A mnew dynamical transition in mean field

disordered systems
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Ghessgrecific heat depends on the

cooling speed
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Schematic view of the internal energy as function of the temperature:
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The position of the dynamic line slightly depends on the cooling speed (on
eitrseier eéfeletn it ishesi ¢ lkeant iseeniikerderfitshmridmntyanstigas ) .
correlation length in the dynamics.




A systematic study of different mean fields models of spin glasses started
in the '80.

16 I I I I 7]

14 ' E static
120 E ——E dynamic

10 | .
8 F -

6
4
5 &
0




Mean field theory: — Neglecting correlations.

Two branches:

Infinite connectivity, e.g. Sherrington Kirkpatrick model, infinite

dimensional models.

Finite connectivity, e.g. diluted models, models on Bethe Lattices.



The homegenous p-spin model: p = 3

H = E Jik10i, 0k, O]

ik,

Ji k1 = 1/N random number Ji k1 = 3-J-symbols

First case random, second case is deterministic.
Hertz invented the second model and showed the equivalence with the first

hAelquations give equilibrium states, stable or metastable.

Two branches:
The Ising case: 0; = £+1

The spherical case: ) Z=N

:1,NU



Two transition:
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The dynamics transition that correspond to
in free energy into an exponentially large number of metastable states

are far away. The barrier for jumping is proportional to N(Ty — T )3.

Mestéx, ot sigrvifundationcvidigre are



Below the phase transitions the equilibrium states is the union of an

exponential large number of metastable states. Below

The number of states that dominate equilibrium is the complexity (7T Who invented this namer for the configurationslyonipie



Vet ssgp hbtecat adesparemodel.

A ngetastadtlebdéatentaamlyedibdppead byhemcinassagihlget hentparpénature.
starting from a low temperature states.

metastable states, that are the same you get by annealing from any

temperature above the critical temperature.






The equilibrium dynamics has a divergent correlation time when we

approach T’z from above.

The schematic mode coupling theory is valid. At T, we have that the

correlation decays as
t—CL

where a satisfies the equation:

T'(1—a)/T(1—2a) = X = A

This equation was found at short distance in time in different contexts by
Sompolisky and Zippelius (spin glasses) and by Goetze (mode coupling

equations for glasses).



The Ising p-spin model or p-spin non homogeneous spherical model
H == Hp:3 —|_ Hp:4

State do preserve the ordering in free energy when temperature is changed

[Bleectbailpsrty ehaslstemon Jwedatinuous way with the temperature. We define
q(T, 1)
as the overlap among two states at different temperature during cooling.

The overlap is a continuous function of the temperature ¢(7, T’ We can set up a state following procedure: Barrat, Franz and



Blid¢oastalnsst bheynanedleconto stesttesbtd diy areohiotg vidry ttem paeafnme the

other.
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Twespossitediticsy be equidistant one from the other (one step replica
Shematay beeakgagised in a hierarchical structure (continuous symmetry
breaking).

(a)

(c) (d)

High ¢ > ¢ High ¢ > ¢
g

(b)







Therefore the qualitative phase structure is the following: Energy in the

stable phase.
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Generic feature: for T near Ty (a detailed study has been done by Franz,

Parisi and Ricci-Tersenghi)

TD — TB 0. (TD — T[)1/2



Whher tihisrtnatisition tiseihopoteampérature phase, when you cool you find a

glass transition inside the glass phase, with a value of a given by
C(t,Tg) x t™° o (T —Tg)"*

T'(1—a)/T(1—2a)=X(Ts) X(Ty)=X

Below 1’z we aspect
Kurchan) Xox =~ X(Tg).

The situation is similar to the Sherrington Kirkpatrick model in a field (De

Almeida Thouless transition).






Wihey atlsavtwasmhbelels have a different behaviour at low temperature?
equilibrium. In some systems it is possible that the various equilibrium

states biforcate into many other equilibrium states.

This fact was unexpected and

the p spin Ising system in the ’eighties

This transition is likely to be connected to Johari-Goldstein relaxation

(but T have to study the phenomenology).






Wihatfdrapgpesmsat lower temperatures?
Quasi dynamical formalism (Franz and Parisi)

Aira plecyt atpifodllewinig?#ith Replica Symmetry breaking .



Hamrge Shiheresioh dibinatier 1 at high pressure: glass transition and jamming

Kurchan, Parisi, Zamponi, Urbani on Nature Communication.

Trivial liquid phase. Reduced density ¢ = pVp. For ¢ < exp(DA)
A = .07338 there are

expansion.

Increasing the pressure there is a glass transition and there is a jammed
phase at infinite pressure.

(e.g. 10" natural time units) if D > 3 or D = 3 and with a binary mixture.

Glass transition happens at large dimension at = O(D) << exp(DA)

Crystallisation become strongly suppressed in high dimensions.



Frozen phase, where the particles are confined in a cage.
dilher particles forbid a given particle to move too Ry(ch= z;).

The
probability of the cages:

P(PWe have a functional order parameter: a big mess

Zamponi).



Idea

dimensions

P; (z; F toabeppCoximsation

P;(x;) o< exp (—(ZLUL — xfage)Q/(QA))

D, a Gaussian distribution is natural.

With replicas: one introduce m replicas

Xi=={z; 2"} p(Xi) x /da:fage exp (






Replica Symmetry Breaking

faction,

With replicas:

p(X;) o< exp (— Z (a:f _ xf)Q /(2Aa,b)>

a=1,m;b=1m

The model can be solved and we arrive to non linear differential equations
Ty kim it ampetdtonee dietizey Blvarrih b -deirkgpdrnidkt animdialite pressure in
Hhgtlypheresrivial scaling limit



Oadtpaificitey use replica symmetry breaking we fiddistequiihideNpféssrach
sphere has in the average 2D &dmé¢acdrrelation function g(r) has a singularity at » = 1

g(r) =2D§(r — 1) + C(D)(r — 1)~ ¢ o = 0.41269

The quasi-contact exponent o has be

dimension D ranging from 2 to 13, al






Cbadysiansical transition is not an isolated point but it is

a line of second order transitions

These transitions correspond to a

low temperature phase (Johari-Goldstein relaxation?).
The transition point depend on the amount of thermalisation.

Below the transition point
Hibeabaderdailngrghmegaldcatagesmetry is crucial

predictions in the jammed state (infinite pressure) of hard spheres.

A panoplia of of non-trivial critical exponents describe the behaviour of
jammed hard spheres. The exponents seems

dimension

symmetry arguments.



To do list:
Fully understand the behaviour in the low temperature phase.

Finite D phenomenology (the dynamical transition become a crossover
point finite D).

Renormalization group around the transition point.
Why exponents for jamming do not depend on the dimension?
Do we get all the exponents in an accurate way?

Clearly identify the transition in numerical experiment and in the real

world.



