, !4=3, and !2=1.4.

FIG. 7. The static phase diagram of the 2+4 model in the
!!4 ,!2" plane.
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Kac models xxix

qualitative changes take place. Two of them are the mean-field dynamical transition
temperature Td and the static transition temperature Tc. In addition there is a third
temperature T ∗, with T ∗ > Td > Tc, first identified in (52). Above T ∗ the function
V is a convex function with a single minimum at p = 0. At T ∗ and inflection point
appears, and below that temperature the potential is non-convex. For temperature
between Td and T ∗, the function continues to have a single minimum for p = 0. At Td

a local minimum at a value p = qEA > 0 develops. In the interval [Tc, Td], the point
p = 0 is still the absolute minimum of V . The two minima structure below Td reflects
the partition of the equilibrium measure in disjoint metastable states. The value qEA is
the typical overlap between configurations belonging to the same metastable state. For
p = qEA σ is in the state specified by σ(0). Different metastable states have zero mutual
overlap. For p = 0 all but the metastable state specified by σ(0) contribute to the free-
energy and V (0) = 0. Correspondingly, the difference in free-energy between the two
minima equals the system’s configurational entropy Σ∞(T ) multiplied by temperature.
The configurational entropy vanishes linearly on approaching Tc, Σ∞(T ) ∼ T −Tc and
the two minima become degenerate. Below that temperature the mean field model is
in an ideal glassy state and the two minima remain degenerate.
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Fig. 0.8 The function V (p) at different temperatures. For comparison with the case

of Kac model we consider a Hamiltonian with two body and 4 body interactions with
φ(p) = 1/2(0.1 × p2 + p4). From top to bottom T = 0.703486 > T ∗, T = T ∗ = 0.633137,

T = Td = 0.57525, T = 0.558049, T = Tc = 0.541847. The function is convex for T > T ∗.

It has an inflection point with positive slope for Td < T < T ∗. In the interval Tc < T < Td,
V (q) has a local minimum for a temperature dependent value p = qEA. The difference

V (qEA)− V (0) is (T times) the bulk configurational entropy V (qEA)− V (0) = TΣ∞(T ).

We now generalize the previous construction to Kac models. As before, we use
the overlap with an equilibrium reference configuration σ(0) as an order parameter.
In this case however, we are interested in considering the free-energy as a functional

[ S. Franz and G. Semerjian. Analytical approaches to time and length scales in models of 
glasses in  Dynamical heterogeneities in glasses, colloids and granular materials. Oxford 
University Press, 2011. ]
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For !2"!2
* the transition between the 1FRSB phase and the

FRSB takes place continuously in the order parameter func-
tion with q1−q0→0 and xc→m at the transition. The con-
tinuous transition between the 1FRSB and the FRSB phases
occurs on the line of end points of the 1FRSB m lines. In-
serting t=1 into Eqs. !59", !60" one easily gets the parametric
equations of the critical line
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Finally the 1FRSB phase is bounded by the transition line
with the 1RSB phase. Indeed by setting t=0 into Eqs. !59"
and !60" one recovers the parametric equations of the 1RSB
instability line $0

!3"=0 and q0=0. The transition is continu-
ous in both free energy and order parameter function since
q0→0 continuously as the transition line is approached from
the 1FRSB side.

All the transition lines, together with the m lines with m
=0.7 and m=0.5, and the phases of the 2+ p model with p
"3 are shown in Fig. 7. In the figure p=4, but the phase
diagram does not change qualitatively with the value of p,
provided that it remains larger than 3.

In the limit p→3 the 1FRSB and FRSB phases shrink to
zero while the transition lines separating the two phases col-
lapse smoothly onto the vertical line !0,!2" with !2%1 and
the horizontal line !1,!p" with 0#!p#1 where q0=q1=0,
see Fig. 8. One then smoothly recovers the phase diagram of
the 2+3 model, Fig. 2.

From Fig. 8 we see that the continuous transition line
between that 1FRSB and the FRSB phases displays a point
of vertical slope in the !!p ,!2" plane. Along the continuous
transition line between the 1FRSB and FRSB phases the
point of vertical slope is attained for

m!&" =
2
3

p − 3
p − 2

, !75"

where

FIG. 5. xc=x!q0" versus the q1−q0 in the 1FRSB phase for p
=4 and m=0.5,0.7,1.

FIG. 6. The order parameter function q!x" in the 1FRSB phase
of the 2+4 model. In the figure m=0.8, !4=3, and !2=1.4.

FIG. 7. The static phase diagram of the 2+4 model in the
!!4 ,!2" plane.
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The static phase diagram of the 2+4 model in the          plane 
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=0.7 and m=0.5, and the phases of the 2+ p model with p
"3 are shown in Fig. 7. In the figure p=4, but the phase
diagram does not change qualitatively with the value of p,
provided that it remains larger than 3.

In the limit p→3 the 1FRSB and FRSB phases shrink to
zero while the transition lines separating the two phases col-
lapse smoothly onto the vertical line !0,!2" with !2%1 and
the horizontal line !1,!p" with 0#!p#1 where q0=q1=0,
see Fig. 8. One then smoothly recovers the phase diagram of
the 2+3 model, Fig. 2.

From Fig. 8 we see that the continuous transition line
between that 1FRSB and the FRSB phases displays a point
of vertical slope in the !!p ,!2" plane. Along the continuous
transition line between the 1FRSB and FRSB phases the
point of vertical slope is attained for
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where

FIG. 5. xc=x!q0" versus the q1−q0 in the 1FRSB phase for p
=4 and m=0.5,0.7,1.

FIG. 6. The order parameter function q!x" in the 1FRSB phase
of the 2+4 model. In the figure m=0.8, !4=3, and !2=1.4.

FIG. 7. The static phase diagram of the 2+4 model in the
!!4 ,!2" plane.
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* the transition between the 1FRSB phase and the

FRSB takes place continuously in the order parameter func-
tion with q1−q0→0 and xc→m at the transition. The con-
tinuous transition between the 1FRSB and the FRSB phases
occurs on the line of end points of the 1FRSB m lines. In-
serting t=1 into Eqs. !59", !60" one easily gets the parametric
equations of the critical line
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!1"=0, and
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p − 3

p − 3 + 3m
, 0 # m # 1. !74"

Finally the 1FRSB phase is bounded by the transition line
with the 1RSB phase. Indeed by setting t=0 into Eqs. !59"
and !60" one recovers the parametric equations of the 1RSB
instability line $0

!3"=0 and q0=0. The transition is continu-
ous in both free energy and order parameter function since
q0→0 continuously as the transition line is approached from
the 1FRSB side.

All the transition lines, together with the m lines with m
=0.7 and m=0.5, and the phases of the 2+ p model with p
"3 are shown in Fig. 7. In the figure p=4, but the phase
diagram does not change qualitatively with the value of p,
provided that it remains larger than 3.

In the limit p→3 the 1FRSB and FRSB phases shrink to
zero while the transition lines separating the two phases col-
lapse smoothly onto the vertical line !0,!2" with !2%1 and
the horizontal line !1,!p" with 0#!p#1 where q0=q1=0,
see Fig. 8. One then smoothly recovers the phase diagram of
the 2+3 model, Fig. 2.

From Fig. 8 we see that the continuous transition line
between that 1FRSB and the FRSB phases displays a point
of vertical slope in the !!p ,!2" plane. Along the continuous
transition line between the 1FRSB and FRSB phases the
point of vertical slope is attained for

m!&" =
2
3

p − 3
p − 2

, !75"

where

FIG. 5. xc=x!q0" versus the q1−q0 in the 1FRSB phase for p
=4 and m=0.5,0.7,1.

FIG. 6. The order parameter function q!x" in the 1FRSB phase
of the 2+4 model. In the figure m=0.8, !4=3, and !2=1.4.

FIG. 7. The static phase diagram of the 2+4 model in the
!!4 ,!2" plane.
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For !2"!2
* the transition between the 1FRSB phase and the

FRSB takes place continuously in the order parameter func-
tion with q1−q0→0 and xc→m at the transition. The con-
tinuous transition between the 1FRSB and the FRSB phases
occurs on the line of end points of the 1FRSB m lines. In-
serting t=1 into Eqs. !59", !60" one easily gets the parametric
equations of the critical line

!p =
2!p − 3 + 3m"p

27m2!p − 1"!p − 2"!p − 3"p−3 , !72"

!2 =
p!p − 3 + 3m"2

27m2!p − 2"
, !73"

where 0#m#1. Along this line xc=m, $1
!1"=0, and

q0 = q1 =
p − 3

p − 3 + 3m
, 0 # m # 1. !74"

Finally the 1FRSB phase is bounded by the transition line
with the 1RSB phase. Indeed by setting t=0 into Eqs. !59"
and !60" one recovers the parametric equations of the 1RSB
instability line $0

!3"=0 and q0=0. The transition is continu-
ous in both free energy and order parameter function since
q0→0 continuously as the transition line is approached from
the 1FRSB side.

All the transition lines, together with the m lines with m
=0.7 and m=0.5, and the phases of the 2+ p model with p
"3 are shown in Fig. 7. In the figure p=4, but the phase
diagram does not change qualitatively with the value of p,
provided that it remains larger than 3.

In the limit p→3 the 1FRSB and FRSB phases shrink to
zero while the transition lines separating the two phases col-
lapse smoothly onto the vertical line !0,!2" with !2%1 and
the horizontal line !1,!p" with 0#!p#1 where q0=q1=0,
see Fig. 8. One then smoothly recovers the phase diagram of
the 2+3 model, Fig. 2.

From Fig. 8 we see that the continuous transition line
between that 1FRSB and the FRSB phases displays a point
of vertical slope in the !!p ,!2" plane. Along the continuous
transition line between the 1FRSB and FRSB phases the
point of vertical slope is attained for

m!&" =
2
3

p − 3
p − 2

, !75"

where

FIG. 5. xc=x!q0" versus the q1−q0 in the 1FRSB phase for p
=4 and m=0.5,0.7,1.

FIG. 6. The order parameter function q!x" in the 1FRSB phase
of the 2+4 model. In the figure m=0.8, !4=3, and !2=1.4.

FIG. 7. The static phase diagram of the 2+4 model in the
!!4 ,!2" plane.
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Hamiltonian Dynamics
68 The p = 2 spherical model

tw1 tw2 tw3
tw

tw

Cag

Cas

t

lnt


QEA

lnC(t + tw; tw)

→

→

t ∞→

Figure 4.1 Behaviour of the correlation function at low temperature, as a function
of the time difference τ = t − tw. Different curves correspond to different waiting
times tw

scaling only holds for tw/t " 1, where (4.59) has been evaluated. Therefore, we prefer
to leave explicit the dependence on tw and t or, equivalently, tw and τ .

For consistency the aging regime must match with the equilibrium one when
τ/tw is small, and indeed we find

lim
τ/tw→0

Cag = QEA = lim
τ→∞

Cas(τ ). (4.60)

The opposite limit of this time regime is reached when τ % tw, i.e. when we
look at a very old system on scales much larger than the waiting time. From (4.59)
one finds

lim
tw/τ→0

Cag

(
tw
τ

)
∼ 2QEA

(
tw
τ

)3/4

→ 0. (4.61)

Note that this limit is also recovered from Eq. (4.53) when sending t ′ to infinity
after t .

In Fig. (4.1), we can see the typical dynamical pattern of the correlation function
as a function of the time difference τ , at a given fixed value of tw. For values of τ

small compared to tw the system exhibits an equilibrium-like behaviour, and seems
to equilibrate at a plateau value QEA. However, when τ becomes of the order of
tw the asymptotic regime changes and the system drifts away from the plateau,
ultimately decaying to zero with a power law. Note that the change of regime
depends upon tw and the age of the system: the longer we wait, the longer it will
take for the correlations to decay.
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Hamiltonian dynamics
Hamiltonian:

The parameters �2 and �4 are constants needed to weight the 2-spin and 4-spin Hamilto-
nian. From the Hamilton equations we get:
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it is easy to see that the total energy is conserved, by direct calculation and using the
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where we added an external local field h
i

(t) to the Hamiltonian. In the following, to
simplify notation, the spin time dependence will not be written explicitly. Our goal is to
derive differential equations for the evolution of the correlation and response function. In
order to do that, we multiply both sides of the previous equation by a generic observable
of the spin at time t0, i.e. A(s(t0)), and we will perform the thermal average over the
initial condition (indicated with angular brackets h·i) and the average over the quenched
couplings J
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ṗ
i

= s̈
i

= �µ
x

(t)s
i

(t) +
X

j

J
ij

s
j

(t) +
X

j<k<l

J
ijkl

s
j

(t)s
k

(t)s
l

(t) + h
i

(t) (7)

ṗ
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Where we also introduced a time dependent local magnetic field in the system, then we
have an extra term
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(t) in the Hamiltonian and an extra term in the Newtonian
equation, which translate into a term
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(u) from the exponential. In particular, if we compute the average of a generic
observable B(s(t)) respect to the probability (43) we get:
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Let us perform explicitly the J derivative of a generic observable averaged according to
(43), for an arbitrary p-spin. The result reads:
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where the last term contains the dependence on the initial conditions. We often omit the
time dependence of the spins to simplify notation, but we use the convention that, every
spin on the left of A(s(t0)) depends on time u and every spin on its right depends on time
t, unless differently specified explicitly. To facilitate the understanding of the previous
formula, let us specify the result in the case of 2-spin and 4-spin Hamiltonian. For the
2-spin case, the J derivative reads as:
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For the 4-spin case, we get instead:
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i

(u)s
j

s
k

s
l

A(s(t0))s
j

s
k

s
l

i
⌘

+

Z

t

0
duE

⇣

hs
i

(iŝ
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where we indicated with H2(s0) (H4(s0)) the Hamiltonia for the 2 (4) spin model at the
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where the last equality in (54) follows because the average is taken respect to the distribu-
tion (43) and the response is different from zero only if t > t0. Using the above definitions
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2.2 Initial conditions

The distribution of the initial state is assumed to be of a Boltzmann form with different
inverse temperature associated to the 2-spin and the 4-spin model. Explicitly:
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where we indicated with H2(s0) (H4(s0)) the Hamiltonia for the 2 (4) spin model at the
initial time t = 0. Performing explicitly the derivative above contained in the equations
(46) and (47) we obtain:
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where with h. . .i
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we indicate the average respect to the probability distribution (48) and
s0
i

is the spin i at time zero.
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Now let us remind that, for a p-spin model:
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where the last equality in (54) follows because the average is taken respect to the distribu-
tion (43) and the response is different from zero only if t > t0. Using the above definitions
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2.2 Initial conditions

The distribution of the initial state is assumed to be of a Boltzmann form with different
inverse temperature associated to the 2-spin and the 4-spin model. Explicitly:
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0
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=
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where we indicated with H2(s0) (H4(s0)) the Hamiltonia for the 2 (4) spin model at the
initial time t = 0. Performing explicitly the derivative above contained in the equations
(46) and (47) we obtain:
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where with h. . .i
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we indicate the average respect to the probability distribution (48) and
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is the spin i at time zero.
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where the last equality in (54) follows because the average is taken respect to the distribu-
tion (43) and the response is different from zero only if t > t0. Using the above definitions

8

Main equation of dynamics

Dynamics for a generic observable

Potential Method

FPU problem

2+4 p-spin 
spherical Model

Potential Method
Disorder and 

replicas

Looking for minima

Hamiltonian 
dynamics

Generic equation 
of dynamics

Correlation and 
Response

Lagrangian 
multiplier

3=p-spin 
spherical Model

Potential Method

Correlation and 
Response

Future 
developments

3=p-spin 
spherical Model

Potential Method

Correlation and 
Response

Future 
developments

Potential Method

FPU problem

2+4 p-spin 
spherical Model

Potential Method
Disorder and 

replicas

Looking for minima

Hamiltonian 
dynamics

Generic equation 
of dynamics

Correlation and 
Response

Lagrangian 
multiplier

Friday, September 5, 14



2.2 Initial conditions

The distribution of the initial state is assumed to be of a Boltzmann form with different
inverse temperature associated to the 2-spin and the 4-spin model. Explicitly:
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where we indicated with H2(s0) (H4(s0)) the Hamiltonia for the 2 (4) spin model at the
initial time t = 0. Performing explicitly the derivative above contained in the equations
(46) and (47) we obtain:
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where with h. . .i
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we indicate the average respect to the probability distribution (48) and
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is the spin i at time zero.
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Now let us remind that, for a p-spin model:
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where the last equality in (54) follows because the average is taken respect to the distribu-
tion (43) and the response is different from zero only if t > t0. Using the above definitions

8

Main equation of dynamics

2.2 Initial conditions

The distribution of the initial state is assumed to be of a Boltzmann form with different
inverse temperature associated to the 2-spin and the 4-spin model. Explicitly:

µ(s(0)) =
1

Z
e

��

0
�2H2(s0)��

0
�4H4(s0)

=

1

Z

e

��2H2(s0)��4H4(s0) (48)
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i

(t0)i = @hs
i

(t)i
@h

j

(t0)
(53)

where the last equality in (54) follows because the average is taken respect to the distribu-
tion (43) and the response is different from zero only if t > t0. Using the above definitions
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2.2 Initial conditions

The distribution of the initial state is assumed to be of a Boltzmann form with different
inverse temperature associated to the 2-spin and the 4-spin model. Explicitly:
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where we indicated with H2(s0) (H4(s0)) the Hamiltonia for the 2 (4) spin model at the
initial time t = 0. Performing explicitly the derivative above contained in the equations
(46) and (47) we obtain:
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we indicate the average respect to the probability distribution (48) and
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is the spin i at time zero.
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Now let us remind that, for a p-spin model:
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where the last equality in (54) follows because the average is taken respect to the distribu-
tion (43) and the response is different from zero only if t > t0. Using the above definitions
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where we indicated with H2(s0) (H4(s0)) the Hamiltonia for the 2 (4) spin model at the
initial time t = 0. Performing explicitly the derivative above contained in the equations
(46) and (47) we obtain:
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where with h. . .i
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we indicate the average respect to the probability distribution (48) and
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is the spin i at time zero.
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Now let us remind that, for a p-spin model:

E(J2
i1,...,ip

) =

p!

