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Spin glasses and Computation
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• What is a spin glass? 

• how do we study spin glasses?

• how can we use spin glass physics to study information processing?

• hard optimization problems
• neuronal networks
• inference

outline
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what is a spin glass?

• magnetic alloys where magnetic moments 
interact via disordered exchange interactions. 

Noble Metal
Cu

transition metal impurity
Fe

systems with frozen and disordered spin-spin interactions

linear temperature dependence of specific heat
time dependent remnant magnetization Canella and Mydosh 1974
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transition metal impurity
Fe
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Edwards-Anderson model: finite dimensional, short range interactions

J0 ⇠ O(N�1) J1 ⇠ O(N�1)

Sherrington-Kirkpatrick model: mean-field model

random interactions

= 0 = 0 paramagnetic

6= 06= 0 ferromagnetic
= 0 6= 0 frozen spins



Y

Jij2C
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frustration
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Tr� exp{��H}Z[J ] =

how to study spin glass models?
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annealed approximation. Not very good!!

•typical behaviour

logZ = lim

n!0

Zn � 1

n
replica trick

n replica of the system with 
the same disorder

Z
dJ Pr(J)
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Nishimori 2001
Mezard, Parisi, Virasoro 87
Fischer and Hertz 91
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•behavior of a specific realization of the 
disorder

how to study spin glass models?

naive mf equations

TAP equations

formally can be derived by expanding the Gibbs free energy in 
powers of J (the Plefka expansion) or by one-loop 
corrections.



but magnetic materials are not the only 
systems with 

random interactions and frustration
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{x1, x2, · · · , xN} 2 {F, T}N

xi, xj , xk

xi _ xj _ xk

xi _ xj _ ¬xk

xi _ ¬xj _ ¬xk

�1 ^�2 ^ · · ·�M = T

�1,�2, · · · ,�M

K-SAT problem
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N boolean variables

pick K of them

construct a clause Δ1 involving the logical OR 
between these variables or their negations

do this M times

Questions: is there an instance of the x variables such that  



C3 = x2 _ ¬x3

N = 3,K = 2,M = 3

x1 = T, x2 = T, x3 = T

C4 = ¬x1 _ ¬x2

C1 = x1 _ ¬x2

C5 = ¬x1 _ x2

N = 3,K = 2,M = 5

↵ = M/N

example
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• K=2, the problem is polynomial.
• K=3, the first problem proved to be NP 
complete (cook 1971).

C2 = x1 _ x2

C3 = x2 _ ¬x3

C1 = x1 _ ¬x2

C2 = x1 _ x2

•checking that an assignment is a solution is 
simple. 
• finding a solution:



xi =
1 + si

2

E =
1 + s1

2

1 + s27
2

1� s3
2

+
1� s11

2

1 + s3
2

1 + s2
2

+ · · ·

14

↵c = 1

↵c = 5.18

K=2   smooth phase transition at 

K=3   sharp RS phase transition at 
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Mezard M, arxiv 02124448Mezard, Parisi, Zecchina, Science 2002



neural networks
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~1011 neurons in the brain

~ each connected to 104 others 

~ a typical mm2 contains 105 neurons and 
109 connections.

a neuron generates an action potential if 
it receives enough input from other 
neurons.

Synaptic Plasticity
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the idea behind memory 
formation

attractor network, Hebbian cell assembly



 learning many patterns causes interference 
between them.
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Under which conditions one (or more) 
of the ms will be close to 1while the 
rest are close to zero?
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high-throughput data in biology

time

neuron 1
neuron 2
neuron 3

neuron N

. . 
.



~ inferring gene regulatory network

Lazon et al 06
microarray expression data from Saccharomyces cerevisiae

~ Reconstructing protein complexes from co-evolution of 
contacting residues (#a.a. ~ 102;  #data ~ 103-104)

 Weigt, White, Szurmant, Hoch, Hwa (PNAS 2009)



equilibrium inverse Ising problem

Cij = hsisji � hsiihsji (1)
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Maximum-Likelihood approach

• the probability that the data is generated by 
the model at a given set of parameters (the 
likelihood)

• maximize the likelihood over the parameters.

