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Introduction

DEFINITIONS AND APPLICATIONS

EPIDEMIC PROCESS

Dynamical evolution of the states of the nodes in a graph, with contagion
rules which depend on the state of their neighbours

Fields of applications: illnesses, economical systems, viral marketing
A RECENT EXAMPLE

(Controversial) paper on PNAS about emotional contagion on Facebook 1J

'!Adam Kramer et al (2014), Experimental evidence of massive-scale

emotional contagion through social networks, doi: 10.1073/pnas.1320040111
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DIFFERENT DYNAMICS, DIFFERENT PHENOMENA

POSSIBLE PROCESSES
m SI, SIS, SIR

m In particular, monotonous (SI, SIR) or non-monotonous (SIS)

COMPUTATIONALLY HARD PROBLEMS TO BE STUDIED
m Inference (e.g. patient zero in an infection)
m Optimisation 2
m minimal subset of nodes to vaccinate to stop a contagion

m for fixed number of seeds, maximize the spreading
m minimum seed configuration activating all the network

2F. Altarelli, A. Braunstein, L. Dall’Asta, and R. Zecchina, Journal of
Statistical Mechanics: Theory and Experiment 2013, P09011 (2013)
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Introduction

THE BOOTSTRAP PERCOLATION

At any given time t, a node i can be active (0} = 1) or inactive ( ot =0)
THE EVOLUTION OF THE SYSTEM
1, ifol" =1
o, =141, |f0t1—0andz -tl)Z/i

JEOI
0, otherwise

MAIN FEATURES

The process (a.k.a. threshold model) is deterministic and monotonous:
o' = f(a”)

To have analytical results: (k+ 1) RRG, ; = 1Vi
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RANDOM CHOICE OF THE SEEDS ON RRG

DEF: THRESHOLD FOR RANDOM INITIAL CONDITIONS

0,(/, k) s.t. Prob(o?’ =1)[0

=1
<1

if 0> 0,(k,/)
if 0 < 0,(k,/)
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THE OPTIMISATION PROBLEM

DEF: MINIMAL DENSITY

Omin( G, {11}, T) = {ZG,IG = 1vi}

m Original spreading maximization problem: 0,,,(G,{/i}, T = o0)

m Large deviation phenomenon: 0, < 6,
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Introduction

MAPPING TO OTHER PROBLEMS IN GRAPH THEORY

ARBITRARY GRAPH, [; = d; Vi

Inactive sites correspond to a maximum independent set on the graph.
Complete activation in one step.

T=1 Vi d

Biroli Mezard model: a site can be inactive if at most d; — /; of its
neighbors are inactive.
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MAPPING TO OTHER PROBLEMS IN GRAPH THEORY

T=o00, li=di—1Vi
Subgraph of inactive sites must be acyclic.
Seeds have to form a decycling set of the graph.

In (k+ 1) regular graphs, Omin(k, k) > %
Known result®: 8min(2,2) = %; conjectured that ©min(3,3) = %

T:OO, /,'<d,'—].Vi

Subgraph of inactive sites must not contain d; — /; cores.
Seeds have to form a " de-coring” set of the graph.
Known result in regular graphs*: 0 i, (k, 1) > %

3S.Bau,N.C.Wormald,S.Zhou,Random Structures & Algorithms 21, 397
(2002)
*P.A.Dreyer,F.S.Roberts,Discrete Applied Mathematics 157, 1615 (2009)
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STATISTICAL PHYSICS DESCRIPTION

PROBABILITY MEASURE OVER INITIAL CONFIGURATIONS

1 T 1
—_ Z,[ i (1_ ,)] €—oo — Z,’ i T_
n(g) = el =l 2%, (g) = —en i [[1(o] = 1)

MINIMAL DENSITY

Omin(Gy {1}, T) = lim —=log Z(G, {j}, T, € = +00)
p—o—oo N
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Introduction

MORE INFORMATION

DEF: ENTROPY DENSITY s(0)

Number of percolating configurations with 4 > ; 09 = 0 ~ eMs(®)

FREE-ENTROPY DENSITY

d)(G){Ii}) Tyue= +00) = SUPe[HG +s(0)] = {S(e) B d)(ll) —Ho

|
o
E

Analogous relations also if ¢ < 0o
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THE FACTOR GRAPH REPRESENTATION

THE ACTIVATION TIME DESCRIPTION J

ti(o) = min{t s.t. o] =1} = t;j(a) = f(0},{tj(0)}jeoi; )

m Local interactions
m Explicit o]

DUPLICATION OF THE TIMES
On each edge (i,j) a couple (tj, tji) of redundant variables is introduced J

1
nie,t) =~ [ [ wiloi{ti, tidjeai)
i

Wi(Uh{tij, tji}jeai) — eMioi g &il(F(0{tiilkeai;li)=+00) H (tij = f(oj,{tuitkeai; i)
jeai
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A PORTION OF THE FACTOR GRAPH

FIGURE: Factor graph of n(g, t)

Factor node w; — interaction among o; and (tj;, tj;) for any j € 0i.

