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* What is a spin glass?
* how do we study spin glasses?
* how can we use spin glass physics to study information processing?

* hard optimization problems
* neuronal networks
¢ inference



what is a spin glass!?

systems with frozen and disordered spin-spin interactions
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* magnetic alloys where magnetic moments
interact via disordered exchange interactions.
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linear temperature dependence of specific heat

time dependent remnant magnetization Canella and Mydosh 1974



transition metal impurity

Fe

free-electron susceptibility

Noble Metal
Cu

[~ >

N/

distance

H = — Z JijO'iO'j
)



— E JijO'z'O'j
(2,7) \ random interactions

1 Ji; — Jo)?

exp{—( J 0) }

= %%

Pr(Ji;) = pd(Jij = J) + (1 = p)o(Ji; + J)
Edwards-Anderson model: finite dimensional, short range interactions
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Sherrington-Kirkpatrick model: mean-field model
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frustration

t0———9| + O 1\
All bonds are satisfied i \

unhappy bond
H Jii <0



how to study spin glass models?

typical behaviour
/dJ Pr(J) Z|J] =/ dJ Pr(J) Tr, exp{—0H}

annealed approximation. Not very good!!

/dJ Pr(J) log Z|[J] :/ dJ Pr(J) logTr, exp{—FH}

/i —1

replica trick log Z = 71,12% ‘N

n replica of the system with
the same disorder
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how to study spin glass models?

*behavior of a specific realization of the
disorder

naive mf equations

m; = tanhl|h; + Zj Jiim;|
TAP equations

m; = tanhl|h Z Jijm; — mzz J2 1—m

formally can be derived by expanding the Gibbs free energy in
powers of | (the Plefka expansion) or by one-loop
corrections.



but magnetic materials are not the only
systems with
random interactions and frustration
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Chapter 0
A KIND OF INTRODUCTION

Often in life we find out that our goals are mutually incompatible: we have to
renounce some of them and we feel frustrated. For example, | may want to be a friend
of both Mr. White and Mr. Smith. Unfortunately, they hate each other: it is then rather
difficult to be a good friend of both of them (a very frustrating situation).

The situation is more complex when many individuals are present. In a classical
tragedy the scenario may be the following: there is a fight between two groups and the
various characters on the scene have to choose sides. In addition they all have strong
personal feelings, positive or negative, towards each other (it is a tragedy!). Some of
them are friends and some are enemies. For simplicity we will assume that all feelings
are reciprocal; otherwise the system may never reach equilibrium (this more general
case, though much more complicated can be studied. Sce Reprint 34 for one particular
example). Let us consider three characters (A, Band C);if A and B, Band C, Aand C
do like each other, there is no problem: they will all choose the same side. In a similar
way, if 4 and B are friends and C is an enemy of both, then A and B can be on one
side and C will be on the other. Frustration follows, instead, if A, B and C hate each
other because two personal enemies must then fight on the same side.

This analysis can be formalized by assigning to each pair a number J,z which is + 1
if A and B are friends and - | if they hate each other; the relation among three
characters is frustrated if (Ref. 1)

JA..J.C.JCA- —l. (o.l)

When many triples are frustrated, evidently the situation on the scene is unstable
and many rearrangements of the two fields are possible.
At a given moment of the tragedy it is possible to define the “dramatic tension” as

Number of frustrated triples/Total number of triples. (0.2)

Detailed studies? have shown that in many Shakespeare’s plays the dramatic tension
has a small value at the beginning of the tragedy, reaches a maximum in the middle
and decreases by the end.

