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Nonlinear optics and photonics

● Nonlinear Optics
– Progagation of light beams and light pulses

● Photonics
– Light-matter interaction

– Lasers



  

Outline

● Today
– Nonlinear optics

● Tomorrow
– Photonics (lasers)



  

In other words

● Nonlinear optics
– Hamiltonian systems

● Photonics
– Dissipative systems (gain and loss)



  

(“Extreme”) Nonlinear optics

Some modern topics



  

Propagation of light in the 
atmosphere

A femtosecond laser pulse with TW of peak power propagates for kilometers



  

Above a critical power filaments can propagate for kilometers

Berge’ et al, physics/0612063 



  

Berge’ et al, physics/0612063 

The teramobile project

Filaments through fog !



  

Filaments distribution depends 
on pressure and other 
parameters

Berge’ et al, physics/0612063 

Filaments can go trhough
obstacles

Dubietis et al PRL 2004
(water)



  

Phys. Rev. Focus, 4 September 2003



  

Laser induced lightings



  

Structures of the beam 

● The filaments  (3D+1 structures)

● “Swarming of filaments”

● Remark: in the process 
of filamentation there is 
time and space

● In fibers we have just 
time dynamics



  

Supercontinuum generation

Starting from a beam with narrow band, one generates white light



  

What happens in the time domain?
The temporal profile looks to be organized in specific particle-like wavepacket

These are the solitons

There are regime with hundreds of solitons

The interaction of solitons generated very particular events: rogue waves



  

Rogue waves (Oceanic)

Draupner wave

Draupner platform Noth Sea
1 January 1995 (Wikipedia)



  

Rogue waves in optics



  

Experiments



  

The program

● There is a series of highly nonlinear regimes
– Filamentation

– Supercontinuum generation

– Rogue wave generation

– Shock waves

– Others...

● We want to describe these processes by using 
ideas from statistical mechanics



  

Let's start from scratch ...

The wave equation



  

The simplest solution:
plane wave



  

Harmonic fields

The Helmholtz equation

Complex amplitude



  

The nonlinear refractive index



  

The paraxial approximation



  

The nonlinear Schroedinger 
equation



  

Diffraction and self-trapping

Beams tend to delocalize (spread) in space

Nonlinear effects trigger self-trapping

Low intesity = diffraction High intensity = self-trapping



  

The origin of self-trapping
Innn 20  n2>0 : focusing

n2<0 : defocusing

Berge’ et al, physics/0612063 

Refractive index



  

The nonlocal nonlinear refractive 
index

Refractive index perturbation

Optical Intensity

x



Introduction to 
nonlocal nonlinear optics



Well known ... 
Nonlocal effects are known since the beginning of nonlinear 
optics (as the thermal effect, Shen Book)

“Nonlocal” temporal effects (Raman) in fibers were 
considered since 1967 

The prediction of the collapse removal due to nonlocality is 
dated several decades ago (Turytsin 1985)



Optical spatial solitons

Diffracting beam

Optical spatial soliton

FORBIDDEN FOR SIMPLE KERR MEDIA !



Catastrophic Self-focusing
Historically, the first reason for nonlocality

Power P>Pc

PROPAGATION

Power P<Pc

for fused silica

z



Waist and Intensity 
Vs propagation

For a simple Kerr medium the beam evolves towards a singular solution



A strategy: 
limit the waist

How to introduce a mechanism that 
intervenes only when the waist is 

small ? 

By nonlocality !



Simple: spatial filtering

Intensity
spectrum

Filtering 
functionIntensityRefractive 

index

Spatial 
domain 

Wavenumber 
domain 

Position x Wavenumber  kx



Collapse-free 
Nonlocal propagation

Recent paper by Maucher, Krolikowki and Skupin, arXiv:1008.1891

BEAM WAIST

PEAK INTENSITY



This filter action is more 
effective when the 

“Degree of Nonlocality”

is higher



Degree of nonlocality
=

index waist/intensity waist

LOCAL NON LOCAL



An example:

nematic liquid crystals



Re-orientational 
nonlinearity

Peccianti, Conti, Assanto, et al  Nature 432,733 2004

y
z

x

LC cell

E



The model

Conti et al. PRL 91, 073901 (2003)

E



The degree of nonlocality

In liquid crystals it is possible to tune the degree of nonlocality

Peccianti, Conti, Assanto OL 30 , 415, 2005



The Snyder and Mitchell 
Science paper

The refractive index only depens on power! Not intensity

The refractive index perturbation is so large 
that the beam “samples” a small portion

r



Highly nonlocal dynamics

Existence curve

Conti et al. 92, 113 902, PRL 2004



Experimental 
investigations of highly 

nonlocal media

Conti et al.  PRL 92, 113902, 2004



Highly and weakly nonlocal

Nonlocality may also 
mean a dependence on 

the derivatives
of intensity

Snyder and Mitchell limit



  

Diffraction and spatial solitons

y
z

x

LC cell
Laser beam



  