Alberto Guggiola (ENS) Optimal contagious sets 17/07/2014 14 / 40



TABLE OF CONTENTS

REPLICA SYMMETRIC FORMALISM

Alberto Guggiola (ENS) Optimal contagious sets 17/07/2014 15 / 40



RECURSIVE COMPUTATION ON /Z

RS ansatz is legitimate if the graph is a tree, or is tree-like with an
assumption of long-range correlation decay.
DEFINITION OF THE MESSAGES

For each directed edge i — j a message 1,;_;(tjj, tji) (probability
distribution over pair of activation times) is introduced

RS RECURSION

Nisj = &[Mksitkeainys iy €iy i)

v

From the converged values of the messages — thermodynamical quantities

(eg ¢)
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A CONVENIENT REPARAMETRISATION

Each n(t,t) is described by (T + 2)2 — 1 independent real numbers.

U

Encodable in h = (ag,...,a1, br_1,..., b1) (2T numbers)

RECURSIONS AMONG CAVITY FIELDS

h= g(hb ey hk)

SINGLE LINK APPROACH
In RRG, factorized solution: h; = hVi = h fixed point of h = g(h, ..., h)

4
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VIOLATION OF RS ANSATZ

Apparently reasonable results... ... but unphysical predictions!
9 06 5 03
P 20 1 10 u 0 10
F1GURE: RS prediction of 0(u) F1GURE: RS prediction of s(u)
RS BREAKING
Constraints harder to satisfy = Long range correlations among variablesJ

Alberto Guggiola (ENS) Optimal contagious sets 17/07/2014 18 / 40



TABLE OF CONTENTS

1RSB FORMALISM

Alberto Guggiola (ENS) Optimal contagious sets 17/07/2014 19 / 40



THE 1RSB ANSATZ

Fragmentation of the configuration space into clusters, s.t. correlation
decay inside each cluster 7.

COMPLEXITY FUNCTION X(¢)

Number of clusters with internal free-entropy density ¢, ~ ¢ ~ eNE®)

1RSB THERMODYNAMICAL QUANTITIES

®(m) = 108 _ 27 = suplz($) + m 0]
Y

PARAMETRICAL RECONSTRUCTION OF X(¢)

/

L(Pint(m)) = ©(m) — mPine(m);  Pint(m) = O (m)

Alberto Guggiola (ENS) Optimal contagious sets 17/07/2014 20 / 40



THE 1RSB RECURSIONS

SINGLE SAMPLE EQUATIONS

On each directed edge: probability distribution P;_,; = G[{Pkﬁi}keai\j}

= m J dPl(hl)---de(hk)é(h*g(hb eeey hk))ziter(hla (13} hk)m

v

SINGLE LINK APPROACH
On RRG, factorized solution:

PUR) = 5 [ AP dP )3 — gl oy ) (b o )"
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1RSB Formalism

USUAL PATTERN IN CONSTRAINT SATISFACTION
PROBLEMS

RS PHASE
i > g = No non-trivial solution of 1RSB equations for m =1

Dynamic 1RSB PHASE

i € [Ue, Uyl = Exponential number of clusters contributing to the Gibbs
measure. L(m=1) >0

RS predictions for thermodynamic quantities are correct

CONDENSATE 1RSB PHASE

iU < e = Only a sub-exponential number of clusters contributes to the
Gibbs measure. X(m=1) <0

The thermodynamic properties are the ones of the clusters selected by the
value of ms s.t. Z(ms(n)) =0

v
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1RSB Formalism

PATTERN IN CSP

As the Constraint Satisfaction Problem becomes harder (i.e. looking for

smaller and smaller 0), the space of the solutions can be pictorially
represented as follows:

0 emin eC ed
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Energetic 1IRSB

ENERGETIC 1RSB

Simplified version of 1RSB when ¢ = 400, p — —oo

¥(s,0): number of clusters with eN* percolating configurations with 8 N
seeds (whose free entropy is ¢ = 1 0 + s)

®(m) = sup[X(s,0) + m(u 6 + s)]
0,s

ENERGETIC 1RSB

If m— 0 and u — —oo with a finite value of y = —pm:

D.(y) = supg[Ze(6) — y0] Ze(0(y)) = Dely) + yO(y)
Ze(0) = sup, Z(s,0) 0(y) = —D.(y)

egs,lRSB = 0(ys) with ys s.t. Z.(0(ys)) =0
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THE WARNING PROPAGATION EQUATIONS

With the previous assumptions, the fields h can take only 2T + 1 values:
A; for t € [0, T —1] and B; for t € [0, T]
DEFINITIONS

The message h;_,; is a warning sent from node / to one of its neighbours j.
Gj\; is the subtree rooted at i excluding j

INTUITIVE INTERPRETATION

hij = By = t; = t and Gy; activates before T with o = 0.
hi—j = By = i is a seed
hij = At = G,\; activates before T only if Gj =1