2Np�1
(51)

while the correlation and response function are defined respectively as
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where the last equality in (54) follows because the average is taken respect to the distribu-
tion (43) and the response is different from zero only if t > t0. Using the above definitions
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2.2 Initial conditions

The distribution of the initial state is assumed to be of a Boltzmann form with different
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where we indicated with H2(s0) (H4(s0)) the Hamiltonia for the 2 (4) spin model at the
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i

(t0) ! hs
i

(t) iŝ
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where the last equality in (54) follows because the average is taken respect to the distribu-
tion (43) and the response is different from zero only if t > t0. Using the above definitions
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dŝ
i

(u)

2⇡

⌘

exp

n

X

i

Z

t

0
du

h

iŝ
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iŝ
j

A(s(t0))s
j

i
⌘

+ E
⇣D@ logµ(s(0))

@J
ij

A(s(t0))s
j

(t)
E⌘

(20)

For the 4-spin case,

A(s(t0)) = s
i

(t0)

A(s(t0)) = i ŝ
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2.2 Initial conditions

The distribution of the initial state is assumed to be of a Boltzmann form with different
inverse temperature associated to the 2-spin and the 4-spin model. Explicitly:
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where we indicated with H2(s0) (H4(s0)) the Hamiltonia for the 2 (4) spin model at the
initial time t = 0. Performing explicitly the derivative above contained in the equations
(46) and (47) we obtain:
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where with h. . .i
eq

we indicate the average respect to the probability distribution (48) and
s0
i

is the spin i at time zero.
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Now let us remind that, for a p-spin model:
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where the last equality in (54) follows because the average is taken respect to the distribu-
tion (43) and the response is different from zero only if t > t0. Using the above definitions
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i

(u)s
j

s
k

s
l

A(s(t0))s
j

s
k

s
l

i

+

Z

t

0
duEhs

i

(iŝ
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Equations for Correlation and Response
Correlation
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The equation for the response reads:
Response
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Let us observe that to obtain the above equations, we assumed t > t0 and we remind that
R(t, t0) = hs

i

(t)iŝ
i

(t0)i 6= 0 only if t > t0. For the same reason, eq. (59) does not have an
explicit dependence on the initial conditions because R(0, t0) = 0 since t = 0 is the initial
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2.3.1 Lagrangian multiplier equation

In what follows we want now to derive the equation for the lagrangian multiplier µ
x

(t) which
enforces the spherical constraint at any time. Let us consider the Hamilton equation (36).
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Let us observe that to obtain the above equations, we assumed t > t0 and we remind that
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(t0)i 6= 0 only if t > t0. For the same reason, eq. (59) does not have an
explicit dependence on the initial conditions because R(0, t0) = 0 since t = 0 is the initial
time and then t0 > 0. Now we need also to determine the equations for the lagrangian
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2.3.1 Lagrangian multiplier equation
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Let us observe that to obtain the above equations, we assumed t > t0 and we remind that
R(t, t0) = hs

i

(t)iŝ
i

(t0)i 6= 0 only if t > t0. For the same reason, eq. (59) does not have an
explicit dependence on the initial conditions because R(0, t0) = 0 since t = 0 is the initial
time and then t0 > 0. Now we need also to determine the equations for the lagrangian
multiplier µ
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(t) and for the pseudo-correlation K(0, t) previously introduced. To obtain
the equation for K(0, t) we can use as general observable A(s
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and proceed
as we did for the correlation and response. The result is the following:
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j

(t)i
⌘

+

p4
2

Z

t

0
duEhiŝ

i

(u)A(s(t0))C(t, u)p4�1i

+

p4(p4 � 1)

2

Z

t

0
duEhs

i

(u)A(s(t0))R(t, u)C(t, u)p4�2i

+ �4
p4
2

⇣

Ehs0
i

A(s(t0))C(t, 0)p4�1i

� lim

N!1

1

Np4

N

X

i,j,k,l

hs0
i

s0
j

s0
k

s0
l

i
eq

hA(s(t0))s
j

(t)s
k

(t)s
l

(t)i
⌘

(54)

The differential equation for the correlation (response) function can be obtained simply
considering A(s(t0)) = s

i

(t0) (A(s(t0)) = iŝ
i

(t0)) in (54) and taking 1
N

P

i

on both sides of
it.
Let us now we assume that, since we are summing over the indexes, we can rewrite the
quantity

1

N4

X

i,j,k,l

hs0
i

s0
j

s0
k

s0
l

i
eq

hs
i

(t0)s
j

(t)s
k

(t)s
l

(t)i

=

1

N4

X

i,j,k,l

hs0
i

i
eq

hs0
j

i
eq

hs0
k

i
eq

hs0
l

i
eq

i
eq

hs
i

(t0)ihs
j

(t)ihs
k

(t)ihs
l

(t)i (55)

and similarly for the others similar terms for the 2-spin model. Let us observe that instead,
under this approximation, the quantities

1

N4

X

i,j,k,l

hs0
i

s0
j

s0
k

s0
l

i
eq

hiŝ
i

(t0)s
j

(t)s
k

(t)s
l

(t)i

=

1

N4

X

i,j,k,l

hs0
i

i
eq

hs0
j

i
eq

hs0
k

i
eq

hs0
l

i
eq

hiŝ
i

(t0)ihs
j

(t)ihs
k

(t)ihs
l

(t)i = 0 (56)

because hiŝ
i

(t0)i = 0. Now by defining the following quantity, that we name ’pseudo-
correlation’,

K(0, t) = lim

N!1

1

N

X

i

hs
i

(0)i
eq

hs
i

(t)i (57)

we can rewrite the expression of the correlation and the response using the above approx-
imations in (??). The differential equation for the correlation reads:
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Equations for Correlation and Response
Correlation

@2C(t, t0)

@t2
= �µ

x

(t)C(t, t0)

+

p2
2

Z

t

0

0
duR(t0, u)C(t, u)p2�1

+

p2(p2 � 1)

2

Z

t

0
duC(t0, u)R(t, u)C(t, u)p2�2

+ �2
p2
2

⇣

C(t0, 0)C(t, 0)p2�1 �K(0, t0)K(0, t)p2�1
⌘

+

p4
2

Z

t

0

0
duR(t0, u)C(t, u)p4�1

+

p4(p4 � 1)

2

Z

t

0
duC(t0, u)R(t, u)C(t, u)p4�2

+ �4
p4
2

⇣

C(t0, 0)C(t, 0)p4�1 �K(0, t0)K(0, t)p4�1
⌘

The equation for the response reads:
Response

@2R(t, t0)

@t2
=� µ

x

(t)R(t, t0) +
p2(p2 � 1)

2

Z

t

t

0
duR(u, t0)R(t, u)C(t, u)p2�2

+

p4(p4 � 1)

2

Z

t

t

0
duR(u, t0)R(t, u)C(t, u)p4�2

Let us observe that to obtain the above equations, we assumed t > t0 and we remind that
R(t, t0) = hs

i

(t)iŝ
i

(t0)i 6= 0 only if t > t0. For the same reason, eq. (59) does not have an
explicit dependence on the initial conditions because R(0, t0) = 0 since t = 0 is the initial
time and then t0 > 0. Now we need also to determine the equations for the lagrangian
multiplier µ

x

(t) and for the pseudo-correlation K(0, t) previously introduced. To obtain
the equation for K(0, t) we can use as general observable A(s

i

(t0)) = hs
i

(0)i
eq

and proceed
as we did for the correlation and response. The result is the following:
Pseudo-correlation K(0, t):

@2K(0, t)

@t2
= �µ

x

(t)K(0, t)

+

p2(p2 � 1)

2

Z

t

0
duK(0, u)R(t, u)C(t, u)p2�2

+ �2
p2
2

⇣

K(0, 0)C(t, 0)p2�1 � q̄K(0, t)p2�1
⌘

+

p4(p4 � 1)

2

Z

t

0
duK(0, u)R(t, u)C(t, u)p4�2

+ �4
p4
2

⇣

K(0, 0)C(t, 0)p4�1 � q̄K(0, t)p4�1
⌘

(58)

where we used the definition of the mean overlap q̄ =

1
N

P

i

hs
i

(0)i2
eq

. Indeed:

1

N

X

i

hs
i

i2 = 1

N

X

i

⇣

X

↵

w
↵

m↵

i

⌘2
=

X

↵�

w
↵

w
�

1

N

X

i

m↵

i

m�

i

=

X

↵�

w
↵

w
�

q↵� (59)

=

Z

dq q
X

↵�

�(q � q↵�)w
↵

w
�

=

Z

q P (q) = q̄
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Correlation

@2C(t, t0)

@t2
= �µ

x

(t)C(t, t0)

+

p2
2

Z

t

0

0
duR(t0, u)C(t, u)p2�1

+

p2(p2 � 1)

2

Z

t

0
duC(t0, u)R(t, u)C(t, u)p2�2

+ �2
p2
2

⇣

C(t0, 0)C(t, 0)p2�1 �K(0, t0)K(0, t)p2�1
⌘

+

p4
2

Z

t

0

0
duR(t0, u)C(t, u)p4�1

+

p4(p4 � 1)

2

Z

t

0
duC(t0, u)R(t, u)C(t, u)p4�2

+ �4
p4
2

⇣

C(t0, 0)C(t, 0)p4�1 �K(0, t0)K(0, t)p4�1
⌘

The equation for the response reads:
Response

@2R(t, t0)

@t2
=� µ

x

(t)R(t, t0) +
p2(p2 � 1)

2

Z

t

t

0
duR(u, t0)R(t, u)C(t, u)p2�2

+

p4(p4 � 1)

2

Z

t

t

0
duR(u, t0)R(t, u)C(t, u)p4�2

Let us observe that to obtain the above equations, we assumed t > t0 and we remind that
R(t, t0) = hs

i

(t)iŝ
i

(t0)i 6= 0 only if t > t0. For the same reason, eq. (58) does not have an
explicit dependence on the initial conditions because R(0, t0) = 0 since t = 0 is the initial
time and then t0 > 0. Now we need also to determine the equations for the lagrangian
multiplier µ

x

(t) and for the pseudo-correlation K(0, t) previously introduced. To obtain
the equation for K(0, t) we can use as general observable A(s

i

(t0)) = hs
i

(0)i
eq

and proceed
as we did for the correlation and response. The result is the following:
Pseudo-correlation K(0, t):

@2K(0, t)

@t2
=� µ

x

(t)K(0, t) +
p2(p2 � 1)

2

Z

t

0
duK(0, u)R(t, u)C(t, u)p2�2

+ �2
p2
2

⇣

K(0, 0)C(t, 0)p2�1 � q̄K(0, t)p2�1
⌘

+

p4(p4 � 1)

2

Z

t

0
duK(0, u)R(t, u)C(t, u)p4�2

+ �4
p4
2

⇣

K(0, 0)C(t, 0)p4�1 � q̄K(0, t)p4�1
⌘

where we used the definition of the mean overlap q̄ =

1
N

P

i

hs
i

(0)i2
eq

. Indeed:

1

N

X

i

hs
i

i2 = 1

N

X

i

⇣

X

↵

w
↵

m↵

i

⌘2
=

X

↵�

w
↵

w
�

1

N

X

i

m↵

i

m�

i

=

X

↵�

w
↵

w
�

q↵� (58)

=

Z

dq q
X

↵�

�(q � q↵�)w
↵

w
�

=

Z

q P (q) = q̄

2.3.1 Lagrangian multiplier equation

In what follows we want now to derive the equation for the lagrangian multiplier µ
x

(t) which
enforces the spherical constraint at any time. Let us consider the Hamilton equation (36).
Multiplying both its sides by s

i

and summing over i we get:

�
X

i

@H

@s
i

s
i

=

X

i

ṗ
i

s
i

= �
X

i

@V

@s
i

s
i

� µ
x

X

i

s2
i

(59)
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and (51), equation (??) reads:

Ehs̈
i

(t)A(s(t0))i = �µ
x

(t)Ehs
i

(t)A(s(t0))i

+

p2
2

Z

t

0
duEhiŝ

i

(u)A(s(t0))C(t, u)p2�1i

+

p2(p2 � 1)

2

Z

t

0
duEhs

i

(u)A(s(t0))R(t, u)C(t, u)p2�2i

+ �2
p2
2

⇣

Ehs0
i

A(s(t0))C(t, 0)p2�1i � lim

N!1

1

Np2

N

X

i,j

hs0
i

s0
j

i
eq

hA(s(t0))s
j

(t)i
⌘

+

p4
2

Z

t

0
duEhiŝ

i

(u)A(s(t0))C(t, u)p4�1i

+

p4(p4 � 1)

2

Z

t

0
duEhs

i

(u)A(s(t0))R(t, u)C(t, u)p4�2i

+ �4
p4
2

⇣

Ehs0
i

A(s(t0))C(t, 0)p4�1i

� lim

N!1

1

Np4

N

X

i,j,k,l

hs0
i

s0
j

s0
k

s0
l

i
eq

hA(s(t0))s
j

(t)s
k

(t)s
l

(t)i
⌘

(54)

The differential equation for the correlation (response) function can be obtained simply
considering A(s(t0)) = s

i

(t0) (A(s(t0)) = iŝ
i

(t0)) in (54) and taking 1
N

P

i

on both sides of
it.
Let us now we assume that, since we are summing over the indexes, we can rewrite the
quantity

1

N4

X

i,j,k,l

hs0
i

s0
j

s0
k

s0
l

i
eq

hs
i

(t0)s
j

(t)s
k

(t)s
l

(t)i

=

1

N4

X

i,j,k,l

hs0
i

i
eq

hs0
j

i
eq

hs0
k

i
eq

hs0
l

i
eq

i
eq

hs
i

(t0)ihs
j

(t)ihs
k

(t)ihs
l

(t)i (55)

and similarly for the others similar terms for the 2-spin model. Let us observe that instead,
under this approximation, the quantities

1

N4

X

i,j,k,l

hs0
i

s0
j

s0
k

s0
l

i
eq

hiŝ
i

(t0)s
j

(t)s
k

(t)s
l

(t)i

=

1

N4

X

i,j,k,l

hs0
i

i
eq

hs0
j

i
eq

hs0
k

i
eq

hs0
l

i
eq

hiŝ
i

(t0)ihs
j

(t)ihs
k

(t)ihs
l

(t)i = 0 (56)

because hiŝ
i

(t0)i = 0. Now by defining the following quantity, that we name ’pseudo-
correlation’,

K(0, t) = lim

N!1

1

N

X

i

hs
i

(0)i
eq

hs
i

(t)i (57)

we can rewrite the expression of the correlation and the response using the above approx-
imations in (??). The differential equation for the correlation reads:

9

Where we introduced the Pseudo-Correlation

And we assumed

self averaging of correlation, response and pseudo-correlation

mean-field approximation

3=p-spin 
spherical Model

Potential Method

Correlation and 
Response

Future 
developments

Potential Method

FPU problem

2+4 p-spin 
spherical Model

Potential Method
Disorder and 

replicas

Looking for minima

Hamiltonian 
dynamics

Generic equation 
of dynamics

Correlation and 
Response

Lagrangian 
multiplier

Friday, September 5, 14



and (51), equation (??) reads:

Ehs̈
i

(t)A(s(t0))i = �µ
x

(t)Ehs
i

(t)A(s(t0))i

+

p2
2

Z

t

0
duEhiŝ

i

(u)A(s(t0))C(t, u)p2�1i

+

p2(p2 � 1)

2

Z

t

0
duEhs

i

(u)A(s(t0))R(t, u)C(t, u)p2�2i

+ �2
p2
2

⇣

Ehs0
i

A(s(t0))C(t, 0)p2�1i � lim

N!1

1

Np2

N

X

i,j

hs0
i

s0
j

i
eq

hA(s(t0))s
j

(t)i
⌘

+

p4
2

Z

t

0
duEhiŝ

i

(u)A(s(t0))C(t, u)p4�1i

+

p4(p4 � 1)

2

Z

t

0
duEhs

i

(u)A(s(t0))R(t, u)C(t, u)p4�2i

+ �4
p4
2

⇣

Ehs0
i

A(s(t0))C(t, 0)p4�1i

� lim

N!1

1

Np4

N

X

i,j,k,l

hs0
i

s0
j

s0
k

s0
l

i
eq

hA(s(t0))s
j

(t)s
k

(t)s
l

(t)i
⌘

(54)

The differential equation for the correlation (response) function can be obtained simply
considering A(s(t0)) = s

i

(t0) (A(s(t0)) = iŝ
i

(t0)) in (54) and taking 1
N

P

i

on both sides of
it.
Let us now we assume that, since we are summing over the indexes, we can rewrite the
quantity

1

N4

X

i,j,k,l

hs0
i

s0
j

s0
k

s0
l

i
eq

hs
i

(t0)s
j

(t)s
k

(t)s
l

(t)i

=

1

N4

X

i,j,k,l

hs0
i

i
eq

hs0
j

i
eq

hs0
k

i
eq

hs0
l

i
eq

i
eq

hs
i

(t0)ihs
j

(t)ihs
k

(t)ihs
l

(t)i (55)

and similarly for the others similar terms for the 2-spin model. Let us observe that instead,
under this approximation, the quantities

1

N4

X

i,j,k,l

hs0
i

s0
j

s0
k

s0
l

i
eq

hiŝ
i

(t0)s
j

(t)s
k

(t)s
l

(t)i

=

1

N4

X

i,j,k,l

hs0
i

i
eq

hs0
j

i
eq

hs0
k

i
eq

hs0
l

i
eq

hiŝ
i

(t0)ihs
j

(t)ihs
k

(t)ihs
l

(t)i = 0 (56)

because hiŝ
i

(t0)i = 0. Now by defining the following quantity, that we name ’pseudo-
correlation’,

K(0, t) = lim

N!1

1

N

X

i

hs
i

(0)i
eq

hs
i

(t)i (57)

we can rewrite the expression of the correlation and the response using the above approx-
imations in (??). The differential equation for the correlation reads:

9

To determine the equation for the Pseudo-Correlation

Main equation of dynamics:

2.2 Initial conditions

The distribution of the initial state is assumed to be of a Boltzmann form with different
inverse temperature associated to the 2-spin and the 4-spin model. Explicitly:

µ(s(0)) =
1

Z
e

��

0
�2H2(s0)��

0
�4H4(s0)

=

1

Z

e

��2H2(s0)��4H4(s0) (48)

where we indicated with H2(s0) (H4(s0)) the Hamiltonia for the 2 (4) spin model at the
initial time t = 0. Performing explicitly the derivative above contained in the equations
(46) and (47) we obtain:

@ logµ(s(0))

@J
ij

=�2(s
0
i

s0
j

� hs0
i

s0
j

i
eq

) (49)

@ logµ(s(0))

@J
ijkl

=�4(s
0
i

s0
j

s0
k

s0
l

� hs0
i

s0
j

s0
k

s0
l

i
eq

) (50)

where with h. . .i
eq

we indicate the average respect to the probability distribution (48) and
s0
i

is the spin i at time zero.

