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Structural glasses.Mean field theory and the dynamical transition.Cooling: quenching andA new transition: its relations with the Gardner transition.

The mean field theory for hard spheres.Surprises at infinite pressure.



GlassesThe specific heat depends on the cooling speed Speed-dependent entropy
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Schematic view of the internal energy as function of the temperature:
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The position of the dynamic line slightly depends on the cooling speed (on

a logarithmic scale).No precursor effects in static quantities (like in first order transitions).Divergent correlation times (like in second order transitions). Large

correlation length in the dynamics.



A systematic study of different mean fields models of spin glasses started

in the ’80.
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Energy as function of the temperature.

non zero cooling rate. The limit t→∞ and N →∞ do not commute.

Correlation time is divergent at Td.

Correlations function at equilibrium C(t) satisfies mode-coupling

equations.



Mean field theory: → Neglecting correlations.

Two branches:

� Infinite connectivity, e.g. Sherrington Kirkpatrick model, infinite

dimensional models.

� Finite connectivity, e.g. diluted models, models on Bethe Lattices.



The homegenous p-spin model: p = 3

H =
∑
i,k,l

Ji,k,lσi, σk, σl

Ji,k,l = 1/N random number Ji,k,l = 3-J-symbols

First case random, second case is deterministic.

Hertz invented the second model and showed the equivalence with the first

models.TAP equations give equilibrium states, stable or metastable.

Two branches:

� The Ising case: σi = ±1

� The spherical case:
∑

i=1,N
σ2
i = N



Two transition:
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The dynamics transition that correspond to

in free energy into an exponentially large number of metastable states

are far away. The barrier for jumping is proportional to N(Td − T )3.

This is not a bifurcation: there are(better, no signs whatsoever)..



Below the phase transitions the equilibrium states is the union of an

exponential large number of metastable states.

The number of states that dominate equilibrium is the complexity Σ(T ).Who invented this namer for the configurational entropy???There is a new static transition where the complexity becomes zero

Σ(Ts) = 0 .

Below Ts only a few states dominate the equilibrium distribution. (

symmetry is broken at one step



The spherical 3-spin model.Metastable states are

A metastable state can only disappear when increasing the temperature.Any metastable state can be obtained by increasing the temperature

starting from a low temperature states.

free energy when temperature is changed (no temperature chaos).IsocomplexityWhen you quench from infinite temperature go to the highest energy

metastable states, that are the same you get by annealing from any

temperature above the critical temperature.





The equilibrium dynamics has a divergent correlation time when we

approach TB from above.

The schematic mode coupling theory is valid. At Tc we have that the

correlation decays as

t−a

where a satisfies the equation:

Γ(1− a)/Γ(1− 2a) = X ≡ λ

This equation was found at short distance in time in different contexts by

Sompolisky and Zippelius (spin glasses) and by Goetze (mode coupling

equations for glasses).



The Ising p-spin model or p-spin non homogeneous spherical model

H = Hp=3 +Hp=4

State do preserve the ordering in free energy when temperature is changed

(i.e. temperature chaos).Isocomplexity does not work.The states do evolve in a continuous way with the temperature. We define

q(T, T ′)

as the overlap among two states at different temperature during cooling.

The overlap is a continuous function of the temperature q(T, T ′).We can set up a state following procedure: Barrat, Franz and Parisi 1996.



Metastable state may become unstable by cooling the temperature.Biforcations: they breaks into states that are not very far one from the

other.
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Two possibilities:These states may be equidistant one from the other (one step replica

symmetry breaking).They may be organised in a hierarchical structure (continuous symmetry

breaking).

ϕ < ϕg

ϕ > ϕg

High ϕ > ϕgLow ϕ > ϕg Low ϕ > ϕg High ϕ > ϕg
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Therefore the qualitative phase structure is the following: Energy in the

stable phase.

