MINIMAL CONTAGIOUS SETS IN RANDOM REGULAR GRAPHS

Alberto Guggiola, Guilhem Semerjian

École Normale Supérieure de Paris

July 17th 2014

Alberto Guggiola (ENS)

Optimal contagious sets

∃ >

1 / 40

17/07/2014

1 INTRODUCTION

- 2 Cavity method treatment of the problem
- **3** Replica symmetric formalism
- **4** 1RSB Formalism
- **5** Energetic 1RSB
- **6** Some analytical results
- 7 Algorithmic results
- **8** Conclusions and perspectives

DEFINITIONS AND APPLICATIONS

EPIDEMIC PROCESS

Dynamical evolution of the states of the nodes in a graph, with contagion rules which depend on the state of their neighbours

Fields of applications: illnesses, economical systems, viral marketing

A RECENT EXAMPLE

(Controversial) paper on PNAS about emotional contagion on Facebook ¹

17/07/2014

3 / 40

Alberto Guggiola (ENS)

Optimal contagious sets

DIFFERENT DYNAMICS, DIFFERENT PHENOMENA

Possible processes

- SI, SIS, SIR
- In particular, monotonous (SI, SIR) or non-monotonous (SIS)

Computationally hard problems to be studied

- Inference (e.g. patient zero in an infection)
- Optimisation ²
 - minimal subset of nodes to vaccinate to stop a contagion
 - for fixed number of seeds, maximize the spreading
 - minimum seed configuration activating all the network

²F. Altarelli, A. Braunstein, L. Dall'Asta, and R. Zecchina, Journal of Statistical Mechanics: Theory and Experiment 2013, P09011 (2013)

Alberto Guggiola (ENS)

Optimal contagious sets

17/07/2014 4 / 40

THE BOOTSTRAP PERCOLATION

At any given time t, a node i can be active $(\sigma_i^t = 1)$ or inactive $(\sigma_i^t = 0)$

THE EVOLUTION OF THE SYSTEM

$$\sigma_i^{(t)} = \begin{cases} 1, & \text{if } \sigma_i^{(t-1)} = 1\\ 1, & \text{if } \sigma_i^{(t-1)} = 0 \text{ and } \sum_{j \in \partial i} \sigma_j^{(t-1)} \ge l_i\\ 0, & \text{otherwise} \end{cases}$$

MAIN FEATURES

The process (a.k.a. threshold model) is deterministic and monotonous: $\underline{\sigma}^t = f(\underline{\sigma}^0)$

To have analytical results: (k + 1) RRG, $I_i \equiv I \forall i$

Alberto Guggiola (ENS)

Optimal contagious sets

17/07/2014 5 / 40

▲ロ ▶ ▲ 聞 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● 臣 ■ ● ����

RANDOM CHOICE OF THE SEEDS ON RRG

Def: Threshold for random initial conditions

$$\theta_r(l,k) \text{ s.t. } \operatorname{Prob}(\sigma_{i_0}^{\infty}=1)|\theta \begin{cases} = 1 & \text{ if } \theta > \theta_r(k,l) \\ < 1 & \text{ if } \theta < \theta_r(k,l) \end{cases}$$

k = l

Discontinuous transition No simple expression for θ_r

THE OPTIMISATION PROBLEM

Def: Minimal density

$$\theta_{min}(G, \{l_i\}, T) = \frac{1}{N} \min_{\underline{\sigma}} \left\{ \sum_i \sigma_i | \sigma_i^T = 1 \forall i \right\}$$

- Original spreading maximization problem: $\theta_{min}(G, \{l_i\}, T = \infty)$
- **L**arge deviation phenomenon: $\theta_{min} < \theta_r$

Alberto Guggiola (ENS)

Optimal contagious sets

・ 同 ト ・ ヨ ト ・ ヨ ト …

17/07/2014

3

MAPPING TO OTHER PROBLEMS IN GRAPH THEORY

Arbitrary graph, $l_i = d_i \ \forall i$

Inactive sites correspond to a **maximum independent set** on the graph. Complete activation in one step.