2.3 Main dynamic equation and equation for Correlation and Response

Now we want to collect all the previous results together and write (41) in a more explicit
form. In particular, substituting (49) and (50) into (46) and (47) we can rewrite (41) as:

Ehs̈
i

A(s(t0))i =� Ehµ
x

(t)s
i

(t)A(s(t0))i+
X

j

E(J2
ij

)

h

Z

t

0
duEhiŝ

i

(u)s
j

A(s(t0))s
j

(t)i

+

Z

t

0
duEhs

i

iŝ
j

A(s(t0))s
j

i+ Eh�2(s0
i

s0
j

+ hs0
i

s0
j

i
eq

)A(s(t0))s
j

(t)i
i

+

X

j<k<l

E(J2
ijkl

)

h

Z

t

0
duEhiŝ

i

(u)s
j

s
k

s
l

A(s(t0))s
j

s
k

s
l

i

+

Z

t

0
duEhs

i

(iŝ
j

s
k

s
l

+ s
j

iŝ
k

s
l

+ s
j

s
k

iŝ
l

)A(s(t0))s
j

s
k

s
l

i

+ Eh�4(s0
i

s0
j

s0
k

s0
l

+ hs0
i

s0
j

s0
k

s0
l

i
eq

)A(s(t0)) s
j

s
k

s
l

i
i

Now let us remind that, for a p-spin model:

E(J2
i1,...,ip

) =

p!

2Np�1
(51)

while the correlation and response function are defined respectively as

C(t, t0) =
1

N

X

i

s
i

(t)s
i

(t0) ! hs
i

(t)s
i

(t0)i (52)

R(t, t0) =
1

N

X

i

s
i

(t) iŝ
i

(t0) ! hs
i

(t) iŝ
i

(t0)i = @hs
i

(t)i
@h

j

(t0)
(53)

where the last equality in (54) follows because the average is taken respect to the distribu-
tion (43) and the response is different from zero only if t > t0. Using the above definitions
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and (51), equation (??) reads:

Ehs̈
i

(t)A(s(t0))i = �µ
x

(t)Ehs
i

(t)A(s(t0))i

+

p2
2

Z

t

0
duEhiŝ

i

(u)A(s(t0))C(t, u)p2�1i

+

p2(p2 � 1)

2

Z

t

0
duEhs

i

(u)A(s(t0))R(t, u)C(t, u)p2�2i

+ �2
p2
2

⇣

Ehs0
i

A(s(t0))C(t, 0)p2�1i � lim

N!1

1

Np2

N

X

i,j

hs0
i

s0
j

i
eq

hA(s(t0))s
j

(t)i
⌘

+

p4
2

Z

t

0
duEhiŝ

i

(u)A(s(t0))C(t, u)p4�1i

+

p4(p4 � 1)

2

Z

t

0
duEhs

i

(u)A(s(t0))R(t, u)C(t, u)p4�2i

+ �4
p4
2

⇣

Ehs0
i

A(s(t0))C(t, 0)p4�1i

� lim

N!1

1

Np4

N

X

i,j,k,l

hs0
i

s0
j

s0
k

s0
l

i
eq

hA(s(t0))s
j

(t)s
k

(t)s
l

(t)i
⌘

(54)

The differential equation for the correlation (response) function can be obtained simply
considering A(s(t0)) = s

i

(t0) (A(s(t0)) = iŝ
i

(t0)) in (54) and taking 1
N

P

i

on both sides of
it.
Let us now we assume that, since we are summing over the indexes, we can rewrite the
quantity

1

N4

X

i,j,k,l

hs0
i

s0
j

s0
k

s0
l

i
eq

hs
i

(t0)s
j

(t)s
k

(t)s
l

(t)i

=

1

N4

X

i,j,k,l

hs0
i

i
eq

hs0
j

i
eq

hs0
k

i
eq

hs0
l

i
eq

i
eq

hs
i

(t0)ihs
j

(t)ihs
k

(t)ihs
l

(t)i (55)

and similarly for the others similar terms for the 2-spin model. Let us observe that instead,
under this approximation, the quantities

1

N4

X

i,j,k,l

hs0
i

s0
j

s0
k

s0
l

i
eq

hiŝ
i

(t0)s
j

(t)s
k

(t)s
l

(t)i

=

1

N4

X

i,j,k,l

hs0
i

i
eq

hs0
j

i
eq

hs0
k

i
eq

hs0
l

i
eq

hiŝ
i

(t0)ihs
j

(t)ihs
k

(t)ihs
l

(t)i = 0 (56)

because hiŝ
i

(t0)i = 0. Now by defining the following quantity, that we name ’pseudo-
correlation’,

K(0, t) = lim

N!1

1

N

X

i

hs
i

(0)i
eq

hs
i

(t)i (57)

we can rewrite the expression of the correlation and the response using the above approx-
imations in (??). The differential equation for the correlation reads:

9

To determine the equation for the Pseudo-Correlation

Main equation of dynamics:

2.2 Initial conditions

The distribution of the initial state is assumed to be of a Boltzmann form with different
inverse temperature associated to the 2-spin and the 4-spin model. Explicitly:

µ(s(0)) =
1

Z
e

��

0
�2H2(s0)��

0
�4H4(s0)

=

1

Z

e

��2H2(s0)��4H4(s0) (48)

where we indicated with H2(s0) (H4(s0)) the Hamiltonia for the 2 (4) spin model at the
initial time t = 0. Performing explicitly the derivative above contained in the equations
(46) and (47) we obtain:

@ logµ(s(0))

@J
ij

=�2(s
0
i

s0
j

� hs0
i

s0
j

i
eq

) (49)

@ logµ(s(0))

@J
ijkl

=�4(s
0
i

s0
j

s0
k

s0
l

� hs0
i

s0
j

s0
k

s0
l

i
eq

) (50)

where with h. . .i
eq

we indicate the average respect to the probability distribution (48) and
s0
i

is the spin i at time zero.

2.3 Main dynamic equation and equation for Correlation and Response

Now we want to collect all the previous results together and write (41) in a more explicit
form. In particular, substituting (49) and (50) into (46) and (47) we can rewrite (41) as:

Ehs̈
i

A(s(t0))i =� Ehµ
x

(t)s
i

(t)A(s(t0))i+
X

j

E(J2
ij

)

h

Z

t

0
duEhiŝ

i

(u)s
j

A(s(t0))s
j

(t)i

+

Z

t

0
duEhs

i

iŝ
j

A(s(t0))s
j

i+ Eh�2(s0
i

s0
j

+ hs0
i

s0
j

i
eq

)A(s(t0))s
j

(t)i
i

+

X

j<k<l

E(J2
ijkl

)

h

Z

t

0
duEhiŝ

i

(u)s
j

s
k

s
l

A(s(t0))s
j

s
k

s
l

i

+

Z

t

0
duEhs

i

(iŝ
j

s
k

s
l

+ s
j

iŝ
k

s
l

+ s
j

s
k

iŝ
l

)A(s(t0))s
j

s
k

s
l

i

+ Eh�4(s0
i

s0
j

s0
k

s0
l

+ hs0
i

s0
j

s0
k

s0
l

i
eq

)A(s(t0)) s
j

s
k

s
l

i
i

Now let us remind that, for a p-spin model:

E(J2
i1,...,ip

) =

p!

2Np�1
(51)

while the correlation and response function are defined respectively as

C(t, t0) =
1

N

X

i

s
i

(t)s
i

(t0) ! hs
i

(t)s
i

(t0)i (52)

R(t, t0) =
1

N

X

i

s
i

(t) iŝ
i

(t0) ! hs
i

(t) iŝ
i

(t0)i = @hs
i

(t)i
@h

j

(t0)
(53)

where the last equality in (54) follows because the average is taken respect to the distribu-
tion (43) and the response is different from zero only if t > t0. Using the above definitions

8

Correlation

@2C(t, t0)

@t2
= �µ

x

(t)C(t, t0)

+

p2
2

Z

t

0

0
duR(t0, u)C(t, u)p2�1

+

p2(p2 � 1)

2

Z

t

0
duC(t0, u)R(t, u)C(t, u)p2�2

+ �2
p2
2

⇣

C(t0, 0)C(t, 0)p2�1 �K(0, t0)K(0, t)p2�1
⌘

+

p4
2

Z

t

0

0
duR(t0, u)C(t, u)p4�1

+

p4(p4 � 1)

2

Z

t

0
duC(t0, u)R(t, u)C(t, u)p4�2

+ �4
p4
2

⇣

C(t0, 0)C(t, 0)p4�1 �K(0, t0)K(0, t)p4�1
⌘

(58)

The equation for the response reads:
Response

@2R(t, t0)

@t2
=� µ

x

(t)R(t, t0) +
p2(p2 � 1)

2

Z

t

t

0
duR(u, t0)R(t, u)C(t, u)p2�2

+

p4(p4 � 1)

2

Z

t

t

0
duR(u, t0)R(t, u)C(t, u)p4�2 (59)

Let us observe that to obtain the above equations, we assumed t > t0 and we remind that
R(t, t0) = hs

i

(t)iŝ
i

(t0)i 6= 0 only if t > t0. For the same reason, eq. (59) does not have an
explicit dependence on the initial conditions because R(0, t0) = 0 since t = 0 is the initial
time and then t0 > 0. Now we need also to determine the equations for the lagrangian
multiplier µ

x

(t) and for the pseudo-correlation K(0, t) previously introduced. To obtain
the equation for K(0, t) we can use as general observable A(s

i

(t0)) = hs
i

(0)i
eq

and proceed
as we did for the correlation and response. The result is the following:
Pseudo-correlation K(0, t):

@2K(0, t)

@t2
=� µ

x

(t)K(0, t) +
p2(p2 � 1)

2

Z

t

0
duK(0, u)R(t, u)C(t, u)p2�2

+ �2
p2
2

⇣

K(0, 0)C(t, 0)p2�1 � q̄K(0, t)p2�1
⌘

+

p4(p4 � 1)

2

Z

t

0
duK(0, u)R(t, u)C(t, u)p4�2

+ �4
p4
2

⇣

K(0, 0)C(t, 0)p4�1 � q̄K(0, t)p4�1
⌘

(60)

where we used the definition of the mean overlap q̄ =

1
N

P

i

hs
i

(0)i2
eq

. Indeed:

1

N

X

i

hs
i

i2 = 1

N

X

i

⇣

X

↵

w
↵

m↵

i

⌘2
=

X

↵�

w
↵

w
�

1

N

X

i

m↵

i

m�

i

=

X

↵�

w
↵

w
�

q↵� (61)

=

Z

dq q
X

↵�

�(q � q↵�)w
↵

w
�

=

Z

q P (q) = q̄

2.3.1 Lagrangian multiplier equation

In what follows we want now to derive the equation for the lagrangian multiplier µ
x

(t) which
enforces the spherical constraint at any time. Let us consider the Hamilton equation (36).
Multiplying both its sides by s

i

and summing over i we get:

�
X

i

@H

@s
i

s
i

=

X

i

ṗ
i

s
i

= �
X

i

@V

@s
i

s
i

� µ
x

X

i

s2
i

(62)
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and (51), equation (??) reads:

Ehs̈
i

(t)A(s(t0))i = �µ
x

(t)Ehs
i

(t)A(s(t0))i

+

p2
2

Z

t

0
duEhiŝ

i

(u)A(s(t0))C(t, u)p2�1i

+

p2(p2 � 1)

2

Z

t

0
duEhs

i

(u)A(s(t0))R(t, u)C(t, u)p2�2i

+ �2
p2
2

⇣

Ehs0
i

A(s(t0))C(t, 0)p2�1i � lim

N!1

1

Np2

N

X

i,j

hs0
i

s0
j

i
eq

hA(s(t0))s
j

(t)i
⌘

+

p4
2

Z

t

0
duEhiŝ

i

(u)A(s(t0))C(t, u)p4�1i

+

p4(p4 � 1)

2

Z

t

0
duEhs

i

(u)A(s(t0))R(t, u)C(t, u)p4�2i

+ �4
p4
2

⇣

Ehs0
i

A(s(t0))C(t, 0)p4�1i

� lim

N!1

1

Np4

N

X

i,j,k,l

hs0
i

s0
j

s0
k

s0
l

i
eq

hA(s(t0))s
j

(t)s
k

(t)s
l

(t)i
⌘

(54)

The differential equation for the correlation (response) function can be obtained simply
considering A(s(t0)) = s

i

(t0) (A(s(t0)) = iŝ
i

(t0)) in (54) and taking 1
N

P

i

on both sides of
it.
Let us now we assume that, since we are summing over the indexes, we can rewrite the
quantity

1

N4

X

i,j,k,l

hs0
i

s0
j

s0
k

s0
l

i
eq

hs
i

(t0)s
j

(t)s
k

(t)s
l

(t)i

=

1

N4

X

i,j,k,l

hs0
i

i
eq

hs0
j

i
eq

hs0
k

i
eq

hs0
l

i
eq

i
eq

hs
i

(t0)ihs
j

(t)ihs
k

(t)ihs
l

(t)i (55)

and similarly for the others similar terms for the 2-spin model. Let us observe that instead,
under this approximation, the quantities

1

N4

X

i,j,k,l

hs0
i

s0
j

s0
k

s0
l

i
eq

hiŝ
i

(t0)s
j

(t)s
k

(t)s
l

(t)i

=

1

N4

X

i,j,k,l

hs0
i

i
eq

hs0
j

i
eq

hs0
k

i
eq

hs0
l

i
eq

hiŝ
i

(t0)ihs
j

(t)ihs
k

(t)ihs
l

(t)i = 0 (56)

because hiŝ
i

(t0)i = 0. Now by defining the following quantity, that we name ’pseudo-
correlation’,

K(0, t) = lim

N!1

1

N

X

i

hs
i

(0)i
eq

hs
i

(t)i (57)

we can rewrite the expression of the correlation and the response using the above approx-
imations in (??). The differential equation for the correlation reads:

9

To determine the equation for the Pseudo-Correlation

Main equation of dynamics:

2.2 Initial conditions

The distribution of the initial state is assumed to be of a Boltzmann form with different
inverse temperature associated to the 2-spin and the 4-spin model. Explicitly:

µ(s(0)) =
1

Z
e

��

0
�2H2(s0)��

0
�4H4(s0)

=

1

Z

e

��2H2(s0)��4H4(s0) (48)

where we indicated with H2(s0) (H4(s0)) the Hamiltonia for the 2 (4) spin model at the
initial time t = 0. Performing explicitly the derivative above contained in the equations
(46) and (47) we obtain:

@ logµ(s(0))

@J
ij

=�2(s
0
i

s0
j

� hs0
i

s0
j

i
eq

) (49)

@ logµ(s(0))

@J
ijkl

=�4(s
0
i

s0
j

s0
k

s0
l

� hs0
i

s0
j

s0
k

s0
l

i
eq

) (50)

where with h. . .i
eq

we indicate the average respect to the probability distribution (48) and
s0
i

is the spin i at time zero.

2.3 Main dynamic equation and equation for Correlation and Response

Now we want to collect all the previous results together and write (41) in a more explicit
form. In particular, substituting (49) and (50) into (46) and (47) we can rewrite (41) as:

Ehs̈
i

A(s(t0))i =� Ehµ
x

(t)s
i

(t)A(s(t0))i+
X

j

E(J2
ij

)

h

Z

t

0
duEhiŝ

i

(u)s
j

A(s(t0))s
j

(t)i

+

Z

t

0
duEhs

i

iŝ
j

A(s(t0))s
j

i+ Eh�2(s0
i

s0
j

+ hs0
i

s0
j

i
eq

)A(s(t0))s
j

(t)i
i

+

X

j<k<l

E(J2
ijkl

)

h

Z

t

0
duEhiŝ

i

(u)s
j

s
k

s
l

A(s(t0))s
j

s
k

s
l

i

+

Z

t

0
duEhs

i

(iŝ
j

s
k

s
l

+ s
j

iŝ
k

s
l

+ s
j

s
k

iŝ
l

)A(s(t0))s
j

s
k

s
l

i

+ Eh�4(s0
i

s0
j

s0
k

s0
l

+ hs0
i

s0
j

s0
k

s0
l

i
eq

)A(s(t0)) s
j

s
k

s
l

i
i

Now let us remind that, for a p-spin model:

E(J2
i1,...,ip

) =

p!