Modulational instability

Modulation Instability:
Exponential amplification 

of small perturbation

y
z

x

LC cell
Highly elliptic
input

-300

300

0y[m]

0 0.4 0.8 0 0.4 0.8

z[mm]
0 0.4 0.8

P=17 mW P=88 mW P=193 mW

Vbias=1.62   =514.5 nm



  

Modulational instability

Generation of solitons that constitute the “swarm”



  

Geometry 

•Planar cell

•The applied voltage determines 
the director profile

•The optical field induces an 
additional (small) director tilt

40


 Bulk value of the director

 Optical induced tilt



  

y ky

High power

ky

Low power

Spatial spectrumIntensity Vs space

Simple analysis of MI



  

Experiments at 1.06 m

P=22mW

P=80mW

P=140mW

P=300mW



  

Spectrum at 1.06 m

Side band 
modulation

appears 
upon propagation

P=22mW

P=80mW

P=140mW

P=300mW



  

P=22mW

P=80mW

P=140mW

P=300mW

z=520 m



  

514.5 nm
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Experiments 514.5 nm



  

Bands appear 
in the spectrum



  

Theory: basic equations

Kerr medium

Nematic LC (our experimental geometry)
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Theory: perturbative approach

● small perturbation  (<<0)

● large cell (along x)    

● slowly varying along z

● 1D dynamics (elliptical beam)
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Resulting model

● First studied by Litvak (1975) in plasma physics

● Reduced to Kerr model for K=0
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The simplest 
model for a 

nonlocal 
nonlinear

Conti, Peccianti, Assanto, Phys. Rev. Lett. 91, 073901 (2003)



  

MI analysis

The plane wave (y=0) solution is perturbed by side-
band modulation

ZiyikZiyikZi
0

0y0y0 e)z(ae)z(aeAA 





 

Exact plane wave 
solution

The amplitudes a+ and a- grow exponentially for a 
given range of ky (MI GAIN BANDWIDTH)



  

MI Bandwidth 1/2

GAIN Maximally amplified k

Local

Nonlocal

Local

Nonlocal



  

MI Bandwidth 2/2
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 ~Spatial filter inverse bandwidth

Additional 
spatial filtering

y

Intensity
profile

Index 
perturbation



  

Quantitative analysis of MI
● The Nonlocal model works very well
● The local model overestimates of nearly two orders of magnitude

Measured maximally
amplified transversal 

wavevector

Evidence of 
nonlocal MI!

Peccianti, Conti, Assanto, Phys. Rev. E 68, 025602(R) (2003)



  

Summarizing

● Nonlinearity induces localization 
● Localization is described by solitons
● Solitons are 1D
● Filaments are many-D
● Solitons and filaments interact
● Nowadays we make experiments with tens or 
hundreds of solitons



  

From a nonlinear wave equation 
to a model that resembles 

statistical mechanics

(simplest formulation)



  

Any soliton is a particle

CC, PRE 72, 066620 (2005)



  

The motion of the soliton



  

Many soliton and the landscape



  

Pairwise potential



  

Gaussian attractive potential



  

Particle trajectories 1/2



  

Particle trajectories 1/2



  

Final positions varying noise 1/2 



  

Final positions varying noise 2/2 



  

The inherent structure 1/2
The nearest minimum of the potential after a long propagation

Its energy unveils specific dynamic phases Vs interaction length



  

The inherent structure 2/2
The nearest minimum of the potential after a long propagation

Its energy unveils specific dynamic phases Vs interaction length



  

The generalized inherent structure
The nearest saddle point to the long time configuration

Its order (number of negative eigenvalues) has a minimum at the dynamic phase transition



  

The generalized inherent structure
The nearest saddle point to the long time configuration

Its order (number of negative eigenvalues) has a minimum at the dynamic phase transition



  

Are these features present in the 
wave?

We want to test the link between the particle trajectories and the wave-function



  

Wave-equation (sims)



  

Final wave profile



  

Experiments

y
z

x

LC cellHighly elliptic
input



  

Experiments

NONLOCAL REGIME



  

Rogue waves

or 

Rogue solitons



  A link between the statistics of rogue waves and the statistics of minima?



  

Temporal Soliton

We consider a regime in which the spatial shape 
is constant

We consider a pulse propagating in a fiber 

The pulse obeys again the NLS but with time 
instead of space

Filaments are replaced by light pulses



  



  

Linear waves and dispersion



  

Tens of solitons



  

Again the landscape :

(more complicated)

A Armaroli, CC, F Biancalana, Geometric origin of rogue solitons in optical fibres, arXiv:1406.5966



  

NLS in the time domain



  

Interacting solitons models



  

N-soliton model

We solve these equation by a standard routine



  



  

Solutions 

A Armaroli, CC, F Biancalana, arXiv:1406.5966



  

Link the statistical distribution of 
equilibria with the occurrence of rare 

rogue events
(a geometric origin of rogue waves)



  

Comparing the saddle points with 
the soliton profiles



  

Energy minima Vs dynamics



  

The lowest energy solution
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