$T = 1, \quad \forall l_i, d_i$

Biroli Mezard model: a site can be inactive if at most $d_i - l_i$ of its neighbors are inactive.

Alberto Guggiola (ENS)

▲ロト ▲聞 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● 臣 ● のへで

17/07/2014

MAPPING TO OTHER PROBLEMS IN GRAPH THEORY

 $T = \infty, \quad l_i = d_i - 1 \ \forall i$

Subgraph of inactive sites must be acyclic. Seeds have to form a **decycling set** of the graph.

In (k + 1) regular graphs, $\theta_{min}(k, k) \ge \frac{k-1}{2k}$. Known result³: $\theta_{min}(2, 2) = \frac{1}{4}$; conjectured that $\theta_{min}(3, 3) = \frac{1}{3}$

$T = \infty, \quad l_i < d_i - 1 \ \forall i$

Subgraph of inactive sites must not contain $d_i - l_i$ cores. Seeds have to form a "**de-coring**" set of the graph. Known result in regular graphs⁴: $\theta_{min}(k, l) \ge \frac{2l-k-1}{2l}$

³S.Bau,N.C.Wormald,S.Zhou,Random Structures & Algorithms **21**, 397 (2002)

⁴P.A.Dreyer,F.S.Roberts,Discrete Applied Mathematics **157**, 1615 (2009) **Solution** Alberto Guggiola (ENS) Optimal contagious sets **17/07/2014 9 / 40**

STATISTICAL PHYSICS DESCRIPTION

PROBABILITY MEASURE OVER INITIAL CONFIGURATIONS

$$\eta(\underline{\sigma}) = \frac{1}{Z} e^{\sum_{i} [\mu \sigma_{i} - \varepsilon (1 - \sigma_{i}^{T})]} \xrightarrow{\varepsilon \to \infty} \eta(\underline{\sigma}) = \frac{1}{Z} e^{\mu \sum_{i} \sigma_{i}} \prod_{i} \mathbb{I}(\sigma_{i}^{T} = 1)$$

MINIMAL DENSITY

$$\theta_{min}(G, \{l_i\}, T) = \lim_{\mu \to -\infty} -\frac{1}{\mu} \frac{1}{N} \log Z(G, \{l_i\}, T, \mu, \varepsilon = +\infty)$$

Alberto Guggiola (ENS)

Optimal contagious sets

17/07/2014

3

10 / 40

イロト イポト イヨト イヨト

More information

Def: entropy density $s(\theta)$

Number of percolating configurations with $\frac{1}{N}\sum_{i}\sigma_{i}^{0}=\theta \sim e^{Ns(\theta)}$

FREE-ENTROPY DENSITY

$$\phi(G, \{l_i\}, T, \mu, \varepsilon = +\infty) = \sup_{\theta} [\mu\theta + s(\theta)] \Rightarrow \begin{cases} s(\theta) = \phi(\mu) - \mu\theta \\ \theta = \phi'(\mu) \end{cases}$$

Analogous relations also if $\varepsilon < \infty$

Alberto Guggiola (ENS)

Optimal contagious sets

17/07/2014 11 / 40

3

・ 同 ト ・ ヨ ト ・ ヨ ト …

1 INTRODUCTION

2 Cavity method treatment of the problem

3 Replica symmetric formalism

- **4** 1RSB Formalism
- **5** Energetic 1RSB
- **6** Some analytical results
- 7 Algorithmic results

8 Conclusions and perspectives

= ~ ~ ~

The factor graph representation

The activation time description

$$t_i(\underline{\sigma}) = \min\{t \text{ s.t. } \sigma_i^t = 1\} \Rightarrow t_i(\underline{\sigma}) = f(\sigma_i, \{t_j(\underline{\sigma})\}_{j \in \partial i}; l_i)$$