2Np�1
(51)

while the correlation and response function are defined respectively as

C(t, t0) =
1

N

X

i

s
i

(t)s
i

(t0) ! hs
i

(t)s
i

(t0)i (52)

R(t, t0) =
1

N

X

i

s
i

(t) iŝ
i

(t0) ! hs
i

(t) iŝ
i

(t0)i = @hs
i

(t)i
@h

j

(t0)
(53)

where the last equality in (54) follows because the average is taken respect to the distribu-
tion (43) and the response is different from zero only if t > t0. Using the above definitions

8

Correlation

@2C(t, t0)

@t2
= �µ

x

(t)C(t, t0)

+

p2
2

Z

t

0

0
duR(t0, u)C(t, u)p2�1

+

p2(p2 � 1)

2

Z

t

0
duC(t0, u)R(t, u)C(t, u)p2�2

+ �2
p2
2

⇣

C(t0, 0)C(t, 0)p2�1 �K(0, t0)K(0, t)p2�1
⌘

+

p4
2

Z

t

0

0
duR(t0, u)C(t, u)p4�1

+

p4(p4 � 1)

2

Z

t

0
duC(t0, u)R(t, u)C(t, u)p4�2

+ �4
p4
2

⇣

C(t0, 0)C(t, 0)p4�1 �K(0, t0)K(0, t)p4�1
⌘

(58)

The equation for the response reads:
Response

@2R(t, t0)

@t2
=� µ

x

(t)R(t, t0) +
p2(p2 � 1)

2

Z

t

t

0
duR(u, t0)R(t, u)C(t, u)p2�2

+

p4(p4 � 1)

2

Z

t

t

0
duR(u, t0)R(t, u)C(t, u)p4�2 (59)

Let us observe that to obtain the above equations, we assumed t > t0 and we remind that
R(t, t0) = hs

i

(t)iŝ
i

(t0)i 6= 0 only if t > t0. For the same reason, eq. (59) does not have an
explicit dependence on the initial conditions because R(0, t0) = 0 since t = 0 is the initial
time and then t0 > 0. Now we need also to determine the equations for the lagrangian
multiplier µ

x

(t) and for the pseudo-correlation K(0, t) previously introduced. To obtain
the equation for K(0, t) we can use as general observable A(s

i

(t0)) = hs
i

(0)i
eq

and proceed
as we did for the correlation and response. The result is the following:
Pseudo-correlation K(0, t):

@2K(0, t)

@t2
=� µ

x

(t)K(0, t) +
p2(p2 � 1)

2

Z

t

0
duK(0, u)R(t, u)C(t, u)p2�2

+ �2
p2
2

⇣

K(0, 0)C(t, 0)p2�1 � q̄K(0, t)p2�1
⌘

+

p4(p4 � 1)

2

Z

t

0
duK(0, u)R(t, u)C(t, u)p4�2

+ �4
p4
2

⇣

K(0, 0)C(t, 0)p4�1 � q̄K(0, t)p4�1
⌘

(60)

where we used the definition of the mean overlap q̄ =

1
N

P

i

hs
i

(0)i2
eq

. Indeed:

1

N

X

i

hs
i

i2 = 1

N

X

i

⇣

X

↵

w
↵

m↵

i

⌘2
=

X

↵�

w
↵

w
�

1

N

X

i

m↵

i

m�

i

=

X

↵�

w
↵

w
�

q↵� (61)

=

Z

dq q
X

↵�

�(q � q↵�)w
↵

w
�

=

Z

q P (q) = q̄

2.3.1 Lagrangian multiplier equation

In what follows we want now to derive the equation for the lagrangian multiplier µ
x

(t) which
enforces the spherical constraint at any time. Let us consider the Hamilton equation (36).
Multiplying both its sides by s

i

and summing over i we get:

�
X

i

@H

@s
i

s
i

=

X

i

ṗ
i

s
i

= �
X

i

@V

@s
i

s
i

� µ
x

X

i

s2
i

(62)
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We choose

The differential equation for the Pseudo-Correlation 

Correlation
@2C(t, t0)

@t2
= �µ

x

(t)C(t, t0)

+

p2
2

Z

t

0

0
duR(t0, u)C(t, u)p2�1

+

p2(p2 � 1)

2

Z

t

0
duC(t0, u)R(t, u)C(t, u)p2�2

+ �2
p2
2

⇣

C(t0, 0)C(t, 0)p2�1 �K(0, t0)K(0, t)p2�1
⌘

+

p4
2

Z

t

0

0
duR(t0, u)C(t, u)p4�1

+

p4(p4 � 1)

2

Z

t

0
duC(t0, u)R(t, u)C(t, u)p4�2

+ �4
p4
2

⇣

C(t0, 0)C(t, 0)p4�1 �K(0, t0)K(0, t)p4�1
⌘

The equation for the response reads:
Response

@2R(t, t0)

@t2
=� µ

x

(t)R(t, t0) +
p2(p2 � 1)

2

Z

t

t

0
duR(u, t0)R(t, u)C(t, u)p2�2

+

p4(p4 � 1)

2

Z

t

t

0
duR(u, t0)R(t, u)C(t, u)p4�2

Let us observe that to obtain the above equations, we assumed t > t0 and we remind that
R(t, t0) = hs

i

(t)iŝ
i

(t0)i 6= 0 only if t > t0. For the same reason, eq. (58) does not have an
explicit dependence on the initial conditions because R(0, t0) = 0 since t = 0 is the initial
time and then t0 > 0. Now we need also to determine the equations for the lagrangian
multiplier µ

x

(t) and for the pseudo-correlation K(0, t) previously introduced. To obtain
the equation for K(0, t) we can use as general observable A(s

i

(t0)) = hs
i

(0)i
eq

and proceed
as we did for the correlation and response. The result is the following:
Pseudo-correlation K(0, t):

@2K(0, t)

@t2
=� µ

x

(t)K(0, t) +
p2(p2 � 1)

2

Z

t

0
duK(0, u)R(t, u)C(t, u)p2�2

+ �2
p2
2

⇣

K(0, 0)C(t, 0)p2�1 � q̄K(0, t)p2�1
⌘

+

p4(p4 � 1)

2

Z

t

0
duK(0, u)R(t, u)C(t, u)p4�2

+ �4
p4
2

⇣

K(0, 0)C(t, 0)p4�1 � q̄K(0, t)p4�1
⌘

where we used the definition of the mean overlap q̄ =

1
N

P

i

hs
i

(0)i2
eq

. Indeed:

1

N

X

i

hs
i

i2 = 1

N

X

i

⇣

X

↵

w
↵

m↵

i

⌘2
=

X

↵�

w
↵

w
�

1

N

X

i

m↵

i

m�

i

=

X

↵�

w
↵

w
�

q↵� (58)

=

Z

dq q
X

↵�

�(q � q↵�)w
↵

w
�

=

Z

q P (q) = q̄

2.3.1 Lagrangian multiplier equation

In what follows we want now to derive the equation for the lagrangian multiplier µ
x

(t) which
enforces the spherical constraint at any time. Let us consider the Hamilton equation (36).
Multiplying both its sides by s

i

and summing over i we get:

�
X

i

@H

@s
i

s
i

=

X

i

ṗ
i

s
i

= �
X

i

@V

@s
i

s
i

� µ
x

X

i

s2
i

(59)

let us remind that
P

i

s2
i

= N and ṗ
i

= s̈
i

and hence observe that we can rewrite:
X

i

ṗ
i

s
i

=

X

i

s̈
i

s
i

=

1

2

d

dt

X

i

s2
i

�
X

i

ṡ2
i

= �
X

i

ṡ2
i

(60)
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Choosing v = 0 and
P

↵

u
↵

= 0 we get from (26) that �1 = (1 � r) and its degeneracy
is g1 = m � 1. If we choose

P

a

v
a

= 0 with v
n

= 0 and
P

↵

u
↵

= 0, from (24) we get
�2 = (1� q) and g2 = n� 2. The other three eigenvalues can be determined choosing an
eigenvector like .... we get:

a+ (n� 2)qa+ bq +msc = �a (27)
(n� 1)qa+ b+mpc = �b (28)

(n� 1)sa+ pb+ [1 + (m� 1)r]c = �c (29)

and then computing the determinant of the coefficient matrix we can get the product of
the three missing eigenvalues, i.e. detM = �3�4�5, with

M =

0

@

1 + (n� 2)q q ms
(n� 1)q 1 mp
(n� 1)s p [1 + (m� 1)r]

1

A (30)

Now substituting the ansatz (23) into (22) and using the result for the first two eigenvalues
we get:

1

N
lnZ(n,m)

=

1

4

h

n(n� 1)(�2
2q

2
+ �2

4q
4
) + n(�2

2 + �2
4) + 2�m(n� 1)(�2

2s
2
+ �2

4s
4
)

+ 2�m(�2
2p

2
+ �2

4p
4
) +m(m� 1)(�2r2 + �4r4) + 2�2m

i

+

1

2

h

(m� 1) ln(1� r) + (n� 2) ln(1� q) + ln detM
i

(31)

Then, finally, the potential can be computed using (7). The result reads:

�V =� 1

4

(2�2
+ 2�(�2p

2
+ �4p

4
)� �2

(r2 + r4)� 2�(�2s
2
+ �4s

4
))

� 1

2

(

�p2 + 2p2q + r � 2qr + q2r � 2pqs+ s2

1� 2q + q2 � r + 2qr � q2r
+ ln[1� r]) (32)

It is immediate to see that, if we consider only a p = 4 spin spherical model, and then
we neglect all the terms related to the 2-spin model, we get the same result as in [1] if we
choose the same ansatz, namely q = 0 and s = 0.

TO BE CONTINUED...

2 Hamiltonian dynamics

In this section we want to consider an Hamiltonian dynamics at temperature T for the
evolution of the p-spin spherical model starting from an initial configuration equilibrated
at a different temperature T 0. We then consider the following Hamiltonian:

H(s) =
1

2

X

i

p2
i

+ V
J

(s) +
µ
x

(t)

2

(

X

i

s2
i

�N) (33)

where µ
x

(t) enforces the spherical constraint at any time t and V
J

is given by

V
J

= ��2
X

i<j

J
ij

s
i

s
j

� �4
X

i<j<k<l

J
ijkl

s
i

s
j

s
k

s
l

(34)
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The parameters �2 and �4 are constants needed to weight the 2-spin and 4-spin Hamilto-
nian. From the Hamilton equations we get:

@H

@p
i

= ṡ
i

= p
i

(37)

@H

@s
i

= �ṗ
i

=

@V

@s
i

+ µ
x

s
i

(38)

it is easy to see that the total energy is conserved, by direct calculation and using the
Hamilton equations:

dH

dt
= ṗ p+

@V

@s
i

ṡ
i

+ µ
x

s
i

ṡ
i

= 0 (39)

Then our starting point is the newtonian equation of motion, derived from the Hamilton
equation (38):

ṗ
i

= s̈
i

= �@H

@s
i

= �@V

@s
i

� µ
x

s
i

(40)

2.1 Hamiltonian dynamics for a 2+4 spin spherical model

The potential in the Hamiltonian of the model (35) reads as:

V
J

(s(t)) = �
X

i<j

J
ij

s
i

s
j

�
X

i<j<k<l

J
ijkl

s
i

s
j

s
k

s
l

(41)

Then from the equation of motion (40) we get:

s̈
i

= �µ
x

(t)s
i

(t) +
X

j

J
ij

s
j

(t) +
X

j<k<l

J
ijkl

s
j

(t)s
k

(t)s
l

(t) + h
i

(t) (42)

where we added an external local field h
i

(t) to the Hamiltonian. In the following, to
simplify notation, the spin time dependence will not be written explicitly. Our goal is to
derive differential equations for the evolution of the correlation and response function. In
order to do that, we multiply both sides of the previous equation by a generic observable
of the spin at time t0, i.e. A(s(t0)), and we will perform the thermal average over the
initial condition (indicated with angular brackets h·i) and the average over the quenched
couplings J

i1,...,ip (indicated with E(·)). From (43) we get

Ehs̈
i

A(s(t0))i =� Ehµ
x

(t)s
i

(t)A(s(t0))i+
X

j

E(J
ij

hs
j

(t)A(s(t0))i)

+

X

j<k<l

E(J
ijkl

hs
j

(t)s
k

(t)s
l

(t)A(s(t0))i) (43)

Let us now observe that, since the couplings J ’s are gaussian distributed, we can perform a
partial integration on the gaussian couplings and obtain the following celebrated relation:

X

j

E(J
ij

h s
j

A(s(t0))i) =
X

j

E(J2
ij

)E( @

@J
ij

h s
j

A(s(t0))i) (44)

An analogous relation hold for the averages which contain the J
ijkl

. In order to make
explicit the J derivative we can now use the Martin-Siggia-Rose representation of the joint
probability of paths s

i

(t), starting from an initial condition s
i

(0) chosen with probability
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let us remind that
P

i

s2
i

= N and ṗ
i

= s̈
i

and hence observe that we can rewrite:

X

i

ṗ
i

s
i

=

X

i

s̈
i

s
i

=

1

2

d

dt

X

i

s2
i

�
X

i

ṡ2
i

= �
X

i

ṡ2
i

(63)

since the derivative is zero because of the spherical constraint. Now from the equation of
the Hamiltonian (33) we get

P

i

p2
i

= 2(H � V
J

). Then combing this results with eq. (61)
and (62) we obtain:

X

i

s̈
i

s
i

= �
X

i

@V

@s
i

s
i

�Nµ
x

= �
X

i

ṡ2
i

=

X

i

p2
i

= 2(H � V
J

) (64)

and hence:
Nµ

x

= �
X

i

@V
J

@s
i

s
i

+ 2(H � V
J

) (65)

or, making a thermal average and an average over the disorder we get:

Nµ
x

= �
X

i

E
D@V

J

@s
i

s
i

E

+ 2(E � EhV
J

i) (66)

where E is the total energy. Let us now remind that V
J

= H2 +H4 and observe that, by
direct calculation,

X

i

@H
p

@s
i

s
i

= pH
p

(67)

and then eq. (65) becomes

Nµ
x

= �2EhH2i � 4EhH4i+ 2E � 2EhH2i � 2EhH4i = 2E � 4EhH2i � 6EhH4i (68)

The computation of EhH2i or EhH4i are analogue to those seen in (46) and (47) with
A(s(t0)) = s

i

(t). Then the equation for the lagrangian multiplier reads as (t = t0):

µ
x

(t) =2e+ 4

p2
2

Z

t

0
duR(t, u)C(t, u)p2�1

+ �2

⇣

C(t, 0)p2 �K(0, t)p2
⌘

+ 6

p4
2

Z

t

0
duR(t, u)C(t, u)p4�1

+ �4

⇣

C(t, 0)p4 �K(0, t)p4
⌘

where e = lim

N!1E/N

3 Modello 3-spin model partitioned in a system 1 with �N
spins and a system 2 with (1� �)N spins

The Hamiltonian of the model reads as:

H =�
�N,�N,�N

X

i<j<k

J
(1)
ijk

s
(1)
i

s
(1)
j

s
(1)
k

�
(1��)N,(1��)N,(1��)N

X

i<j<k

J
(2)
ijk

s
(2)
i

s
(2)
j

s
(2)
k

(69)

�
�N,�N,(1��)N

X

i<j,k

J
(12)
ijk

s
(1)
i

s
(1)
j

s
(2)
k

�
�N,(1��)N,(1��)N

X

i<j,k

J
(21)
ijk

s
(1)
i

s
(2)
j

s
(2)
k

(NOTATION: p = 3, �1 (�2) the inverse temperature coupled to the 3-spin Hamilto-
nian of system 1 (2) and �12 (�21) the inverse temperature coupled to the interaction
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Choosing v = 0 and
P

↵

u
↵

= 0 we get from (26) that �1 = (1 � r) and its degeneracy
is g1 = m � 1. If we choose

P

a

v
a

= 0 with v
n

= 0 and
P

↵

u
↵

= 0, from (24) we get
�2 = (1� q) and g2 = n� 2. The other three eigenvalues can be determined choosing an
eigenvector like .... we get:

a+ (n� 2)qa+ bq +msc = �a (27)
(n� 1)qa+ b+mpc = �b (28)

(n� 1)sa+ pb+ [1 + (m� 1)r]c = �c (29)

and then computing the determinant of the coefficient matrix we can get the product of
the three missing eigenvalues, i.e. detM = �3�4�5, with

M =

0

@

1 + (n� 2)q q ms
(n� 1)q 1 mp
(n� 1)s p [1 + (m� 1)r]

1

A (30)

Now substituting the ansatz (23) into (22) and using the result for the first two eigenvalues
we get:

1

N
lnZ(n,m)

=

1

4

h

n(n� 1)(�2
2q

2
+ �2

4q
4
) + n(�2

2 + �2
4) + 2�m(n� 1)(�2

2s
2
+ �2

4s
4
)

+ 2�m(�2
2p

2
+ �2

4p
4
) +m(m� 1)(�2r2 + �4r4) + 2�2m

i

+

1

2

h

(m� 1) ln(1� r) + (n� 2) ln(1� q) + ln detM
i

(31)

Then, finally, the potential can be computed using (7). The result reads:

�V =� 1

4

(2�2
+ 2�(�2p

2
+ �4p

4
)� �2

(r2 + r4)� 2�(�2s
2
+ �4s

4
))

� 1

2

(

�p2 + 2p2q + r � 2qr + q2r � 2pqs+ s2

1� 2q + q2 � r + 2qr � q2r
+ ln[1� r]) (32)

It is immediate to see that, if we consider only a p = 4 spin spherical model, and then
we neglect all the terms related to the 2-spin model, we get the same result as in [1] if we
choose the same ansatz, namely q = 0 and s = 0.