The combination among these warnings gives the relations
h= g(hb ooy hy)
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THE LARGE T LIMIT

m T — oo: original influence maximisation problem

m The limit can be solved analytically

m k =1/ and k > [ are qualitatively different cases

Alberto Guggiola (ENS) Optimal contagious sets 17/07/2014
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Some analytical results

RESULTS

k=1

Already known lower bound: 0 in(k, k) > % = &1
m For k = | =2 = Saturation of the bound: 0,;,(2,2) = 7’ = %
m For k =/ =3 = Saturation of the bound: 6,,i,(3,3) = i = %

m For k =/ > 4 = Unsaturation of the bound: 1RSB predlctlons have
been obtained

k>
Already known lower bound: 0,,i,(k, /) > —2’*2’7*1

m For k =4,/ =3 = Saturation of the bound: 0,;,(4,3) =
m For k =5,/ =4 = Saturation of the bound: 0,;,(5,4) =

m For larger values = Unsaturation of the bound: 1RSB predlctions
have been obtained

1
6
l

4
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THE SINGLE SAMPLE ANALYSIS

m Explicitely define a (k 4+ 1) RRG (for different k) (e.g. with
N = 10000)
m Run different algorithms

m Start without seeds
m Add the seeds one by one according to some rule
m Stop when a percolating configuration is found

m Compare the minimal densities of the percolating configurations found

STABILITY OF THE RESULTS
Both for different instances and for different runs on the same graph }
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THE GREEDY ALGORITHM AT FINITE T

STARTING POINT
09=0 Vi

ITERATION
m Simulate the contagion adding one extra seed

m Set as seed the node improving the most ) ; G,-T

ENDING POINT

Stop when a percolating o is found
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GREEDY ALGORITHM AT T = o0

GENERALISATION

For monotonicity and finite size, one reaches 0 = limy_,4 o’ in finite
time. b

COMPUTATIONAL SIMPLIFICATION

When choosing an extra-seed, no need to restart from o2: one can start

from the o of the previous iteration
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THE MP 1RSB ALGORITHM

ENERGETIC 1RSB POTENTIAL

(De()/) =
—y+ N Z Iog site({Pj—ﬁ}ani)) - % Z(iJ)eE Iog(zedge(Pi—U') Pj—)i))

Knowing that 8(y) = —®’(y), one can define a score as the contribution
of node i to the overall 8(y):

SCORE OF A NODE |
5(’) =1- ay Iog Zsite({Pj—ﬁ}ani) + % Z(iJ)eE ay log(zedge(Pi—)_b Pj—)i)) J
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THE DECIMATION STRATEGY

STARTING POINT
09=0 Vi

ITERATION
m Run the MP iterations till the convergence of the messages
m Calculate S(i) for each node not yet fixed to seed
m Fix to seed the one with the largest score
[

Fix its out-going messages to d4, and stop updating them

ENDING POINT
Stop when a percolating o is found
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COMPARISON OF THE RESULTS

N=10000, k=L=2

H Greedy ‘ MP-1RSB ‘ O min

T=1 0.4821 4 0.0005 | 0.42589 4 0.00004 | 0.424
T=3 0.3350 4+ 0.0003 | 0.29112 + 0.00003 | 0.289
T=5 0.2958 4+ 0.0002 | 0.26313 + 0.00002 | 0.262
T=c0 || 0.25013 4 0.00001 ? 0.25

N=10000, K=3, L=2
|  Greedy |  MP-IRSB | Omin

T=1 || 0.4264 £ 0.0004 | 0.36650 £ 0.00007 | 0.363
T=3 | 0.2328 + 0.0002 | 0.18533 + 0.00004 | 0.182
T=o00 || 0.0709 + 0.0001 ? 0.0463
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NON-CONVERGENCE OF MP

For large enough T, the MP-1RSB iterations do not converge anymore.
In particular, for k = 3,/ = 2 iterations converge just up to T=3.
The reasons are still to be fully understood

RESULTS FOR LARGER T
At each step of the decimation, update the messages a fixed number of
times

Alberto Guggiola (ENS) Optimal contagious sets 17/07/2014 37 / 40



COMPARISON IN THE NON-CONVERGENCE REGION

m For small enough T, still good results of MP-1RSB
m As T increases, Opp_1rs8 — Omin increases

m MP-1RSB is anyway still better than greedy algorithm

N=10000, k=3, L=2

H Greedy ‘ MP-1RSB ‘ O min
T=4 || 0.1975 + 0.0002 | 0.15610 + 0.00003 | 0.1517
T=5 || 0.1742 + 0.0002 | 0.14200 + 0.00005 | 0.1320
T=7 || 0.1442 4 0.0002 | 0.12697 + 0.00007 | 0.1083
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OPEN POINTS

CONVERGENCE ISSUES
Possible convergence of 1RSB for larger T7

GENERALISATIONS
Go beyond k; = k,l; =1 Vi. In particular:
m Fluctuating connectivities (even with constant threshold)

m Fluctuacing activation thresholds (even on regular graphs)

FINITE ¢

Interesting problems: for example maximum possible spread with a fixed
number of seeds

POSSIBLE APPLICATIONS

Applications to real-world networks

v
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