I ocal interactions • Explicit σ_i^T

DUPLICATION OF THE TIMES

On each edge $\langle i, j \rangle$ a couple (t_{ij}, t_{ji}) of redundant variables is introduced

$$\eta(\underline{\sigma},\underline{t}) = \frac{1}{Z} \prod_{i} w_i(\sigma_i, \{t_{ij}, t_{ji}\}_{j \in \partial i})$$

 $w_i(\sigma_i, \{t_{ij}, t_{ji}\}_{j \in \mathfrak{d}_i}) = e^{\mu_i \sigma_i} e^{-\varepsilon_i \mathbb{I}(f(\sigma_i, \{t_{ki}\}_{k \in \mathfrak{d}_i}; l_i) = +\infty)} \prod (t_{ij} = f(\sigma_i, \{t_{ki}\}_{k \in \mathfrak{d}_i}; l_i))$ i∈∂i IN I DOG Alberto Guggiola (ENS) **Optimal contagious sets** 17/07/2014

A PORTION OF THE FACTOR GRAPH

FIGURE: Factor graph of $\eta(\underline{\sigma}, \underline{t})$

Factor node $w_i \rightarrow$ interaction among σ_i and (t_{ij}, t_{ji}) for any $j \in \partial i$.

Alberto Guggiola (ENS)

Optimal contagious sets

17/07/2014

• 3 > 1

1 INTRODUCTION

2 Cavity method treatment of the problem

3 Replica symmetric formalism

- **4** 1RSB Formalism
- **5** Energetic 1RSB
- **6** Some analytical results
- 7 Algorithmic results

8 Conclusions and perspectives

= nar

Recursive computation on Z

RS ansatz is legitimate if the graph is a tree, or is tree-like with an assumption of long-range correlation decay.

DEFINITION OF THE MESSAGES

For each directed edge $i \rightarrow j$ a **message** $\eta_{i \rightarrow j}(t_{ij}, t_{ji})$ (probability distribution over pair of activation times) is introduced

RS RECURSION

$$\eta_{i\to j} = g(\{\eta_{k\to i}\}_{k\in\partial i\setminus j}; I_i, \varepsilon_i, \mu_i)$$

From the converged values of the messages \rightarrow thermodynamical quantities (e.g. $\varphi)$

Alberto Guggiola (ENS)

17/07/2014

= ~ ~ ~

A CONVENIENT REPARAMETRISATION

Each $\eta(t, t')$ is described by $(T + 2)^2 - 1$ independent real numbers.

Encodable in $h = (a_0, ..., a_T, b_{T-1}, ..., b_1)$ (2T numbers)

Recursions among cavity fields

$$h = g(h_1, \dots, h_k)$$

 \mathbb{T}

SINGLE LINK APPROACH

In RRG, factorized solution: $h_i \equiv h \forall i \Rightarrow h$ fixed point of h = g(h, ..., h)

Alberto Guggiola (ENS)

VIOLATION OF RS ANSATZ

Apparently reasonable results...

FIGURE: RS prediction of $\theta(\mu)$

FIGURE: RS prediction of $s(\mu)$

... but unphysical predictions!

RS BREAKING

Constraints harder to satisfy \Rightarrow Long range correlations among variables

Alberto Guggiola (ENS)

1 INTRODUCTION

- 2 Cavity method treatment of the problem
- **3** Replica symmetric formalism

4 1RSB Formalism

- **5** Energetic 1RSB
- **6** Some analytical results
- 7 Algorithmic results

8 Conclusions and perspectives

= nar

- ロト - (理ト - (ヨト - (ヨト -

The 1RSB ansatz

Fragmentation of the configuration space into **clusters**, s.t. correlation decay inside each cluster γ .