Mathematically we could say that we have N variables s,, one for each character; s;
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K-SAT problem

N boolean variables {331, T, ,xN} c {F, T}N
pick K of them Ti,Xj, Tk

. . . X4 V £ j V L
construct a clause A1 involving the logical OR
between these variables or their negations Ti V Xy V T

Ti V XV Ty
do this M times

A17A27”' 7AM
Questions: is there an instance of the x variables such that



example

N=3K=2M=3 N=3K=2M-=5
Ci =21V 2o Chi =21V 29
Co =21V T Co =21V xo
C5 = 29 V —x3 C3 =x9V 23
x1 =T, 290 =T, 253 ="1T Cy =21V xo

C5 = =11 V X9
a=M/N
echecking that an assignment is a solution is
simple.
* finding a solution:
« K=2, the problem is polynomial.

» K=3, the first problem proved to be NP
complete (cook 1971).
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Entropy of the K-Satisfiability Problem

Rémi Monasson’ * and Riccardo Zecchina®!
' Laboratoire de Physigue Théorigue de I'ENS, 24 rue Lhomond, 75231 Paris cedex 05, France
Istituto Nazionale di Fisica Nucleare and Dip. di Fisica, Politecnico di Torino, C.so Duca degli Abruzzi 24, 1.10129 Torino, Italy
(Received 12 January 1996)

The threshold behavior of the K-satisfiability problem is studied in the framework of the statistical

K mechanics of random diluted systems, We find that at the transition the entropy is finite and hence that
a the transition itself is due to the sbrupt appearance of logical contradictions in all solutions and not 10
E[ A S] — — N+ E ( — l )R E the progressive decreasing of the number of these solutions down to zero. A physical interpretation is
’ 2K 1 L M - given for the different cases K = 1, K = 2, and K = 3. [S0031-9007(96)00244-X]
= Iy =1 e I
S - PACS numbers: 05.20.-y, 02.10.-v, 64.60.H+, §9.70.+¢
x J : . - , S 4 S ' - - . S ' ,

where the couplings are defined by

L K=2 smooth phase transition at o, = 1

K=3 sharp RS phase transition at &/, = 9.138
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SAT (Eo =0) UNSAT (E0>0)
000 0e®Pe.

© 00 %00 0
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1 state Many states Many states
OE=0 @E>0 @E>0
Iy
Il
o =3.921 o =4.267 o=M/N

e For a < ay = 3.921, the problem is generically SAT; the solution can be found relatively easily, because the
space of SAT configurations builds up a single big connected cluster. A T = 0 Metropolis algorithm, in which
one proposes to flip a randomly chosen variable, and accepts the change iff the number of violated constraints
in the new configuration is less or equal to the old one, is able to find a SAT configuration. We call this the
EASY-SAT phase

e for oy < a < a, = 4.267, the problem is still generically SAT, but now it becomes very difficult to find a
solution (we call this the HARD-SAT phase).

e For @ > a., the problem is typically UNSAT. The ground state energy density eg is positive. Finding a
configuration with lowest energy is also very difficult because of the proliferation of metastable states.

Mezard, Parisi, Zecchina, Science 2002 Mezard M, arxiv 02124448 .



neural networks

~10" neurons in the brain

~ each connected to 10% others

~ a typical mm? contains 10° neurons and
10° connections.

a neuron generates an action potential if
it receives enough input from other

neurons.

Synaptic Plasticity

o—0 16




the idea behind memory
formation
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¢ aftractor network, Hebbian cell assembly
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~ learning many patterns causes interference
between them.
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Jij NZ&; J

H=-) Jijoio;  F=-[logZ

i,]
a=p/N
Under which conditions one (or more)
o L S ¢hg;  of the ms will be close to Iwhile the
N & rest are close to zero!
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VOLUME 55, NUMBER 14 PHYSICAL REVIEW LETTERS 30 SEPTEMBER 1985

Storing Infinite Numbers of Patterns in a Spin-Glass Model of Neural Networks

Daniel J. Amit and Hanoch Gutfreund
Racah Institute of Physics, Hebrew University, Jerusalem 91904, Israel

and

H. Sompolinsky
Department of Physics, Bar llan University, Ramat Gan, Israel
(Received 11 July 1985)

The Hopfield model for a neural network is studied in the limit when the number p of stored pat-
terns increases with the size N of the network, as p =aN. It is shown that, despite its spin-glass
features, the model exhibits associative memory for a < a, a. 2> 0.14. This is a result of the ex-
istence at low temperature of 2p dynamically stable degenerate states, each of which is almost fully
correlated with one of the patterns. These states become ground states at « < 0.05. The phase dia-
gram of this rich spin-glass is described.