TO BE CONTINUED...

2 Hamiltonian dynamics

In this section we want to consider an Hamiltonian dynamics at temperature T for the
evolution of the p-spin spherical model starting from an initial configuration equilibrated
at a different temperature T 0. We then consider the following Hamiltonian:

H(s) =
1

2

X

i

p2
i

+ V
J

(s) +
µ
x

(t)

2

(

X

i

s2
i

�N) (33)

where µ
x

(t) enforces the spherical constraint at any time t and V
J

is given by

V
J

= ��2
X

i<j

J
ij

s
i

s
j

� �4
X

i<j<k<l

J
ijkl

s
i

s
j

s
k

s
l

(34)
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The parameters �2 and �4 are constants needed to weight the 2-spin and 4-spin Hamilto-
nian. From the Hamilton equations we get:

@H

@p
i

= ṡ
i

= p
i

(37)

@H

@s
i

= �ṗ
i

=

@V

@s
i

+ µ
x

s
i

(38)

it is easy to see that the total energy is conserved, by direct calculation and using the
Hamilton equations:

dH

dt
= ṗ p+

@V

@s
i

ṡ
i

+ µ
x

s
i

ṡ
i

= 0 (39)

Then our starting point is the newtonian equation of motion, derived from the Hamilton
equation (38):

ṗ
i

= s̈
i

= �@H

@s
i

= �@V

@s
i

� µ
x

s
i

(40)

2.1 Hamiltonian dynamics for a 2+4 spin spherical model

The potential in the Hamiltonian of the model (35) reads as:

V
J

(s(t)) = �
X

i<j

J
ij

s
i

s
j

�
X

i<j<k<l

J
ijkl

s
i

s
j

s
k

s
l

(41)

Then from the equation of motion (40) we get:

s̈
i

= �µ
x

(t)s
i

(t) +
X

j

J
ij

s
j

(t) +
X

j<k<l

J
ijkl

s
j

(t)s
k

(t)s
l

(t) + h
i

(t) (42)

where we added an external local field h
i

(t) to the Hamiltonian. In the following, to
simplify notation, the spin time dependence will not be written explicitly. Our goal is to
derive differential equations for the evolution of the correlation and response function. In
order to do that, we multiply both sides of the previous equation by a generic observable
of the spin at time t0, i.e. A(s(t0)), and we will perform the thermal average over the
initial condition (indicated with angular brackets h·i) and the average over the quenched
couplings J

i1,...,ip (indicated with E(·)). From (43) we get

Ehs̈
i

A(s(t0))i =� Ehµ
x

(t)s
i

(t)A(s(t0))i+
X

j

E(J
ij

hs
j

(t)A(s(t0))i)

+

X

j<k<l

E(J
ijkl

hs
j

(t)s
k

(t)s
l

(t)A(s(t0))i) (43)

Let us now observe that, since the couplings J ’s are gaussian distributed, we can perform a
partial integration on the gaussian couplings and obtain the following celebrated relation:

X

j

E(J
ij

h s
j

A(s(t0))i) =
X

j

E(J2
ij

)E( @

@J
ij

h s
j

A(s(t0))i) (44)

An analogous relation hold for the averages which contain the J
ijkl

. In order to make
explicit the J derivative we can now use the Martin-Siggia-Rose representation of the joint
probability of paths s

i

(t), starting from an initial condition s
i

(0) chosen with probability
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let us remind that
P

i

s2
i

= N and ṗ
i

= s̈
i

and hence observe that we can rewrite:

X

i

ṗ
i

s
i

=

X

i

s̈
i

s
i

=

1

2

d

dt

X

i

s2
i

�
X

i

ṡ2
i

= �
X

i

ṡ2
i

(63)

since the derivative is zero because of the spherical constraint. Now from the equation of
the Hamiltonian (33) we get

P

i

p2
i

= 2(H � V
J

). Then combing this results with eq. (61)
and (62) we obtain:

X

i

s̈
i

s
i

= �
X

i

@V

@s
i

s
i

�Nµ
x

= �
X

i

ṡ2
i

=

X

i

p2
i

= 2(H � V
J

) (64)

and hence:
Nµ

x

= �
X

i

@V
J

@s
i

s
i

+ 2(H � V
J

) (65)

or, making a thermal average and an average over the disorder we get:

Nµ
x

= �
X

i

E
D@V

J

@s
i

s
i

E

+ 2(E � EhV
J

i) (66)

where E is the total energy. Let us now remind that V
J

= H2 +H4 and observe that, by
direct calculation,

X

i

@H
p

@s
i

s
i

= pH
p

(67)

and then eq. (65) becomes

Nµ
x

= �2EhH2i � 4EhH4i+ 2E � 2EhH2i � 2EhH4i = 2E � 4EhH2i � 6EhH4i (68)

The computation of EhH2i or EhH4i are analogue to those seen in (46) and (47) with
A(s(t0)) = s

i

(t). Then the equation for the lagrangian multiplier reads as (t = t0):

µ
x

(t) =2e+ 4

p2
2

Z

t

0
duR(t, u)C(t, u)p2�1

+ �2

⇣

C(t, 0)p2 �K(0, t)p2
⌘

+ 6

p4
2

Z

t

0
duR(t, u)C(t, u)p4�1

+ �4

⇣

C(t, 0)p4 �K(0, t)p4
⌘

where e = lim

N!1E/N

3 Modello 3-spin model partitioned in a system 1 with �N
spins and a system 2 with (1� �)N spins

The Hamiltonian of the model reads as:

H =�
�N,�N,�N

X

i<j<k

J
(1)
ijk

s
(1)
i

s
(1)
j

s
(1)
k

�
(1��)N,(1��)N,(1��)N

X

i<j<k

J
(2)
ijk

s
(2)
i

s
(2)
j

s
(2)
k

(69)

�
�N,�N,(1��)N

X

i<j,k

J
(12)
ijk

s
(1)
i

s
(1)
j

s
(2)
k

�
�N,(1��)N,(1��)N

X

i<j,k

J
(21)
ijk

s
(1)
i

s
(2)
j

s
(2)
k

(NOTATION: p = 3, �1 (�2) the inverse temperature coupled to the 3-spin Hamilto-
nian of system 1 (2) and �12 (�21) the inverse temperature coupled to the interaction
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let us remind that
P

i

s2
i

= N and ṗ
i

= s̈
i

and hence observe that we can rewrite:

X

i

ṗ
i

s
i

=

X

i

s̈
i

s
i

=

1

2

d

dt

X

i

s2
i

�
X

i

ṡ2
i

= �
X

i

ṡ2
i

(63)

since the derivative is zero because of the spherical constraint. Now from the equation of
the Hamiltonian (33) we get

P

i

p2
i

= 2(H � V
J

). Then combing this results with eq. (61)
and (62) we obtain:

X

i

s̈
i

s
i

= �
X

i

@V

@s
i

s
i

�Nµ
x

= �
X

i

ṡ2
i

=

X

i

p2
i

= 2(H � V
J

) (64)

and hence:
Nµ

x

= �
X

i

@V
J

@s
i

s
i

+ 2(H � V
J

) (65)

or, making a thermal average and an average over the disorder we get:

Nµ
x

= �
X

i

E
D@V

J

@s
i

s
i

E

+ 2(E � EhV
J

i) (66)

where E is the total energy. Let us now remind that V
J

= H2 +H4 and observe that, by
direct calculation,

X

i

@H
p

@s
i

s
i

= pH
p

(67)

and then eq. (65) becomes

Nµ
x

= �2EhH2i � 4EhH4i+ 2E � 2EhH2i � 2EhH4i = 2E � 4EhH2i � 6EhH4i (68)

The computation of EhH2i or EhH4i are analogue to those seen in (46) and (47) with
A(s(t0)) = s

i

(t). Then the equation for the lagrangian multiplier reads as (t = t0):

µ
x

(t) =2e+ 4

p2
2

Z

t

0
duR(t, u)C(t, u)p2�1

+ �2

⇣

C(t, 0)p2 �K(0, t)p2
⌘

+ 6

p4
2

Z

t

0
duR(t, u)C(t, u)p4�1

+ �4

⇣

C(t, 0)p4 �K(0, t)p4
⌘

where e = lim

N!1E/N

3 Modello 3-spin model partitioned in a system 1 with �N
spins and a system 2 with (1� �)N spins

The Hamiltonian of the model reads as:

H =�
�N,�N,�N
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(69)
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(NOTATION: p = 3, �1 (�2) the inverse temperature coupled to the 3-spin Hamilto-
nian of system 1 (2) and �12 (�21) the inverse temperature coupled to the interaction
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Choosing v = 0 and
P

↵

u
↵

= 0 we get from (26) that �1 = (1 � r) and its degeneracy
is g1 = m � 1. If we choose

P

a

v
a

= 0 with v
n

= 0 and
P

↵

u
↵

= 0, from (24) we get
�2 = (1� q) and g2 = n� 2. The other three eigenvalues can be determined choosing an
eigenvector like .... we get:

a+ (n� 2)qa+ bq +msc = �a (27)
(n� 1)qa+ b+mpc = �b (28)

(n� 1)sa+ pb+ [1 + (m� 1)r]c = �c (29)

and then computing the determinant of the coefficient matrix we can get the product of
the three missing eigenvalues, i.e. detM = �3�4�5, with

M =

0

@

1 + (n� 2)q q ms
(n� 1)q 1 mp
(n� 1)s p [1 + (m� 1)r]

1

A (30)

Now substituting the ansatz (23) into (22) and using the result for the first two eigenvalues
we get:

1

N
lnZ(n,m)

=

1

4

h

n(n� 1)(�2
2q

2
+ �2

4q
4
) + n(�2

2 + �2
4) + 2�m(n� 1)(�2

2s
2
+ �2

4s
4
)

+ 2�m(�2
2p

2
+ �2

4p
4
) +m(m� 1)(�2r2 + �4r4) + 2�2m

i

+

1

2

h

(m� 1) ln(1� r) + (n� 2) ln(1� q) + ln detM
i

(31)

Then, finally, the potential can be computed using (7). The result reads:

�V =� 1

4

(2�2
+ 2�(�2p

2
+ �4p

4
)� �2

(r2 + r4)� 2�(�2s
2
+ �4s

4
))

� 1

2

(

�p2 + 2p2q + r � 2qr + q2r � 2pqs+ s2

1� 2q + q2 � r + 2qr � q2r
+ ln[1� r]) (32)

It is immediate to see that, if we consider only a p = 4 spin spherical model, and then
we neglect all the terms related to the 2-spin model, we get the same result as in [1] if we
choose the same ansatz, namely q = 0 and s = 0.

TO BE CONTINUED...

2 Hamiltonian dynamics

In this section we want to consider an Hamiltonian dynamics at temperature T for the
evolution of the p-spin spherical model starting from an initial configuration equilibrated
at a different temperature T 0. We then consider the following Hamiltonian:

H(s) =
1

2

X

i

p2
i

+ V
J

(s) +
µ
x

(t)

2

(

X

i

s2
i

�N) (33)

where µ
x

(t) enforces the spherical constraint at any time t and V
J

is given by

V
J

= ��2
X

i<j

J
ij

s
i

s
j

� �4
X

i<j<k<l

J
ijkl

s
i

s
j

s
k

s
l

(34)
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The parameters �2 and �4 are constants needed to weight the 2-spin and 4-spin Hamilto-
nian. From the Hamilton equations we get:

@H

@p
i

= ṡ
i

= p
i

(37)

@H

@s
i

= �ṗ
i

=

@V

@s
i

+ µ
x

s
i

(38)

it is easy to see that the total energy is conserved, by direct calculation and using the
Hamilton equations:

dH

dt
= ṗ p+

@V

@s
i

ṡ
i

+ µ
x

s
i

ṡ
i

= 0 (39)

Then our starting point is the newtonian equation of motion, derived from the Hamilton
equation (38):

ṗ
i

= s̈
i

= �@H

@s
i

= �@V

@s
i

� µ
x

s
i

(40)

2.1 Hamiltonian dynamics for a 2+4 spin spherical model

The potential in the Hamiltonian of the model (35) reads as:

V
J

(s(t)) = �
X

i<j

J
ij

s
i

s
j

�
X

i<j<k<l

J
ijkl

s
i

s
j

s
k

s
l

(41)

Then from the equation of motion (40) we get:

s̈
i

= �µ
x

(t)s
i

(t) +
X

j

J
ij

s
j

(t) +
X

j<k<l

J
ijkl

s
j

(t)s
k

(t)s
l

(t) + h
i

(t) (42)

where we added an external local field h
i

(t) to the Hamiltonian. In the following, to
simplify notation, the spin time dependence will not be written explicitly. Our goal is to
derive differential equations for the evolution of the correlation and response function. In
order to do that, we multiply both sides of the previous equation by a generic observable
of the spin at time t0, i.e. A(s(t0)), and we will perform the thermal average over the
initial condition (indicated with angular brackets h·i) and the average over the quenched
couplings J

i1,...,ip (indicated with E(·)). From (43) we get

Ehs̈
i

A(s(t0))i =� Ehµ
x

(t)s
i

(t)A(s(t0))i+
X

j

E(J
ij

hs
j

(t)A(s(t0))i)

+

X

j<k<l

E(J
ijkl

hs
j

(t)s
k

(t)s
l

(t)A(s(t0))i) (43)

Let us now observe that, since the couplings J ’s are gaussian distributed, we can perform a
partial integration on the gaussian couplings and obtain the following celebrated relation:

X

j

E(J
ij

h s
j

A(s(t0))i) =
X

j

E(J2
ij

)E( @

@J
ij

h s
j

A(s(t0))i) (44)

An analogous relation hold for the averages which contain the J
ijkl

. In order to make
explicit the J derivative we can now use the Martin-Siggia-Rose representation of the joint
probability of paths s

i

(t), starting from an initial condition s
i

(0) chosen with probability
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let us remind that
P

i

s2
i

= N and ṗ
i

= s̈
i

and hence observe that we can rewrite:

X

i

ṗ
i

s
i

=

X

i

s̈
i

s
i

=

1

2

d

dt

X

i

s2
i

�
X

i

ṡ2
i

= �
X

i

ṡ2
i

(63)

since the derivative is zero because of the spherical constraint. Now from the equation of
the Hamiltonian (33) we get

P

i

p2
i

= 2(H � V
J

). Then combing this results with eq. (61)
and (62) we obtain:

X

i

s̈
i

s
i

= �
X

i

@V

@s
i

s
i

�Nµ
x

= �
X

i

ṡ2
i

=

X

i

p2
i

= 2(H � V
J

) (64)

and hence:
Nµ

x

= �
X

i

@V
J

@s
i

s
i

+ 2(H � V
J

) (65)

or, making a thermal average and an average over the disorder we get:

Nµ
x

= �
X

i

E
D@V

J

@s
i

s
i

E

+ 2(E � EhV
J

i) (66)

where E is the total energy. Let us now remind that V
J

= H2 +H4 and observe that, by
direct calculation,

X

i

@H
p

@s
i

s
i

= pH
p

(67)

and then eq. (65) becomes

Nµ
x

= �2EhH2i � 4EhH4i+ 2E � 2EhH2i � 2EhH4i = 2E � 4EhH2i � 6EhH4i (68)

The computation of EhH2i or EhH4i are analogue to those seen in (46) and (47) with
A(s(t0)) = s

i

(t). Then the equation for the lagrangian multiplier reads as (t = t0):

µ
x

(t) =2e+ 4

p2
2

Z

t

0
duR(t, u)C(t, u)p2�1

+ �2

⇣

C(t, 0)p2 �K(0, t)p2
⌘

+ 6

p4
2

Z

t

0
duR(t, u)C(t, u)p4�1

+ �4

⇣

C(t, 0)p4 �K(0, t)p4
⌘

where e = lim

N!1E/N

3 Modello 3-spin model partitioned in a system 1 with �N
spins and a system 2 with (1� �)N spins

The Hamiltonian of the model reads as:

H =�
�N,�N,�N

X

i<j<k

J
(1)
ijk

s
(1)
i

s
(1)
j

s
(1)
k

�
(1��)N,(1��)N,(1��)N

X

i<j<k

J
(2)
ijk

s
(2)
i

s
(2)
j

s
(2)
k

(69)

�
�N,�N,(1��)N

X

i<j,k

J
(12)
ijk

s
(1)
i

s
(1)
j

s
(2)
k

�
�N,(1��)N,(1��)N

X

i<j,k

J
(21)
ijk

s
(1)
i

s
(2)
j

s
(2)
k

(NOTATION: p = 3, �1 (�2) the inverse temperature coupled to the 3-spin Hamilto-
nian of system 1 (2) and �12 (�21) the inverse temperature coupled to the interaction
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(NOTATION: p = 3, �1 (�2) the inverse temperature coupled to the 3-spin Hamilto-
nian of system 1 (2) and �12 (�21) the inverse temperature coupled to the interaction
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Choosing v = 0 and
P

↵

u
↵

= 0 we get from (26) that �1 = (1 � r) and its degeneracy
is g1 = m � 1. If we choose

P

a

v
a

= 0 with v
n

= 0 and
P

↵

u
↵

= 0, from (24) we get
�2 = (1� q) and g2 = n� 2. The other three eigenvalues can be determined choosing an
eigenvector like .... we get:

a+ (n� 2)qa+ bq +msc = �a (27)
(n� 1)qa+ b+mpc = �b (28)

(n� 1)sa+ pb+ [1 + (m� 1)r]c = �c (29)

and then computing the determinant of the coefficient matrix we can get the product of
the three missing eigenvalues, i.e. detM = �3�4�5, with

M =

0

@

1 + (n� 2)q q ms
(n� 1)q 1 mp
(n� 1)s p [1 + (m� 1)r]

1

A (30)

Now substituting the ansatz (23) into (22) and using the result for the first two eigenvalues
we get:

1

N
lnZ(n,m)

=

1

4

h

n(n� 1)(�2
2q

2
+ �2

4q
4
) + n(�2

2 + �2
4) + 2�m(n� 1)(�2

2s
2
+ �2

4s
4
)

+ 2�m(�2
2p

2
+ �2

4p
4
) +m(m� 1)(�2r2 + �4r4) + 2�2m

i

+

1

2

h

(m� 1) ln(1� r) + (n� 2) ln(1� q) + ln detM
i

(31)

Then, finally, the potential can be computed using (7). The result reads:

�V =� 1

4

(2�2
+ 2�(�2p

2
+ �4p

4
)� �2

(r2 + r4)� 2�(�2s
2
+ �4s

4
))

� 1

2

(

�p2 + 2p2q + r � 2qr + q2r � 2pqs+ s2

1� 2q + q2 � r + 2qr � q2r
+ ln[1� r]) (32)

It is immediate to see that, if we consider only a p = 4 spin spherical model, and then
we neglect all the terms related to the 2-spin model, we get the same result as in [1] if we
choose the same ansatz, namely q = 0 and s = 0.