Complexity function $\Sigma(\varphi)$

Number of clusters with internal free-entropy density $\varphi_{\gamma} \sim \varphi \simeq e^{N\Sigma(\varphi)}$

1RSB THERMODYNAMICAL QUANTITIES

$$\Phi(m) = \frac{1}{N} \log \sum_{\gamma} Z_{\gamma}^{m} = \sup_{\phi} [\Sigma(\phi) + m \phi]$$

Parametrical reconstruction of $\Sigma(\varphi)$

$$\Sigma(\phi_{int}(m)) = \Phi(m) - m\phi_{int}(m); \quad \phi_{int}(m) = \Phi'(m)$$

Alberto Guggiola (ENS)

The 1RSB recursions

SINGLE SAMPLE EQUATIONS

On each directed edge: probability distribution $P_{i \to j} = G \Big[\{ P_{k \to i} \}_{k \in \partial i \setminus j} \Big]$

$$P(h) = \frac{1}{Z_{iter}(P_1, ..., P_k)} \int dP_1(h_1) ... dP_k(h_k) \delta(h - g(h_1, ..., h_k)) z_{iter}(h_1, ..., h_k)^m$$

SINGLE LINK APPROACH

On RRG, factorized solution:

$$P(h) = \frac{1}{Z_{iter}} \int dP(h_1) ... dP(h_k) \delta(h - g(h_1, ..., h_k)) z_{iter}(h_1, ..., h_k)^m$$

Alberto Guggiola (ENS)

17/07/2014 21 / 40

- 4 間 5 - 4 三 5 - 4 三 5

USUAL PATTERN IN CONSTRAINT SATISFACTION PROBLEMS

RS phase

 $\mu > \mu_d \Rightarrow$ No non-trivial solution of 1RSB equations for m=1

Dynamic 1RSB phase

 $\mu \in [\mu_c, \mu_d] \Rightarrow$ Exponential number of clusters contributing to the Gibbs measure. $\Sigma(m = 1) > 0$ RS predictions for thermodynamic quantities are correct

Condensate 1RSB phase

 $\mu<\mu_c\Rightarrow$ Only a sub-exponential number of clusters contributes to the Gibbs measure. $\Sigma(m=1)<0$ The thermodynamic properties are the ones of the clusters selected by the value of m_s s.t. $\Sigma(m_s(\mu))=0$

Alberto Guggiola (ENS)

Optimal contagious sets

17/07/2014 22 / 40

PATTERN IN CSP

As the Constraint Satisfaction Problem becomes harder (i.e. looking for smaller and smaller θ), the space of the solutions can be pictorially represented as follows:

1 INTRODUCTION

- 2 Cavity method treatment of the problem
- **3** Replica symmetric formalism
- **4** 1RSB Formalism
- **5** Energetic 1RSB
- **6** Some analytical results
- 7 Algorithmic results

8 Conclusions and perspectives

= nar

ENERGETIC 1RSB

Simplified version of 1RSB when $\varepsilon = +\infty, \ \mu \to -\infty$ $\Sigma(s, \theta)$: number of clusters with e^{Ns} percolating configurations with θN seeds (whose free entropy is $\phi = \mu \theta + s$)

$$\Phi(m) = \sup_{\theta,s} [\Sigma(s,\theta) + m(\mu \theta + s)]$$

ENERGETIC 1RSB

If $m \to 0$ and $\mu \to -\infty$ with a finite value of $y \equiv -\mu m$:

$$\begin{cases} \Phi_{e}(y) = \sup_{\theta} [\Sigma_{e}(\theta) - y\theta] \\ \Sigma_{e}(\theta) = \sup_{s} \Sigma(s, \theta) \end{cases} \Rightarrow \begin{cases} \Sigma_{e}(\theta(y)) = \Phi_{e}(y) + y\theta(y) \\ \theta(y) = -\Phi_{e}^{'}(y) \end{cases}$$

$$\theta_{gs,1RSB} = \theta(y_s)$$
 with y_s s.t. $\Sigma_e(\theta(y_s)) = 0$

Alberto Guggiola (ENS)

The Warning Propagation equations

With the previous assumptions, the fields h can take only 2T + 1 values: A_t for $t \in [0, T - 1]$ and B_t for $t \in [0, T]$

DEFINITIONS

The message $h_{i\to j}$ is a **warning** sent from node *i* to one of its neighbours *j*. $G_{i\setminus j}$ is the subtree rooted at *i* excluding *j*