• typically done iteratively



• how to find  hi, Jij  for large N?

Exact method: Boltzmann learning

requires long Monte Carlo runs to compute model statistics

fast and reliable approximate methods exist

Ackley, Hinton, Sejnowski 85

�Jij = ⌘
⇥
hsisjidata � hsisjicurrent h and J

⇤

�hi = ⌘
⇥
hsiidata � hsiicurrent h and J

⇤



inferring kinetic disordered models

Pr({s(t+ 1)}|{s(t)}) =
Y

i

exp[si(t+ 1)hi(t) +
P

j Jijsi(t+ 1)sj(t)]

2 cosh[hi(t) +
P

j Jijsj(t)]

time

neuron 1
neuron 2

neuron 3

neuron N

. . 
.
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Jij is not necessarily symmetric and the 
system may never reach equilibrium



• inverse problem: suppose we have observed R repeats each of 
length L of the spin history

Mean Field Theory For Non-Equilibrium Network Reconstruction

Yasser Roudi1 and John Hertz1, 2

1NORDITA, Stockholm, Sweden
2The Niels Bohr Institute, Copenhagen, Denmark

There has been recent progress on the problem of inferring the structure of interactions in complex
networks when they are in stationary states satisfying detailed balance, but little has been done for
non-equilibrium systems. Here we introduce an approach to this problem, considering, as an exam-
ple, the question of recovering the interactions in an asymmetrically-coupled, synchronously-updated
Sherrington-Kirkpatrick model. We derive an exact iterative inversion algorithm and develop effi-
cient approximations based on dynamical mean-field and Thouless-Anderson-Palmer equations that
express the interactions in terms of equal-time and one time step-delayed correlation functions.

PACS numbers: 05.10.-a,02.50.Tt,75.10.Nr

Introduction.— Finding the connectivity in complex
networks is an important step in understanding how they
operate. The types of data required for reconstructing
many biological networks have become available recently,
thanks to advances in recording technology, e.g., gene mi-
croarrays and multi-electrode arrays. These techniques
allow us to observe simultaneously the activity of many
elements in a system. What is needed now is appropriate
theoretical tools for analyzing these data and extracting
the connectivity.

In much recent work on this subject [1–4], the prob-
lem has been posed as that of inferring the parameters of
a stationary Gibbs distribution modeling the system. In
this case, techniques from equilibrium statistical mechan-
ics can be exploited to develop fast and efficient inference
methods [3–6]. In biological systems, however, the as-
sumption of Gibbs equilibrium is unlikely to hold, due to
several factors: these systems are usually driven by time-
dependent external fields, the interactions may not sat-
isfy detailed balance, or the system may only be observed
while the dynamics is dominated by transients. Applying
the equilibrium approach to these non-equilibrium cases
usually yields effective interactions that do not bear any
obvious relationship to the real ones [3].

In this paper we study how the parameters of a dy-
namical system which is not necessarily in Gibbs equi-
librium can be efficiently inferred from observing it. A
convenient platform to illustrate our approach is a kinetic
Ising model with random asymmetric interactions (Jji in-
dependent of Jij), driven by an external field which may
be time-dependent. This case is of interest for analyzing
multiple neural spike trains recorded while the animal is
subjected to a time-varying stimulus. Even if the field
is time-independent and the model is in a steady state,
this system is not in a Gibbs equilibrium because de-
tailed balance does not hold for asymmetric interactions.
However, we show that, like its equilibrium counterpart,
the non-equilibrium inverse problem for this model can
be solved using a gradient descent method. We then go
on to build systematic approximations using dynamical
mean-field (MF) and Thouless-Anderson-Palmer (TAP)

equations. We show that for both the stationary and non-
stationary systems these methods provide efficient and
effective reconstruction of interactions from state sam-
ples.

