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The Laws of Falling Dominoes

A domino falls, if kicked sufficiently vigorously.

A domino can be toppled by another domino.

Avalanches can occur, if dominoes are set too closely.
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Risk and Falling Dominoes

Operational Risk Domino Theory & Spread
of Communism

Financial CrisisBlackouts in Power Grids
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Fundamental Problem of Risk Analysis

Estimate likelihood and potential losses due to

negative fluctuation of portfolio-value (stock-prices, exchange rates,
interest rates, economic indices) ↔ market risk

change of credit quality, including default of creditor (asset values of
firms, ratings, stock-prices) ↔ credit risk

process failures (human errors, hardware/software- failures, lack of
communication, fraud, external catastrophes) ↔ Operational risk

rare fluctuations in cash-flows, requiring short term acquisition of
funds to maintain liquidity ↔ liquidity risk
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Main Interest and Concern: Interactions

Traditional approaches treat risk elements as independent or
at best statistically correlated

Misses functional & dynamic nature of relations:
terminal–mainframe/input errors–results/manufacturer–supplier
relations . . .

Effect of interactions between risk elements

Can have of avalanches of risk events
(process failures, defaults)

Fat tails in loss distributions

Volatility clustering in markets
(intermittency)
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Operational Risks — Interacting Processes

Conceptualise organisation as a network of processes

Two state model: processes either up and running (ni = 0)
or down (ni = 1)

Reliability of processes and degree of functional interdependence
heterogeneous across the set of processes; connectivity & concept of
neighbourhood functionally defined

⇒model defined on random graph

losses determined (randomly) each time a process goes down
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Dynamics – Mathematics of Falling Dominoes

Processes need support to keep running (energy, human resources,
material, information, input from other processes, etc.)

hit total support received by process i at time t

hit = h∗i −
∑
j

Jijnjt + xit

h∗
i support in fully functional environment

Jij support to process i provided by process j
xit random (e.g. Gaussian white noise).

Process i will fail, if the total support for it falls below a critical
threshold (if hit ≤ 0 – domino falls, if kicked too strongly)

nit+1 = Θ
(
− hit

)
= Θ

(∑
j

Jijnjt − h∗i − xit

)
Because of the random noise xit, failure is a probabilistic event.
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Probability that a Domino Falls

Probability of failure/probability of domino falling

Prob
(
nit+1 = 1

)
= Prob

(
xit <

∑
j Jij njt − h∗

i

)
≡ Φ

(∑
j Jij njt − h∗

i

)
p(x)

∑
j Jij njt − h∗

i
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unconditional and conditional probability of failure

pi = Φ(−h∗i ) , pi|j = Φ
(
Jij − h∗i

)
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A Simple Homogeneous Process Network

Large homogeneous system 1 ≤ i ≤ N .

Uniform all-to-all couplings Jij = J0/N , and h∗i = h∗ indep. of i.

⇒
∑
j

Jijnjt =
J0
N

∑
j

njt = J0mt

Dynamics depends only on fraction mt of failed nodes.

nit+1 = Θ
(∑

j

Jijnjt − h∗i − xit

)
= Θ

(
J0mt − h∗ − xit

)
.

Thus by Law of Large Numbers (LLN)

mt+1 =
1

N

N∑
i=1

Θ
(
J0mt − h∗ − xit

)
' Φ

(
J0mt − h∗

)
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Analysis of the Dynamics

Iterated function dynamics

mt+1 = Φ
(
J0mt − h∗

)

Analyze the behaviour as a function of the parameters J0 and h∗

Need properties of Φ(x)

Φ(x)→ 1 as x→∞ , Φ(−x) = 1− Φ(x)
Φ has inflection point (and maximum slope) at x = 0, with Φ(0) = 1

2 .

Φ
(
J0mt − h∗

)
as a function of mt has inflection point at

mt = h∗/J0 and (maximum) slope

J0Φ
′(0) , (> 1for sufficiently large J0)
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Analysis of the Dynamics
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Graphical anlysis of stationary solution m = Φ(J0m − h∗) for h∗ = 2 and J0 = 3

For not too small values of h∗ can change from system with only
low-m, via system with coexisting low-m and high-m states, to
system with only high-m states by increasing J0. For small h∗ have
only high-m state.
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Graphical anlysis of stationary solution m = Φ(J0m − h∗) for h∗ = 2 and J0 = 5

For not too small values of h∗ can change from system with only
low-m, via system with coexisting low-m and high-m states, to
system with only high-m states by increasing J0. For small h∗ have
only high-m state.
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system with only high-m states by increasing J0. For small h∗ have
only high-m state.
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Spontaneous Breakdown
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Losses from operational risks in a network of 100 processes: J0 such that low-m solution is stable

Spontaneous breakdown of meta-stable functioning solution possible
in finite systems
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Summary

We found that networks can be destabilized by large degrees of
interdependency (large J0) even if all processes are very reliable (with
large h∗).

For intermediate levels of dependency (intermediate J0), functioning
and dysfunctional states of the system coexist.

In systems with finite N , a functioning state can spontaneously switch
to the dysfunctional state (without an apparent ’big’ perturbation.)

Results qualitatively unchanged for heterogeneous networks (not
all-to-all interactions, heterogeneous levels of reliability, heterogeneous
mutual dependency)

Similar methods for credit risk (‘fat tailed’ loss distributions). Crises
much more frequent than anticipated if interactions are neglected.

Credit derivatives (CDS) can destabilise a system, if used to expand
loan books.
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