PACS numbers: 87.30.Gy, 64.60.Cn, 75.10.Hk, 89.70.+c
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FIG. 1. Average percentage of errors in the FM states, as
a function of & at T=0.
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high-throughput data in biology

Normal tissues Cancor coll imnos
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~ inferring gene regulatory network

Lazon et al 06

microarray expression data from Saccharomyces cerevisiae

~ Reconstructing protein complexes from co-evolution of
contacting residues (#a.a. ~ 10?%; #data ~ 103-10%)

Weigt, White, Szurmant, Hoch, Hwa (PNAS 2009)



equilibrium inverse Ising problem

find h; and J;;of
Pr(sq,..., SN) = %exp Z his; +

E JijSiSj

1<J




Maximum-Likelihood approach

® the probability that the data is generated by
the model at a given set of parameters (the

likelihood)

® maximize the likelihood over the parameters.

® typically done iteratively



® how to find h;, J;; for large N?
Exact method: Boltzmann learning
oh; = 77[<5i>data — <Si>current h and J]
0Jij = n[(si8;)data — ($iSj)current h and J|

Ackley, Hinton, Sejnowski 85

requires long Monte Carlo runs to compute model statistics

fast and reliable approximate methods exist



inferring kinetic disordered models

exp[si(t 1)hz(t) Zj JijSi(t 1)83(?5)]

Pr({s(t + D}{s()}) =[]

1

2 coshlh;(t) + ), Jijs; (1))

J;; is not necessarily symmetric and the
system may never reach equilibrium



* inverse problem: suppose we have observed R repeats each of
length L of the spin history

s™(t) = {s5(t), -, s%(t)}, r = 1...R.

we would like to find out the couplings ] and the fields h

Jandh <€ N spin history

correlation functions



Shi(t) = nu{ (si(t + 1)), — (tanh[h +ijksk

5.Ji; = ns{(si(t + 1)s;(t))— (tanh[h; +ZJzksk i)}

like (batch version) delta-rule for N independent perceptrons

Much faster than Boltzmann learning for the symmetric case
because it doesn’t need long Monte Carlo runs to evaluate
the second term



what if we don’t see all spins?

Dunn and Roudi, PRE, 2013 Jda (t) = Zj Jaij (t) + Zb JabO'b(t)



e learn the |s: we need to calculate the likelihood of the data

pl{s(t)}i1] = Tro | [ pl{s, 0}t + 1)[{s,0}(1)]

e infer the state of hidden spins: we need the posterior

{o®)}izy {s®)}ioi]

T T 1_P
Pl i s yim] = = o

if we calculate,

L[y] = log Trace, | [ e2=a Vo7 W p[{s o} (t + 1)|{s,0}(1)].

we have both the likelihood and the posterior

but this involves a trace over {o(1),...,0(T)}



L[y] = log Trace, | [ e2=a VoMW p[{s a}(t + 1)|{s, 0} (1)].

t

This can be written as a path integral and studied using a
Plefka-like expansion.

observed to observed

Ve

inferred

o
o

o
N

observed to hidden

inferred |

|
o
N

hidden to observed

hidden to hidden

I

0.2 -
AL
SO
- 0SNG % —
0.0 X RN K X

-0.2F n




what if we did not even know that there are hidden spins!?
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summary

® spin glasses show interesting physics and
analyzing them yields powerful tools.

® many other complex systems show similar behaviors,
and can be analyzed using the same tools including
optimization problems, learning in neural networks,
statistical inference.
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