INTUITIVE INTERPRETATION

$$\begin{split} h_{i \to j} &= B_t \Rightarrow t_i = t \text{ and } G_{i \setminus j} \text{ activates before } T \text{ with } \sigma_j^T = 0. \\ h_{i \to j} &= B_0 \Rightarrow i \text{ is a seed} \\ h_{i \to j} &= A_t \Rightarrow G_{i \setminus j} \text{ activates before } T \text{ only if } \sigma_j^t = 1 \end{split}$$

The combination among these warnings gives the relations $h = g(h_1, ..., h_k)$

Alberto Guggiola (ENS)

Optimal contagious sets

1 INTRODUCTION

- 2 Cavity method treatment of the problem
- **3** Replica symmetric formalism
- **4** 1RSB Formalism
- **5** Energetic 1RSB
- **6** Some analytical results
- 7 Algorithmic results

8 Conclusions and perspectives

э.

THE LARGE T LIMIT

• $T \to \infty$: original influence maximisation problem

The limit can be solved analytically

• k = l and k > l are qualitatively different cases

Alberto Guggiola (ENS)

Optimal contagious sets

イロト イポト イヨト イヨト

17/07/2014

= ~ ~ ~

RESULTS

k = l

Already known lower bound: $\theta_{min}(k,k) \geq \frac{\theta_r}{2} = \frac{k-1}{2k}$

- For $k = l = 2 \Rightarrow$ Saturation of the bound: $\theta_{min}(2,2) = \frac{\theta_r}{2} = \frac{1}{4}$
- For $k = l = 3 \Rightarrow$ Saturation of the bound: $\theta_{min}(3,3) = \frac{\theta_r}{2} = \frac{1}{3}$
- For k = l ≥ 4 ⇒ Unsaturation of the bound: 1RSB predictions have been obtained

k > l

Already known lower bound: $\theta_{min}(k, l) \ge \frac{2l-k-1}{2l}$

- For $k = 4, l = 3 \Rightarrow$ Saturation of the bound: $\theta_{min}(4,3) = \frac{1}{6}$
- For $k = 5, l = 4 \Rightarrow$ Saturation of the bound: $\theta_{min}(5,4) = \frac{1}{4}$
- \blacksquare For larger values \Rightarrow Unsaturation of the bound: 1RSB predictions have been obtained

Alberto Guggiola (ENS)

1 INTRODUCTION

- 2 Cavity method treatment of the problem
- **3** Replica symmetric formalism
- **4** 1RSB Formalism
- **5** Energetic 1RSB
- **6** Some analytical results
- 7 Algorithmic results

8 Conclusions and perspectives

= nar

The single sample analysis

- Explicitly define a (k + 1) RRG (for different k) (e.g. with N = 10000)
- Run different algorithms
 - Start without seeds
 - Add the seeds one by one according to some rule
 - Stop when a percolating configuration is found
- Compare the minimal densities of the percolating configurations found

STABILITY OF THE RESULTS

Both for different instances and for different runs on the same graph

The greedy algorithm at finite T

Starting point

 $\sigma_i^0 = 0 \quad \forall i$

ITERATION

- Simulate the contagion adding one extra seed
- Set as seed the node improving the most $\sum_i \sigma_i^T$

Ending point

Stop when a percolating $\underline{\sigma}$ is found

Alberto Guggiola (ENS)

・ 同 ト ・ ヨ ト ・ ヨ ト …

17/07/2014

Greedy algorithm at $T = \infty$

GENERALISATION

For monotonicity and finite size, one reaches $\underline{\sigma}^{\infty} = \lim_{T \to \infty} \underline{\sigma}^{T}$ in finite time.