TO BE CONTINUED...

2 Hamiltonian dynamics

In this section we want to consider an Hamiltonian dynamics at temperature T for the
evolution of the p-spin spherical model starting from an initial configuration equilibrated
at a different temperature T 0. We then consider the following Hamiltonian:

H(s) =
1

2

X

i

p2
i

+ V
J

(s) +
µ
x

(t)

2

(

X

i

s2
i

�N) (33)

where µ
x

(t) enforces the spherical constraint at any time t and V
J

is given by

V
J

= ��2
X

i<j

J
ij

s
i

s
j

� �4
X

i<j<k<l

J
ijkl

s
i

s
j

s
k

s
l

(34)

5

The parameters �2 and �4 are constants needed to weight the 2-spin and 4-spin Hamilto-
nian. From the Hamilton equations we get:

@H

@p
i

= ṡ
i

= p
i

(37)

@H

@s
i

= �ṗ
i

=

@V

@s
i

+ µ
x

s
i

(38)

it is easy to see that the total energy is conserved, by direct calculation and using the
Hamilton equations:

dH

dt
= ṗ p+

@V

@s
i

ṡ
i

+ µ
x

s
i

ṡ
i

= 0 (39)

Then our starting point is the newtonian equation of motion, derived from the Hamilton
equation (38):

ṗ
i

= s̈
i

= �@H

@s
i

= �@V

@s
i

� µ
x

s
i

(40)

2.1 Hamiltonian dynamics for a 2+4 spin spherical model

The potential in the Hamiltonian of the model (35) reads as:

V
J

(s(t)) = �
X

i<j

J
ij

s
i

s
j

�
X

i<j<k<l

J
ijkl

s
i

s
j

s
k

s
l

(41)

Then from the equation of motion (40) we get:

s̈
i

= �µ
x

(t)s
i

(t) +
X

j

J
ij

s
j

(t) +
X

j<k<l

J
ijkl

s
j

(t)s
k

(t)s
l

(t) + h
i

(t) (42)

where we added an external local field h
i

(t) to the Hamiltonian. In the following, to
simplify notation, the spin time dependence will not be written explicitly. Our goal is to
derive differential equations for the evolution of the correlation and response function. In
order to do that, we multiply both sides of the previous equation by a generic observable
of the spin at time t0, i.e. A(s(t0)), and we will perform the thermal average over the
initial condition (indicated with angular brackets h·i) and the average over the quenched
couplings J

i1,...,ip (indicated with E(·)). From (43) we get

Ehs̈
i

A(s(t0))i =� Ehµ
x

(t)s
i

(t)A(s(t0))i+
X

j

E(J
ij

hs
j

(t)A(s(t0))i)

+

X

j<k<l

E(J
ijkl

hs
j

(t)s
k

(t)s
l

(t)A(s(t0))i) (43)

Let us now observe that, since the couplings J ’s are gaussian distributed, we can perform a
partial integration on the gaussian couplings and obtain the following celebrated relation:

X

j

E(J
ij

h s
j

A(s(t0))i) =
X

j

E(J2
ij

)E( @

@J
ij

h s
j

A(s(t0))i) (44)

An analogous relation hold for the averages which contain the J
ijkl

. In order to make
explicit the J derivative we can now use the Martin-Siggia-Rose representation of the joint
probability of paths s

i

(t), starting from an initial condition s
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(0) chosen with probability
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P

i

s2
i

= N and ṗ
i

= s̈
i
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since the derivative is zero because of the spherical constraint. Now from the equation of
the Hamiltonian (33) we get

P
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= 2(H � V
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). Then combing this results with eq. (61)
and (62) we obtain:
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or, making a thermal average and an average over the disorder we get:
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J
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where E is the total energy. Let us now remind that V
J

= H2 +H4 and observe that, by
direct calculation,
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i
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(67)

and then eq. (65) becomes

Nµ
x

= �2EhH2i � 4EhH4i+ 2E � 2EhH2i � 2EhH4i = 2E � 4EhH2i � 6EhH4i (68)

The computation of EhH2i or EhH4i are analogue to those seen in (46) and (47) with
A(s(t0)) = s
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(t). Then the equation for the lagrangian multiplier reads as (t = t0):
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C(t, 0)p4 �K(0, t)p4
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where e = lim

N!1E/N

3 Modello 3-spin model partitioned in a system 1 with �N
spins and a system 2 with (1� �)N spins

The Hamiltonian of the model reads as:

H =�
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(NOTATION: p = 3, �1 (�2) the inverse temperature coupled to the 3-spin Hamilto-
nian of system 1 (2) and �12 (�21) the inverse temperature coupled to the interaction
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Choosing v = 0 and
P

↵

u
↵

= 0 we get from (26) that �1 = (1 � r) and its degeneracy
is g1 = m � 1. If we choose

P

a

v
a

= 0 with v
n

= 0 and
P

↵

u
↵

= 0, from (24) we get
�2 = (1� q) and g2 = n� 2. The other three eigenvalues can be determined choosing an
eigenvector like .... we get:

a+ (n� 2)qa+ bq +msc = �a (27)
(n� 1)qa+ b+mpc = �b (28)

(n� 1)sa+ pb+ [1 + (m� 1)r]c = �c (29)

and then computing the determinant of the coefficient matrix we can get the product of
the three missing eigenvalues, i.e. detM = �3�4�5, with

M =

0

@

1 + (n� 2)q q ms
(n� 1)q 1 mp
(n� 1)s p [1 + (m� 1)r]

1

A (30)

Now substituting the ansatz (23) into (22) and using the result for the first two eigenvalues
we get:

1

N
lnZ(n,m)

=

1

4

h

n(n� 1)(�2
2q

2
+ �2

4q
4
) + n(�2

2 + �2
4) + 2�m(n� 1)(�2

2s
2
+ �2

4s
4
)

+ 2�m(�2
2p

2
+ �2

4p
4
) +m(m� 1)(�2r2 + �4r4) + 2�2m

i

+

1

2

h

(m� 1) ln(1� r) + (n� 2) ln(1� q) + ln detM
i

(31)

Then, finally, the potential can be computed using (7). The result reads:

�V =� 1

4

(2�2
+ 2�(�2p

2
+ �4p

4
)� �2

(r2 + r4)� 2�(�2s
2
+ �4s

4
))

� 1

2

(

�p2 + 2p2q + r � 2qr + q2r � 2pqs+ s2

1� 2q + q2 � r + 2qr � q2r
+ ln[1� r]) (32)

It is immediate to see that, if we consider only a p = 4 spin spherical model, and then
we neglect all the terms related to the 2-spin model, we get the same result as in [1] if we
choose the same ansatz, namely q = 0 and s = 0.

TO BE CONTINUED...

2 Hamiltonian dynamics

In this section we want to consider an Hamiltonian dynamics at temperature T for the
evolution of the p-spin spherical model starting from an initial configuration equilibrated
at a different temperature T 0. We then consider the following Hamiltonian:

H(s) =
1

2

X

i

p2
i

+ V
J

(s) +
µ
x

(t)

2

(

X

i

s2
i

�N) (33)

where µ
x

(t) enforces the spherical constraint at any time t and V
J

is given by

V
J

= ��2
X

i<j

J
ij

s
i

s
j

� �4
X

i<j<k<l

J
ijkl

s
i

s
j

s
k

s
l

(34)
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The parameters �2 and �4 are constants needed to weight the 2-spin and 4-spin Hamilto-
nian. From the Hamilton equations we get:

@H

@p
i

= ṡ
i

= p
i

(37)

@H

@s
i

= �ṗ
i

=

@V

@s
i

+ µ
x

s
i

(38)

it is easy to see that the total energy is conserved, by direct calculation and using the
Hamilton equations:

dH

dt
= ṗ p+

@V

@s
i

ṡ
i

+ µ
x

s
i

ṡ
i

= 0 (39)

Then our starting point is the newtonian equation of motion, derived from the Hamilton
equation (38):

ṗ
i

= s̈
i

= �@H

@s
i

= �@V

@s
i

� µ
x

s
i

(40)

2.1 Hamiltonian dynamics for a 2+4 spin spherical model

The potential in the Hamiltonian of the model (35) reads as:

V
J

(s(t)) = �
X

i<j

J
ij

s
i

s
j

�
X

i<j<k<l

J
ijkl

s
i

s
j

s
k

s
l

(41)

Then from the equation of motion (40) we get:

s̈
i

= �µ
x

(t)s
i

(t) +
X

j

J
ij

s
j

(t) +
X

j<k<l

J
ijkl

s
j

(t)s
k

(t)s
l

(t) + h
i

(t) (42)

where we added an external local field h
i

(t) to the Hamiltonian. In the following, to
simplify notation, the spin time dependence will not be written explicitly. Our goal is to
derive differential equations for the evolution of the correlation and response function. In
order to do that, we multiply both sides of the previous equation by a generic observable
of the spin at time t0, i.e. A(s(t0)), and we will perform the thermal average over the
initial condition (indicated with angular brackets h·i) and the average over the quenched
couplings J

i1,...,ip (indicated with E(·)). From (43) we get

Ehs̈
i

A(s(t0))i =� Ehµ
x

(t)s
i

(t)A(s(t0))i+
X

j

E(J
ij

hs
j

(t)A(s(t0))i)

+

X

j<k<l

E(J
ijkl

hs
j

(t)s
k

(t)s
l

(t)A(s(t0))i) (43)

Let us now observe that, since the couplings J ’s are gaussian distributed, we can perform a
partial integration on the gaussian couplings and obtain the following celebrated relation:

X

j

E(J
ij

h s
j

A(s(t0))i) =
X

j

E(J2
ij

)E( @

@J
ij

h s
j

A(s(t0))i) (44)

An analogous relation hold for the averages which contain the J
ijkl

. In order to make
explicit the J derivative we can now use the Martin-Siggia-Rose representation of the joint
probability of paths s

i

(t), starting from an initial condition s
i

(0) chosen with probability
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since the derivative is zero because of the spherical constraint. Now from the equation of
the Hamiltonian (33) we get

P

i

p2
i

= 2(H � V
J

). Then combing this results with eq. (61)
and (62) we obtain:
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and hence:
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J
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or, making a thermal average and an average over the disorder we get:

Nµ
x
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X

i

E
D@V

J

@s
i

s
i

E

+ 2(E � EhV
J

i) (66)

where E is the total energy. Let us now remind that V
J

= H2 +H4 and observe that, by
direct calculation,

X

i

@H
p

@s
i

s
i

= pH
p

(67)

and then eq. (65) becomes

Nµ
x

= �2EhH2i � 4EhH4i+ 2E � 2EhH2i � 2EhH4i = 2E � 4EhH2i � 6EhH4i (68)

The computation of EhH2i or EhH4i are analogue to those seen in (46) and (47) with
A(s(t0)) = s

i

(t). Then the equation for the lagrangian multiplier reads as (t = t0):

µ
x

(t) =2e+ 4

p2
2

Z

t

0
duR(t, u)C(t, u)p2�1

+ �2

⇣

C(t, 0)p2 �K(0, t)p2
⌘

+ 6

p4
2

Z

t

0
duR(t, u)C(t, u)p4�1

+ �4

⇣

C(t, 0)p4 �K(0, t)p4
⌘

where e = lim

N!1E/N

3 Modello 3-spin model partitioned in a system 1 with �N
spins and a system 2 with (1� �)N spins
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(NOTATION: p = 3, �1 (�2) the inverse temperature coupled to the 3-spin Hamilto-
nian of system 1 (2) and �12 (�21) the inverse temperature coupled to the interaction
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ṡ2
i

(63)

since the derivative is zero because of the spherical constraint. Now from the equation of
the Hamiltonian (33) we get

P

i

p2
i

= 2(H � V
J

). Then combing this results with eq. (61)
and (62) we obtain:

X

i

s̈
i

s
i

= �
X

i

@V

@s
i

s
i

�Nµ
x

= �
X

i

ṡ2
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Choosing v = 0 and
P

↵

u
↵

= 0 we get from (26) that �1 = (1 � r) and its degeneracy
is g1 = m � 1. If we choose

P

a

v
a

= 0 with v
n

= 0 and
P

↵

u
↵

= 0, from (24) we get
�2 = (1� q) and g2 = n� 2. The other three eigenvalues can be determined choosing an
eigenvector like .... we get:
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and then computing the determinant of the coefficient matrix we can get the product of
the three missing eigenvalues, i.e. detM = �3�4�5, with

M =

0

@

1 + (n� 2)q q ms
(n� 1)q 1 mp
(n� 1)s p [1 + (m� 1)r]

1

A (30)

Now substituting the ansatz (23) into (22) and using the result for the first two eigenvalues
we get:

1

N
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2q

2
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4q
4
) + n(�2

2 + �2
4) + 2�m(n� 1)(�2

2s
2
+ �2

4s
4
)
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2p

2
+ �2

4p
4
) +m(m� 1)(�2r2 + �4r4) + 2�2m

i
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i

(31)

Then, finally, the potential can be computed using (7). The result reads:
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2
+ �4p

4
)� �2

(r2 + r4)� 2�(�2s
2
+ �4s

4
))
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2

(

�p2 + 2p2q + r � 2qr + q2r � 2pqs+ s2

1� 2q + q2 � r + 2qr � q2r
+ ln[1� r]) (32)

It is immediate to see that, if we consider only a p = 4 spin spherical model, and then
we neglect all the terms related to the 2-spin model, we get the same result as in [1] if we
choose the same ansatz, namely q = 0 and s = 0.

TO BE CONTINUED...