Generic feature: for T near Td (a detailed study has been done by Franz,

Parisi and Ricci-Tersenghi)

TD − TB ∝ (TD − TI)1/2



Why this transition is important?After thermalise in the low temperature phase, when you cool you find a

glass transition inside the glass phase, with a value of a given by

C(t, TB) ∝ t−a τ ∝ (T − TB)1/a

Γ(1− a)/Γ(1− 2a) = X(TB) X(Td) = X

Below TB we aspect

Kurchan) XCK ≈ X(TB).

The situation is similar to the Sherrington Kirkpatrick model in a field (De

Almeida Thouless transition).
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Why the two models have a different behaviour at low temperature?The answer is the

equilibrium. In some systems it is possible that the various equilibrium

states biforcate into many other equilibrium states.

This fact was unexpected and

the p spin Ising system in the ’eighties

This transition is likely to be connected to Johari-Goldstein relaxation

(but I have to study the phenomenology).
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What happens at lower temperatures?Two formalisms:

� Quasi dynamical formalism (Franz and Parisi)

� Simple state following with Replica Symmetry breaking .Are they equivalent?????



Hard Spheres of diameter 1 at high pressure: glass transition and jammingLarge dimension D limit.

Kurchan, Parisi, Zamponi, Urbani on Nature Communication.

Trivial liquid phase. Reduced density φ = ρVD. For φ < exp(DA)

A = .07338 there are

expansion.

Increasing the pressure there is a glass transition and there is a jammed

phase at infinite pressure.

(e.g. 107 natural time units) if D > 3 or D = 3 and with a binary mixture.

Glass transition happens at large dimension at �= O(D) << exp(DA)

Crystallisation become strongly suppressed in high dimensions.



Frozen phase, where the particles are confined in a cage.

other particles forbid a given particle to move too much.The Pi(x− xi).

The

probability of the cages:

P(P )We have a functional order parameter: a big mess

Zamponi).



Idea

dimensions Pi(xi) to be a Gaussian.Final approximation

Pi(xi) ∝ exp
(
−(xi − xcagei )2/(2A)

)
The numb er of particle interacting at a given time with a given particle isof order D, a Gaussian distribution is natural.

With replicas: one introduce m replicas

Xi ≡= {x1i · · ·xmi } ρ(Xi) ∝
∫
dxcagei exp

(
−
∑
a=1,m

(xai − xcagei )2/(2A)

)
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Replica Symmetry Breaking

faction,

With replicas:

ρ(Xi) ∝ exp

(
−

∑
a=1,m;b=1,m

(
xai − xbi

)2
/(2Aa,b)

)

The model can be solved and we arrive to non linear differential equations

very similar to those of the Sherringon-Kirkpatrick model.The low temperature behaviour of SK correspond to infinite pressure in

hard spheres.Highly non trivial scaling limit



Only if we use replica symmetry breaking we find at infinite pressure:Isostaticity Z is equal o ND: each

sphere has in the average 2D contacts.The correlation function g(r) has a singularity at r = 1

g(r) = 2Dδ(r − 1) + C(D)(r − 1)−α α = 0.41269

The quasi-contact exponent α has been measured by several groups

dimension D ranging from 2 to 13, all obtaining roughly α ≈ 0.4.

The most precise estimates being ff = 0.41(3) for D = 3
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ConclusionsThe dynamical transition is not an isolated point but it is

a line of second order transitions

These transitions correspond to a

low temperature phase (Johari-Goldstein relaxation?).

The transition point depend on the amount of thermalisation.

Below the transition point

hierarchical organised states.The breaking of replica symmetry is crucial

predictions in the jammed state (infinite pressure) of hard spheres.

A panoplia of of non-trivial critical exponents describe the behaviour of

jammed hard spheres. The exponents seems

dimension

symmetry arguments.



To do list:

� Fully understand the behaviour in the low temperature phase.

� Finite D phenomenology (the dynamical transition become a crossover

point finite D).

� Renormalization group around the transition point.

� Why exponents for jamming do not depend on the dimension?

� Do we get all the exponents in an accurate way?

� Clearly identify the transition in numerical experiment and in the real

world.