COMPUTATIONAL SIMPLIFICATION

When choosing an extra-seed, no need to restart from $\underline{\sigma}^0$: one can start from the $\underline{\sigma}^\infty$ of the previous iteration

Alberto Guggiola (ENS)

Optimal contagious sets

17/07/2014

THE MP 1RSB ALGORITHM

ENERGETIC 1RSB POTENTIAL

$$\begin{array}{l} \Phi_{e}(y) = \\ -y + \frac{1}{N} \sum_{i=1}^{N} \log(\mathcal{Z}_{site}(\{P_{j \to i}\}_{j \in \partial i})) - \frac{1}{N} \sum_{\langle i,j \rangle \in E} \log(\mathcal{Z}_{edge}(P_{i \to j}, P_{j \to i})) \end{array}$$

Knowing that $\theta(y) = -\Phi'(y)$, one can define a **score** as the contribution of node *i* to the overall $\theta(y)$:

Score of a node i

$$S(i) = 1 - \partial_y \log \mathcal{Z}_{\textit{site}}(\{P_{j \to i}\}_{j \in \partial i}) + \frac{1}{2} \sum_{\langle i, j \rangle \in E} \partial_y \log(\mathcal{Z}_{\textit{edge}}(P_{i \to j}, P_{j \to i}))$$

Alberto Guggiola (ENS)

Optimal contagious sets

17/07/2014

3

THE DECIMATION STRATEGY

STARTING POINT

 $\sigma_i^0 = 0 \quad \forall i$

ITERATION

- Run the MP iterations till the convergence of the messages
- Calculate S(i) for each node not yet fixed to seed
- Fix to seed the one with the largest score
- Fix its out-going messages to δ_{q_0} and stop updating them

Ending point

Stop when a percolating $\underline{\sigma}$ is found

< 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

COMPARISON OF THE RESULTS

$N{=}10000, \; {\rm K}{=}{\rm L}{=}2$

	Greedy	MP-1RSB	θ_{min}
T=1	0.4821 ± 0.0005	0.42589 ± 0.00004	0.424
T=3	0.3350 ± 0.0003	0.29112 ± 0.00003	0.289
T=5	0.2958 ± 0.0002	0.26313 ± 0.00002	0.262
$T{=}\infty$	0.25013 ± 0.00001	?	0.25

$N{=}10000, \ {\rm k}{=}3, \ {\rm l}{=}2$

	Greedy	MP-1RSB	θ_{min}
T=1	0.4264 ± 0.0004	0.36650 ± 0.00007	0.363
T=3	0.2328 ± 0.0002	0.18533 ± 0.00004	0.182
$T{=}\infty$	0.0709 ± 0.0001	?	0.0463

Alberto Guggiola (ENS)

Non-convergence of MP

For large enough *T*, the MP-1RSB iterations do not converge anymore. In particular, for k = 3, l = 2 iterations converge just up to T=3. The reasons are still to be fully understood

Results for larger T

At each step of the decimation, update the messages a fixed number of times

Alberto Guggiola (ENS)

17/07/2014

COMPARISON IN THE NON-CONVERGENCE REGION

- For small enough T, still good results of MP-1RSB
- As T increases, $\theta_{MP-1RSB} \theta_{min}$ increases
- MP-1RSB is anyway still better than greedy algorithm

N=10000, K=3, L=2

	Greedy	MP-1RSB	θ_{min}
T=4	0.1975 ± 0.0002	0.15610 ± 0.00003	0.1517
T=5	0.1742 ± 0.0002	0.14200 ± 0.00005	0.1320
T=7	0.1442 ± 0.0002	0.12697 ± 0.00007	0.1083

1 INTRODUCTION

- 2 Cavity method treatment of the problem
- **3** Replica symmetric formalism
- **4** 1RSB Formalism
- **5** Energetic 1RSB
- **6** Some analytical results
- 7 Algorithmic results

8 Conclusions and perspectives

= nar

OPEN POINTS

Convergence issues

Possible convergence of 1RSB for larger T?

GENERALISATIONS

Go beyond $k_i = k, l_i = l \quad \forall i$. In particular:

- Fluctuating connectivities (even with constant threshold)
- Fluctuacing activation thresholds (even on regular graphs)

Finite ε

Interesting problems: for example maximum possible spread with a fixed number of seeds

Possible applications

Applications to real-world networks

Alberto Guggiola (ENS)