2 Hamiltonian dynamics

In this section we want to consider an Hamiltonian dynamics at temperature T for the
evolution of the p-spin spherical model starting from an initial configuration equilibrated
at a different temperature T 0. We then consider the following Hamiltonian:

H(s) =
1
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X
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+ V
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µ
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2

(
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s2
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�N) (33)

where µ
x

(t) enforces the spherical constraint at any time t and V
J

is given by

V
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X
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J
ij

s
i

s
j

� �4
X
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J
ijkl

s
i

s
j

s
k

s
l

(34)
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The parameters �2 and �4 are constants needed to weight the 2-spin and 4-spin Hamilto-
nian. From the Hamilton equations we get:
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i

(37)

@H

@s
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= �ṗ
i

=

@V
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s
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(38)

it is easy to see that the total energy is conserved, by direct calculation and using the
Hamilton equations:

dH

dt
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ṡ
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Then our starting point is the newtonian equation of motion, derived from the Hamilton
equation (38):

ṗ
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x

s
i

(40)

2.1 Hamiltonian dynamics for a 2+4 spin spherical model

The potential in the Hamiltonian of the model (35) reads as:
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Then from the equation of motion (40) we get:
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where we added an external local field h
i

(t) to the Hamiltonian. In the following, to
simplify notation, the spin time dependence will not be written explicitly. Our goal is to
derive differential equations for the evolution of the correlation and response function. In
order to do that, we multiply both sides of the previous equation by a generic observable
of the spin at time t0, i.e. A(s(t0)), and we will perform the thermal average over the
initial condition (indicated with angular brackets h·i) and the average over the quenched
couplings J

i1,...,ip (indicated with E(·)). From (43) we get
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+
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Let us now observe that, since the couplings J ’s are gaussian distributed, we can perform a
partial integration on the gaussian couplings and obtain the following celebrated relation:

X
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E(J
ij

h s
j

A(s(t0))i) =
X

j

E(J2
ij

)E( @

@J
ij

h s
j

A(s(t0))i) (44)

An analogous relation hold for the averages which contain the J
ijkl

. In order to make
explicit the J derivative we can now use the Martin-Siggia-Rose representation of the joint
probability of paths s

i

(t), starting from an initial condition s
i

(0) chosen with probability
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since the derivative is zero because of the spherical constraint. Now from the equation of
the Hamiltonian (33) we get
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or, making a thermal average and an average over the disorder we get:
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where E is the total energy. Let us now remind that V
J

= H2 +H4 and observe that, by
direct calculation,
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and then eq. (65) becomes

Nµ
x

= �2EhH2i � 4EhH4i+ 2E � 2EhH2i � 2EhH4i = 2E � 4EhH2i � 6EhH4i (68)

The computation of EhH2i or EhH4i are analogue to those seen in (46) and (47) with
A(s(t0)) = s
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(t). Then the equation for the lagrangian multiplier reads as (t = t0):
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where e = lim
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3 Modello 3-spin model partitioned in a system 1 with �N
spins and a system 2 with (1� �)N spins

The Hamiltonian of the model reads as:
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(NOTATION: p = 3, �1 (�2) the inverse temperature coupled to the 3-spin Hamilto-
nian of system 1 (2) and �12 (�21) the inverse temperature coupled to the interaction
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ṡ2
i

=

X

i

p2
i

= 2(H � V
J

) (64)

and hence:
Nµ

x

= �
X

i

@V
J

@s
i

s
i

+ 2(H � V
J

) (65)

or, making a thermal average and an average over the disorder we get:

Nµ
x

= �
X

i

E
D@V

J

@s
i

s
i

E

+ 2(E � EhV
J

i) (66)

where E is the total energy. Let us now remind that V
J

= H2 +H4 and observe that, by
direct calculation,

X

i

@H
p

@s
i

s
i

= pH
p

(67)

and then eq. (65) becomes

Nµ
x

= �2EhH2i � 4EhH4i+ 2E � 2EhH2i � 2EhH4i = 2E � 4EhH2i � 6EhH4i (68)

The computation of EhH2i or EhH4i are analogue to those seen in (46) and (47) with
A(s(t0)) = s

i

(t). Then the equation for the lagrangian multiplier reads as (t = t0):

µ
x

(t) =2e+ 4

p2
2

Z

t

0
duR(t, u)C(t, u)p2�1

+ �2

⇣

C(t, 0)p2 �K(0, t)p2
⌘

+ 6

p4
2

Z

t

0
duR(t, u)C(t, u)p4�1

+ �4

⇣

C(t, 0)p4 �K(0, t)p4
⌘

where e = lim

N!1E/N

3 Modello 3-spin model partitioned in a system 1 with �N
spins and a system 2 with (1� �)N spins

The Hamiltonian of the model reads as:

H =�
�N,�N,�N

X

i<j<k

J
(1)
ijk

s
(1)
i

s
(1)
j

s
(1)
k

�
(1��)N,(1��)N,(1��)N

X

i<j<k

J
(2)
ijk

s
(2)
i

s
(2)
j

s
(2)
k

(69)

�
�N,�N,(1��)N

X

i<j,k

J
(12)
ijk

s
(1)
i

s
(1)
j

s
(2)
k

�
�N,(1��)N,(1��)N

X

i<j,k

J
(21)
ijk

s
(1)
i

s
(2)
j

s
(2)
k

(NOTATION: p = 3, �1 (�2) the inverse temperature coupled to the 3-spin Hamilto-
nian of system 1 (2) and �12 (�21) the inverse temperature coupled to the interaction

11

N
let us remind that

P

i

s2
i

= N and ṗ
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(NOTATION: p = 3, �1 (�2) the inverse temperature coupled to the 3-spin Hamilto-
nian of system 1 (2) and �12 (�21) the inverse temperature coupled to the interaction
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(NOTATION: p = 3, �1 (�2) the inverse temperature coupled to the 3-spin Hamilto-
nian of system 1 (2) and �12 (�21) the inverse temperature coupled to the interaction
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(NOTATION: p = 3, �1 (�2) the inverse temperature coupled to the 3-spin Hamilto-
nian of system 1 (2) and �12 (�21) the inverse temperature coupled to the interaction
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(NOTATION: p = 3, �1 (�2) the inverse temperature coupled to the 3-spin Hamilto-
nian of system 1 (2) and �12 (�21) the inverse temperature coupled to the interaction

11

Correlation
@2C(t, t0)

@t2
= �µ

x

(t)C(t, t0)

+

p2
2

Z

t

0

0
duR(t0, u)C(t, u)p2�1

+

p2(p2 � 1)

2

Z

t

0
duC(t0, u)R(t, u)C(t, u)p2�2

+ �2
p2
2

⇣

C(t0, 0)C(t, 0)p2�1 �K(0, t0)K(0, t)p2�1
⌘

+

p4
2

Z

t

0

0
duR(t0, u)C(t, u)p4�1

+

p4(p4 � 1)

2

Z

t

0
duC(t0, u)R(t, u)C(t, u)p4�2

+ �4
p4
2

⇣

C(t0, 0)C(t, 0)p4�1 �K(0, t0)K(0, t)p4�1
⌘
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q P (q) = q̄

2.3.1 Lagrangian multiplier equation

In what follows we want now to derive the equation for the lagrangian multiplier µ
x

(t) which
enforces the spherical constraint at any time. Let us consider the Hamilton equation (36).
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Let us observe that to obtain the above equations, we assumed t > t0 and we remind that
R(t, t0) = hs

i

(t)iŝ
i

(t0)i 6= 0 only if t > t0. For the same reason, eq. (59) does not have an
explicit dependence on the initial conditions because R(0, t0) = 0 since t = 0 is the initial
time and then t0 > 0. Now we need also to determine the equations for the lagrangian
multiplier µ

x

(t) and for the pseudo-correlation K(0, t) previously introduced. To obtain
the equation for K(0, t) we can use as general observable A(s
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and proceed
as we did for the correlation and response. The result is the following:
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where we used the definition of the mean overlap q̄ =

1
N

P

i

hs
i

(0)i2
eq

. Indeed:

1

N

X

i

hs
i

i2 = 1

N

X

i

⇣

X

↵

w
↵

m↵

i

⌘2
=

X

↵�

w
↵

w
�

1

N

X

i

m↵

i

m�

i

=

X

↵�

w
↵

w
�

q↵� (59)

=

Z

dq q
X

↵�

�(q � q↵�)w
↵

w
�

=

Z

q P (q) = q̄

10

Correlation

@2C(t, t0)

@t2
= �µ

x

(t)C(t, t0)

+

p2
2

Z

t

0

0
duR(t0, u)C(t, u)p2�1

+

p2(p2 � 1)

2

Z

t

0
duC(t0, u)R(t, u)C(t, u)p2�2

+ �2
p2
2

⇣

C(t0, 0)C(t, 0)p2�1 �K(0, t0)K(0, t)p2�1
⌘

+

p4
2

Z

t

0

0
duR(t0, u)C(t, u)p4�1

+

p4(p4 � 1)

2

Z

t

0
duC(t0, u)R(t, u)C(t, u)p4�2

+ �4
p4
2

⇣

C(t0, 0)C(t, 0)p4�1 �K(0, t0)K(0, t)p4�1
⌘

The equation for the response reads:
Response

@2R(t, t0)

@t2
=� µ

x

(t)R(t, t0) +
p2(p2 � 1)

2

Z

t

t

0
duR(u, t0)R(t, u)C(t, u)p2�2

+

p4(p4 � 1)

2

Z

t

t

0
duR(u, t0)R(t, u)C(t, u)p4�2

Let us observe that to obtain the above equations, we assumed t > t0 and we remind that
R(t, t0) = hs

i

(t)iŝ
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Replicated partition function

3 P-spin spherical model partitioned in two subsystems

3.1 Potential Method for p-spin spherical model partitioned in two sub-
systems

We want now to consider an Hamiltonian model of a p = 3 spherical spin model which is
partitioned in two subsystems: the first system accounts for �N spins, the second one for
(1� �)N spins, where � is a real number between zero and one.

H =H1 +H12 +H21 +H2 (70)
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where H1 (H2) is the Hamiltonian for the system 1 (2) and H12 (H21) is the interaction
between system 1 and 2 with 2 (one) spins in system 1 and one (two) spin in system 2 (1).
To construct the effective potential we need to define the replicated partition function as
in (10) in the section relative to the 2 + 4 p spin spherical model.
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(71)

Now we want to introduce explicitly the gaussian distribution of the disorder and average
over it. As in the previous section we have that

P (J
i1,...,ip) / exp

⇣

� 1

2

J2
i1,...,ip

2Np�1

p!

⌘

(72)

After averaging over the disorder we have that different replicas of the same system become
coupled each other and then we want to introduce order parameter matrices as we did
before. We introduce:
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which can be stored in a unique matrix for system 1 and system 2:
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where H1 (H2) is the Hamiltonian for the system 1 (2) and H12 (H21) is the interaction
between system 1 and 2 with 2 (one) spins in system 1 and one (two) spin in system 2 (1).
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Z(n,m)
=

Z

Dsa
Z

D�↵
exp

h

�0
n
X

a

H(sa) + �

m
X

↵

H(�↵
)

i

m
Y

↵=1

�
�

�N
X

i

s
1(1)
i �

↵(1)
i �Np̃1

�

�
�

(1��)N
X

i

s
1(2)
i �

↵(2)
i �Np̃2

�

=

Z

Dsa
Z

D�↵
exp

h

�1

n
X

a

H1(sa) + �12

n
X

a

H12(sa) + �21

n
X

a

H21(sa) + �2

n
X

a

H2(sa)
i

exp

h

�
m
X

↵

H1(�↵
) + �

m
X

↵

H12(�↵
) + �

m
X

↵

H21(�↵
) + �

m
X

↵

H2(�↵
)

i

m
Y

↵=1

�
�

�N
X

i

s
1(1)
i �

↵(1)
i �Np̃1

�

�
�

(1��)N
X

i

s
1(2)
i �

↵(2)
i �Np̃2

�

(71)

Now we want to introduce explicitly the gaussian distribution of the disorder and average
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After averaging over the disorder we have that different replicas of the same system become
coupled each other and then we want to introduce order parameter matrices as we did
before. We introduce:
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For the 4-spin case, we get instead:
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iŝ
i

(u)
⇣

�s̈
i

(u)�µ
x

(u)s
i

(u)+
X

j

J
ij

s
j

+

X

j<k<l

J
ijkl

s
j

s
k

s
l

+h
i

(u)
⌘io

µ(s(0))

h. . .i

E( @

@J
ij

hA(s(t0)) s
j

i) =
Z

t

0
duE

⇣

hiŝ
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P=3 spin spherical model partitioned in two subsystems

,

V
J

=H1 +H12 +H21 +H2 (24)

=�
�N,�N,�N

X

i<j<k

J
(1)
ijk

s
(1)
i

s
(1)
j

s
(1)
k

�

�N,�N,

(1��)N
X

i<j,k

J
(12)
ijk

s
(1)
i

s
(1)
j

s
(2)
k

�

�N,(1��)N,

(1��)N
X

i<j,k

J
(21)
ijk

s
(1)
i

s
(2)
j

s
(2)
k

�

(1��)N,(1��)N,

(1��)N
X

i<j<k

J
(2)
ijk

s
(2)
i

s
(2)
j

s
(2)
k

4

V
J

=H1 +H12 +H21 +H2 (24)

=�
�N,�N,�N

X

i<j<k

J
(1)
ijk

s
(1)
i

s
(1)
j

s
(1)
k

�

�N,�N,

(1��)N
X

i<j,k

J
(12)
ijk

s
(1)
i

s
(1)
j

s
(2)
k

�

�N,(1��)N,

(1��)N
X

i<j,k

J
(21)
ijk

s
(1)
i

s
(2)
j

s
(2)
k

�

(1��)N,(1��)N,

(1��)N
X

i<j<k

J
(2)
ijk

s
(2)
i

s
(2)
j

s
(2)
k

4

Replicated partition function

3 P-spin spherical model partitioned in two subsystems

3.1 Potential Method for p-spin spherical model partitioned in two sub-
systems

We want now to consider an Hamiltonian model of a p = 3 spherical spin model which is
partitioned in two subsystems: the first system accounts for �N spins, the second one for
(1� �)N spins, where � is a real number between zero and one.

H =H1 +H12 +H21 +H2 (70)
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where H1 (H2) is the Hamiltonian for the system 1 (2) and H12 (H21) is the interaction
between system 1 and 2 with 2 (one) spins in system 1 and one (two) spin in system 2 (1).
To construct the effective potential we need to define the replicated partition function as
in (10) in the section relative to the 2 + 4 p spin spherical model.
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Now we want to introduce explicitly the gaussian distribution of the disorder and average
over it. As in the previous section we have that
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After averaging over the disorder we have that different replicas of the same system become
coupled each other and then we want to introduce order parameter matrices as we did
before. We introduce:
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For the 4-spin case, we get instead:
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For the 4-spin case, we get instead:
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P=3 spin spherical model partitioned in two subsystems
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Replicated partition function

3 P-spin spherical model partitioned in two subsystems

3.1 Potential Method for p-spin spherical model partitioned in two sub-
systems

We want now to consider an Hamiltonian model of a p = 3 spherical spin model which is
partitioned in two subsystems: the first system accounts for �N spins, the second one for
(1� �)N spins, where � is a real number between zero and one.

H =H1 +H12 +H21 +H2 (70)
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where H1 (H2) is the Hamiltonian for the system 1 (2) and H12 (H21) is the interaction
between system 1 and 2 with 2 (one) spins in system 1 and one (two) spin in system 2 (1).
To construct the effective potential we need to define the replicated partition function as
in (10) in the section relative to the 2 + 4 p spin spherical model.
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Now we want to introduce explicitly the gaussian distribution of the disorder and average
over it. As in the previous section we have that
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After averaging over the disorder we have that different replicas of the same system become
coupled each other and then we want to introduce order parameter matrices as we did
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j

s
k

s
l

+ s
j

iŝ
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i

(u)s
j

s
k

s
l

A(s(t0))s
j

s
k

s
l

i
⌘

+

Z

t

0
duE

⇣

hs
i

(iŝ
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3 P-spin spherical model partitioned in two subsystems

3.1 Potential Method for p-spin spherical model partitioned in two sub-
systems

We want now to consider an Hamiltonian model of a p = 3 spherical spin model which is
partitioned in two subsystems: the first system accounts for �N spins, the second one for
(1� �)N spins, where � is a real number between zero and one.

H =H1 +H12 +H21 +H2 (70)
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where H1 (H2) is the Hamiltonian for the system 1 (2) and H12 (H21) is the interaction
between system 1 and 2 with 2 (one) spins in system 1 and one (two) spin in system 2 (1).
To construct the effective potential we need to define the replicated partition function as
in (10) in the section relative to the 2 + 4 p spin spherical model.
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Now we want to introduce explicitly the gaussian distribution of the disorder and average
over it. As in the previous section we have that
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After averaging over the disorder we have that different replicas of the same system become
coupled each other and then we want to introduce order parameter matrices as we did
before. We introduce:
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3.1 Potential Method for p-spin spherical model partitioned in two sub-
systems

We want now to consider an Hamiltonian model of a p = 3 spherical spin model which is
partitioned in two subsystems: the first system accounts for �N spins, the second one for
(1� �)N spins, where � is a real number between zero and one.
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where H1 (H2) is the Hamiltonian for the system 1 (2) and H12 (H21) is the interaction
between system 1 and 2 with 2 (one) spins in system 1 and one (two) spin in system 2 (1).
To construct the effective potential we need to define the replicated partition function as
in (10) in the section relative to the 2 + 4 p spin spherical model.
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Now we want to introduce explicitly the gaussian distribution of the disorder and average
over it. As in the previous section we have that
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After averaging over the disorder we have that different replicas of the same system become
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3 P-spin spherical model partitioned in two subsystems

3.1 Potential Method for p-spin spherical model partitioned in two sub-
systems

We want now to consider an Hamiltonian model of a p = 3 spherical spin model which is
partitioned in two subsystems: the first system accounts for �N spins, the second one for
(1� �)N spins, where � is a real number between zero and one.

H =H1 +H12 +H21 +H2 (70)
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where H1 (H2) is the Hamiltonian for the system 1 (2) and H12 (H21) is the interaction
between system 1 and 2 with 2 (one) spins in system 1 and one (two) spin in system 2 (1).
To construct the effective potential we need to define the replicated partition function as
in (10) in the section relative to the 2 + 4 p spin spherical model.
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(71)

Now we want to introduce explicitly the gaussian distribution of the disorder and average
over it. As in the previous section we have that

P (J
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� 1

2

J2
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2Np�1

p!

⌘

(72)

After averaging over the disorder we have that different replicas of the same system become
coupled each other and then we want to introduce order parameter matrices as we did
before. We introduce:
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which can be stored in a unique matrix for system 1 and system 2:

Q(1)
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Q(1) P (1)

P (1)T R(1)

◆

Q(2)
=
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(74)
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Using a saddle point technique to estimate the integral

Generalized RS ansatz

1 The Potential Method

In this section we will review a method introduced by Franz and Parisi in [1] which intro-
duces a ’potential function’ defined as the free energy of a system at a given temperature
T constrained to have a fixed overlap with a reference configuration of equilibrium at
temperature T 0. The potential is nothing but the large deviation function of the overlap
between configuration of spins and hence the method establishes a correspondence among
local minima of the potential and metastable states. In the following sections, we will
also study the relaxation dynamics at temperature T of a system starting from an initial
configuration equilibrated at a different temperature T 0 and we will compare the results
obtained from the dynamic approach which those obtained from the potential method.