The model and the exact learning rule.— Con-
sider the following discrete-time, synchronously updated
kinetic Ising model composed of N spins si = ±1:

Pr(s(t+ 1)|s(t)) =
∏

i

exp[si(t+ 1)θi(t)]

2 cosh(θi(t))
(1)

where θi(t) = hi(t) +
∑

j Jijsj(t) and the couplings Jij
are independent Gaussian variables with variance g2/N .
A model like this can be readily applied to time-binned
neural spike trains, where t labels the bins, si(t) = ±1
represents a spike or no spike by neuron i in bin t [1]. The
temperature has been set equal to 1, since any effects of
changing the temperature can be realized by changing
the coupling parameter g and the field strengths.

Suppose that we have observed R realizations of du-
ration L time steps of this system. We denote the ob-
served state of the system at time t of realization r by
s
r(t) = {sr1(t), · · · , srN (t)}, r = 1 . . . R. We further as-

sume that all realizations are generated with the same
initial condition and external fields, and that they only
differ in the realization of thermal noise. To find the
couplings and external fields that best fit these data, we
maximize the log-likelihood of the observed states under
the model in Eqn. (1)

L(h, J) =
∑

t,r,i

[

his
r
i (t+ 1) +

∑

j

Jijs
r
i (t+ 1)srj(t)

− log 2 cosh(hi(t) +
∑

j

Jijs
r
j(t))

]

. (2)

This maximization can be done using an iterative algo-
rithm, analogous to Boltzmann learning for the equilib-
rium model. One starts from an initial set of couplings
and fields and adjusts them iteratively by steps of sizes

we would like to find out the couplings J and the fields h 

J and h
spin history 
correlation functions
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δhi = ηh
∂L
∂hi

and δJij = ηJ
∂L
∂Jij

, that is

δhi(t) = ηh
{

⟨si(t+ 1)⟩r − ⟨tanh[hi(t) +
∑

k

Jiksk(t))]⟩r]
}

(3a)

δJij = ηJ
{

⟨si(t+ 1)sj(t)⟩

− ⟨tanh[hi(t) +
∑

k

Jiksk(t)]sj(t)⟩
}

, (3b)

where ηh and ηJ are learning rates. Here and in what
follows ⟨· · · ⟩r, ⟨· · · ⟩t, ⟨· · · ⟩ represent averaging over re-
peats, time, and both repeats and time, respectively. An
overline, instead, indicates averaging over the spins.

The algorithm Eqn. (3) is effectively N independent
stochastic delta-rule algorithms (with the negative log-
likelihood as cost function), one for each spin; see sec-
tion 5.6 in [7]. It is faster than Boltzmann learning
for the equilibrium case, because evaluating the second
term does not require Monte Carlo runs. However, it is
still slow for large systems. Therefore, faster algorithms
would be useful.

In what follows, we derive fast inversion formulae,
based on dynamical MF and TAP equations, that would
be exact for N → ∞ and infinite data. We also quantify
the performance of the algorithms outside these limits.

Inverse MF and TAP.— For simplicity, we consider
first the stationary case, for which the sequence index
r is superfluous. This is because in this case averaging
over time and repeats would be equivalent. We start with
the maximum likelihood conditions (3) with δhi and δJij
equal to zero. Assume first that the magnetizations mi =
⟨si⟩ satisfy the MF equationsmi = tanh(hi+

∑

j J
MF
ik mk)

. We write the si that occur in Eqn. (3) as mi + δsi
and expand the tanh in the δsi. The zeroth-order terms
vanish, and the bilinear terms give

⟨δsi(t+1)δsj(t)⟩ = (1−m2
i )

∑

k

JMF
ik ⟨δsk(t)δsj(t)⟩. (4)

Defining matrices Dij = ⟨δsi(t + 1)δsj(t)⟩ (the one-step
delayed correlation matrix), Cij = ⟨δsi(t)δsj(t)⟩ (the
equal-time correlation matrix) and Aij = (1 − m2

i )δij ,
(4) can be solved to give JMF = A−1DC−1. This is our
MF inversion formula.