The basic assumption of the potential method is that if, in spin glass models, the
relevant order parameter is the overlap among configurations then we must be able to
construct a large deviation function for it. Let us then consider the free energy of a system
�, considered at temperature � and taken at a fixed overlap p̃ with another configuration
s of the same system, namely:

F (s,�, p̃) = lim

N!1
� 1

�N
ln

Z

d� e

��H[�] �(p̃�Q(s,�)) (1)

Now we want to assume that this free energy is self-averaging with respect to the canonical
Boltzmann-Gibbs probability distribution of a reference configuration s drawn at temper-
ature T 0, namely P (s) = exp (��0H[s])/Z(T 0

). If we also assume self-averaging respect to
the disorder contained in the hamiltonian, we have the potential function defined as:
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Z

ds e��

0H[s] (3)

The (. . . ) indicates the average respect to the disorder, Q(s,�) = 1
N

P

i

s
i

�
i

is the overlap
among the two spin configurations and � is taken in general different from �0. The poten-
tial can then be interpreted as the cost in free energy at temperature T to keep the system
(defined by the configuration �) at a fixed overlap p̃ = Q(s,�) with s.

The average respect to the disorder can be performed using the replica trick. The
starting point of this strategy is the formula:

NV = �T lim

n!0
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m!0

Z

ds exp (��0H[s])Z[�0
]

n�1
⇣Z[s, p̃]m � 1

m

⌘

(4)

where we used the notation:

Z[s, p̃] =

Z

d� e

��H[�] �(p̃�Q(s,�)) (5)

Now by defining the replicated partition function as:
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is it possible to show, by direct calculation, that the expression in (4) can be derived as:

NV = �T
@

@m
lnZ(n,m)

�

�
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m=0
n=0

(7)
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introducing these order parameters with a proper delta function into the replicated parti-
tion functions, namely
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we can finally write Z(n,m) as a function of the order parameters as we did in the previous
section and hence use a saddle point method to evaluate the integral. Then the log of the
replicated partition function can be computed and the result reads:
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(76)

3.2 RS ansatz for the Effective Potential in p spin spherical model

We now need to specify an ansatz for the symmetry of the matrix Q in the system 1 and
2 in order to continue the calculation in (76). We will proceed using a standard replica-
symmetric assumption, remembering that we also have a constraint for the fixed overlap
among the system labeled with s and the one labeled with � which can be counted into
the matrix P

a,↵

. We then assume the following structure for the matrixes 1 and 2:

Q
ab

= �
ab

+ (1� �
ab

)q

P
a↵

= p̃ �
↵n

(77)
R

↵�

= �
↵�

+ (1� �
↵�

)r

or, explicitly

Q =

✓

Q P
P T R

◆

=

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

n

z }| {

1 q · · · q
q 1 · · · q
...

... . . . ...
q q · · · 1

m

z }| {

0 0 · · · 0

...
... . . . ...

0 0 · · · 0

p̃ p̃ · · · p̃

0 · · · 0 p̃
... . . . ...

...
0 · · · 0 p̃
0 · · · 0 p̃

1 r · · · r
r 1 · · · r
...

... . . . ...
r r · · · 1

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

(78)

13

Friday, September 5, 14



H = �
X

i<j

J
ij

s
i

s
j

�
X

i<j<k<l

J
ijkl

s
i

s
j

s
k

s
l

(11)

Z(n,m)
=

Z
Dv�

Z
DQ

�⌘

Z
D�

�⌘

exp

hN
4

⇣
�2
2

nX

a,b

Q2
ab

+ 2�2�
X

a,↵

P 2
a,↵

+ �2
X

↵,�

R2
↵,�

⌘i

exp

hN
4

⇣
�2
4

nX

a,b

Q4
ab

+ 2�4�
X

a,↵

P 4
a,↵

+ �2
X

↵,�

R4
↵,�

⌘
+N

X

�⌘

Q
�⌘

�
�⌘

�
X

i

X

�⌘

v�
i

�
�⌘

v⌘
i

i

=

Z
DQ

�⌘

Z
D�

�⌘

exp[�NS(�,Q)] ' exp[�NS(�⇤,Q⇤
)] (12)

Z(n,m)
=

Z
DQ

�⌘

Z
D�

�⌘

exp[�NS(�,Q)] ' exp[�NS(�⇤,Q⇤
)]

2

Using a saddle point technique to estimate the integral

Generalized RS ansatz

1 The Potential Method

In this section we will review a method introduced by Franz and Parisi in [1] which intro-
duces a ’potential function’ defined as the free energy of a system at a given temperature
T constrained to have a fixed overlap with a reference configuration of equilibrium at
temperature T 0. The potential is nothing but the large deviation function of the overlap
between configuration of spins and hence the method establishes a correspondence among
local minima of the potential and metastable states. In the following sections, we will
also study the relaxation dynamics at temperature T of a system starting from an initial
configuration equilibrated at a different temperature T 0 and we will compare the results
obtained from the dynamic approach which those obtained from the potential method.

The basic assumption of the potential method is that if, in spin glass models, the
relevant order parameter is the overlap among configurations then we must be able to
construct a large deviation function for it. Let us then consider the free energy of a system
�, considered at temperature � and taken at a fixed overlap p̃ with another configuration
s of the same system, namely:
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Now we want to assume that this free energy is self-averaging with respect to the canonical
Boltzmann-Gibbs probability distribution of a reference configuration s drawn at temper-
ature T 0, namely P (s) = exp (��0H[s])/Z(T 0

). If we also assume self-averaging respect to
the disorder contained in the hamiltonian, we have the potential function defined as:
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The (. . . ) indicates the average respect to the disorder, Q(s,�) = 1
N

P

i

s
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�
i

is the overlap
among the two spin configurations and � is taken in general different from �0. The poten-
tial can then be interpreted as the cost in free energy at temperature T to keep the system
(defined by the configuration �) at a fixed overlap p̃ = Q(s,�) with s.

The average respect to the disorder can be performed using the replica trick. The
starting point of this strategy is the formula:
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where we used the notation:
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Now by defining the replicated partition function as:
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is it possible to show, by direct calculation, that the expression in (4) can be derived as:
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The Effective Potential can be obtained using

RS Ansatz 
for the Overlap Matrices

introducing these order parameters with a proper delta function into the replicated parti-
tion functions, namely
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we can finally write Z(n,m) as a function of the order parameters as we did in the previous
section and hence use a saddle point method to evaluate the integral. Then the log of the
replicated partition function can be computed and the result reads:
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3.2 RS ansatz for the Effective Potential in p spin spherical model

We now need to specify an ansatz for the symmetry of the matrix Q in the system 1 and
2 in order to continue the calculation in (22). We will proceed using a standard replica-
symmetric assumption, remembering that we also have a constraint for the fixed overlap
among the system labeled with s and the one labeled with � which can be counted into
the matrix P

a,↵

. We then assume the following structure for the matrixes 1 and 2:
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we can finally write Z(n,m) as a function of the order parameters as we did in the previous
section and hence use a saddle point method to evaluate the integral. Then the log of the
replicated partition function can be computed and the result reads:
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3.2 RS ansatz for the Effective Potential in p spin spherical model

We now need to specify an ansatz for the symmetry of the matrix Q in the system 1 and
2 in order to continue the calculation in (76). We will proceed using a standard replica-
symmetric assumption, remembering that we also have a constraint for the fixed overlap
among the system labeled with s and the one labeled with � which can be counted into
the matrix P
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1 r · · · r
r 1 · · · r
...

... . . . ...
r r · · · 1

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A
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Effective Potential

,

The computation of the two determinants contained in the logarithm above can be per-
formed analogously to what we did for the 2+4 p spin spherical case. Then, once we have
the determinants under a RS ansatz, we can compute the log of the partition function and
we can finally get the effective potential using the following

NV = �T
@

@m
lnZ(n,m)

�

�

�

m=0
n=0

(79)

The final result reads:

�V (p1, r1, p2, r2) =� 1

4

�3(�2
+ 2�1� p31 � �2 r31)

� 1

4

(1� �)3(�2
+ 2�2� p32 � �2 r32)

� 3

4

(1� �)2�(�2
+ 2�21� p1 p

2
2 � �2r1 r

2
2)

� 3

4

�2(1� �)(�2
+ 2�12� p21 p2 � �2r21 r2)

� 1

2

�

✓

r1 � p21
1� r1

+ log[1� r1]

◆

� 1

2

(1� �)

✓

r2 � p22
1� r2

+ log[1� r2]

◆

It is easy to check that, if we forget about the sub-partition of the system and we take
the one system limit, namely � ! 1 or � ! 0, we immediately recover the form of the
potential obtained by Franz and Parisi in [1].

4 Hamiltonian dynamics for a p-spin spherical model parti-
tioned in two subsystems

In this section, analogously at what we did in Section 2, we want to derive the Hamiltonian
dynamics at temperature T for the evolution of the p-spin spherical model starting from
an initial configuration equilibrated at a different temperature T 0. The difference with
that section is that here we consider the system partitioned in two sub-systems and hence
we will have two equations for the dynamics of the sub-system 1 and 2. Considering the
following Hamiltonian:

H(s) =
1

2

X

i

(p
(1) 2
i

+ p
(2) 2
i

) + V
J

(s) +
µ(t)

2

(

X

i

(s
(1)2
i

+ s
(2)2
i

)�N) (80)

where µ(t) enforces the spherical constraint at any time t and V
J

is given by

V
J

=H1 +H12 +H21 +H2 (81)

=�
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J
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j
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k

�
�N,�N,(1��)N
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J
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ijk
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j

s
(2)
k

�
�N,(1��)N,(1��)N
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J
(21)
ijk

s
(1)
i

s
(2)
j

s
(2)
k

�
(1��)N,(1��)N,(1��)N

X

i<j<k

J
(2)
ijk

s
(2)
i

s
(2)
j

s
(2)
k

From the Hamilton equations we get:

@H

@p
(1)
i

= ṡ
(1)
i

= p
(1)
i

(82)

@H

@s
(1)
i

= �ṗ
(1)
i

=

@V

@s
(1)
i

+ µs
(1)
i

(83)
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Potential Function 
Kac models xxix

qualitative changes take place. Two of them are the mean-field dynamical transition
temperature Td and the static transition temperature Tc. In addition there is a third
temperature T ∗, with T ∗ > Td > Tc, first identified in (52). Above T ∗ the function
V is a convex function with a single minimum at p = 0. At T ∗ and inflection point
appears, and below that temperature the potential is non-convex. For temperature
between Td and T ∗, the function continues to have a single minimum for p = 0. At Td

a local minimum at a value p = qEA > 0 develops. In the interval [Tc, Td], the point
p = 0 is still the absolute minimum of V . The two minima structure below Td reflects
the partition of the equilibrium measure in disjoint metastable states. The value qEA is
the typical overlap between configurations belonging to the same metastable state. For
p = qEA σ is in the state specified by σ(0). Different metastable states have zero mutual
overlap. For p = 0 all but the metastable state specified by σ(0) contribute to the free-
energy and V (0) = 0. Correspondingly, the difference in free-energy between the two
minima equals the system’s configurational entropy Σ∞(T ) multiplied by temperature.
The configurational entropy vanishes linearly on approaching Tc, Σ∞(T ) ∼ T −Tc and
the two minima become degenerate. Below that temperature the mean field model is
in an ideal glassy state and the two minima remain degenerate.
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Fig. 0.8 The function V (p) at different temperatures. For comparison with the case

of Kac model we consider a Hamiltonian with two body and 4 body interactions with
φ(p) = 1/2(0.1 × p2 + p4). From top to bottom T = 0.703486 > T ∗, T = T ∗ = 0.633137,

T = Td = 0.57525, T = 0.558049, T = Tc = 0.541847. The function is convex for T > T ∗.

It has an inflection point with positive slope for Td < T < T ∗. In the interval Tc < T < Td,
V (q) has a local minimum for a temperature dependent value p = qEA. The difference

V (qEA)− V (0) is (T times) the bulk configurational entropy V (qEA)− V (0) = TΣ∞(T ).

We now generalize the previous construction to Kac models. As before, we use
the overlap with an equilibrium reference configuration σ(0) as an order parameter.
In this case however, we are interested in considering the free-energy as a functional
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Hamiltonian dynamics

Equation for the Hamiltonian dynamics of a generic p-spin spherical model

And analogous Hamilton equation if we derive respect to the system 2. it is easy to see
that the total energy is conserved, by direct calculation and using the Hamilton equations:

dH

dt
= ṗ p+

@V

@s
i

ṡ
i

+ µs
i

ṡ
i

= 0 (84)

Then our starting point is the newtonian equation of motion, derived from the Hamilton
equation (85):

ṗ
(1)
i

= s̈
(1)
i

= � @H

@s
(1)
i

= � @V
J

@s
(1)
i

� µs
(1)
i

(85)

ṗ
(2)
i

= s̈
(2)
i

= � @H

@s
(2)
i

= � @V
J

@s
(2)
i

� µs
(2)
i

(86)

Let us observe that the equations of motion of system 1 and 2 are totally symmetric if we
exchange 1 $ 2 and � $ (1 � �), hence, in the following we will concentrate only on the
derivation of the equation of correlation, response, pseudo-correlation only for the system
1 for simplicity. The lagrangian multiplier which enforces the spherical constraint will be
derived afterwards.

4.1 Hamiltonian dynamics for a 2+4 spin spherical model

By writing explicitly the equation of motion (87) and (88) we get:

s̈
(1)
i

=� µ
x

(t)s
i

(t) +

�N,�N

X

j<k

J
(1)
ijk

s
(1)
j

s
(1)
k

+

�N,(1��)N
X

j,k

J
(12)
ijk

s
(1)
j

s
(2)
k

(87)

+

(1��)N,(1��)N
X

j,k

J
(21)
ijk

s
(2)
j

s
(2)
k

+ h
(1)
i

(t) (88)

Now instead that deriving the equation of motion for a generic observable A(s(t0)) as we
did in Section 2, we observe that we can use the general results obtained in that section
for correlation and response and pseudo-correlation for a generic p-spin spherical model,
namely:
Correlation

@2C(t, t0)

@t2
= �µ(t)C(t, t0)

+

p

2

Z

t

0

0
duR(t0, u)C(t, u)p�1

+

p(p� 1)

2

Z

t

0
duC(t0, u)R(t, u)C(t, u)p�2

+ �0 p

2

⇣

C(t0, 0)C(t, 0)p�1 �K(0, t0)K(0, t)p�1
⌘

(89)

Response

@2R(t, t0)

@t2
=� µ(t)R(t, t0) +

p(p� 1)

2

Z

t

t

0
duR(u, t0)R(t, u)C(t, u)p�2

+

p(p� 1)

2

Z

t

t

0
duR(u, t0)R(t, u)C(t, u)p�2 (90)
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ṗ
(1)
i

= s̈
(1)
i

= � @H

@s
(1)
i

= � @V
J

@s
(1)
i

� µs
(1)
i

(85)

ṗ
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exchange 1 $ 2 and � $ (1 � �), hence, in the following we will concentrate only on the
derivation of the equation of correlation, response, pseudo-correlation only for the system
1 for simplicity. The lagrangian multiplier which enforces the spherical constraint will be
derived afterwards.
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Now instead that deriving the equation of motion for a generic observable A(s(t0)) as we
did in Section 2, we observe that we can use the general results obtained in that section
for correlation and response and pseudo-correlation for a generic p-spin spherical model,
namely:
Correlation

@2C(t, t0)

@t2
= �µ(t)C(t, t0)

+

p
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Pseudo-correlation K(0, t):

@2K(0, t)

@t2
=� µ

x

(t)K(0, t) +
p(p� 1)

2

Z

t

0
duK(0, u)R(t, u)C(t, u)p�2

+ �0 p

2

⇣

K(0, 0)C(t, 0)p�1 � q̄K(0, t)p�1
⌘

(91)

From this equations, we can get the equations for the same quantities in the subsystem 1

and 2 just observing that:

C(t, t0) ! �C1(t, t
0
) + (1� �)C2(t, t

0
)

R(t, t0) ! �R1(t, t
0
) + (1� �)R2(t, t

0
)

K(t, t0) ! �K1(t, t
0
) + (1� �)K2(t, t

0
)

q ! �q1 + (1� �)q2

Substituting these expressions in the equations (91), (92) and (93) we get, for the system
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Correlation

Response

Pseudo-Correlation

Pseudo-correlation K(0, t):
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Pseudo-correlation K(0, t):

@2K(0, t)

@t2
=� µ

x

(t)K(0, t) +
p(p� 1)

2

Z

t

0
duK(0, u)R(t, u)C(t, u)p�2

+ �0 p

2

⇣

K(0, 0)C(t, 0)p�1 � q̄K(0, t)p�1
⌘

(91)

From this equations, we can get the equations for the same quantities in the subsystem 1

and 2 just observing that:
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Substituting these expressions in the equations (89), (90) and (91) we get, for the system
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Pseudo-Correlation for the system 1
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Pseudo-Correlation
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Further developments

- Full RSB treatment of the potential for the static formulation in the 2+4 spin 
  spherical model

- Numerical results for the integro-differential equations for correlation, response, 
  pseudo-correlation and lagrangian multiplier

Potential Method

FPU problem

2+4 p-spin 
spherical Model

Potential Method
Disorder and 

replicas

Looking for minima

Hamiltonian 
dynamics

Generic equation 
of dynamics

Correlation and 
Response

Lagrangian 
multiplier

3=p-spin 
spherical Model

Potential Method

Correlation and 
Response

Future 
developments

- 1-RSB treatment of the potential for the static formulation in the 2+3 spin 
  spherical model

- Comparison between static (using the effective potential) and dynamic results

Hopefully find some connections between 
Ergodicity Breaking in FPU and Spin Glasses3=p-spin 

spherical Model

Potential Method

Correlation and 
Response

Future 
developments

Potential Method
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Potential Method
Disorder and 
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Looking for minima

Hamiltonian 
dynamics

Generic equation 
of dynamics
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Response
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