To get the TAP inversion formula, we start instead
by assuming that the mi satisfy the TAP equations
mi = tanh[hi +

∑

k J
TAP
ik mk −mi

∑

k(J
TAP)2ik(1−m2

k)].
These equations improve over the MF ones by taking
into account the Onsager reaction field. It was proved
by Kappen and Spanjers [8] that the TAP equations, al-
though usually derived for the equilibrium (symmetric-
J) SK model, also hold for the asynchronously updated,
asymmetric-J model in a stationary state. We have veri-
fied that they are also valid in our synchronously-updated
model [9]. We again write si = mi + δsi, expand-
ing the tanh to third order in powers of

∑

k J
TAP
ik δsk +

mi

∑

k(J
TAP)2ik(1 −m2

k). Keeping terms up to order g3

leads to D = ATAPJTAPC , where

ATAP
ij = δij(1−m2

i )[1− (1−m2
i )

∑

l

(JTAP)2il(1−m2
l )].

These equations cannot be solved directly as in the MF
case because ATAP depends on JTAP. However, one
can derive a cubic equation for the quantities Fi =
(1−m2

i )
∑

l(J
TAP)2il(1−m2

l ):

Fi(1− F 2
i ) = (1−m2

i )
∑

j

(JMF)2ij(1−m2
j ). (5)

This determines ATAP
ii = (1 − m2

i )(1 − Fi), so we can
evaluate JTAP

ij = JMF
ij /(1 − Fi). The physically relevant

root of Eqn. (5) can not exceed 2/(3
√
3), restricting this

technique to weak correlations.
For both MF and TAP reconstruction, the fields hi can

be found by solving the respective magnetization equa-
tions after the Jij have been obtained, just as in the
equilibrium problem [5].

Performance of the algorithms.— We have veri-
fied that the algorithm (3) recovers the couplings of an
asymmetric SK model exactly in the limit of infinite data
(L → ∞) for a wide range of coupling strengths g, ex-
ternal fields and system sizes. The mean square error,
ϵexact, is in general proportional to 1/L, and in the weak-
coupling limit a quadratic expansion of Eqn. (2) yields

ϵexact = δJ2
ij ≡ (Jij − J0

ij)
2 =

1

(1−m2
i )L

, (6)

where J0
ij are the true couplings and Jij are those found

by the algorithm.
We find that the MF algorithm leads to an error, ϵMF,

of the form ϵexact + ϵ∞MF, where ϵ∞MF is independent of L
and proportional to 1/N . Thus, for data sets of length
much smaller than L∗ = 1/ϵ∞MF ∝ N , MF does almost as
well as the exact algorithm, and, furthermore, the larger
the network, the better MF does. The errors for the exact
and MF algorithms are plotted as functions of L in Fig.
1a.

For weak coupling, we can calculate the asymptotic
MF error, ϵ∞MF, analytically as follows. We present the
zero-field case here for simplicity. We expand the tanh in
the maximum-likelihood equation to third order, giving

Din =
∑

k

Jik⟨sksn⟩ − 1
3

∑

klm

JikJilJim⟨skslsmsn⟩+ · · · .

(7)
Correlations here are at equal times, except forDin. The
dominant contributions in the sum over k, l, and m are
those with k = l, l = m and m = k. Multiplying on the
right by (C−1)nj , summing over n and using Eqn. (4) for
JMF, we get

JMF
ij = Jij −

∑

k

J2
ikJij , (8)
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equal-time correlation matrix) and Aij = (1 − m2

i )δij ,
(4) can be solved to give JMF = A−1DC−1. This is our
MF inversion formula.

To get the TAP inversion formula, we start instead
by assuming that the mi satisfy the TAP equations
mi = tanh[hi +

∑

k J
TAP
ik mk −mi

∑

k(J
TAP)2ik(1−m2

k)].
These equations improve over the MF ones by taking
into account the Onsager reaction field. It was proved
by Kappen and Spanjers [8] that the TAP equations, al-
though usually derived for the equilibrium (symmetric-
J) SK model, also hold for the asynchronously updated,
asymmetric-J model in a stationary state. We have veri-
fied that they are also valid in our synchronously-updated
model [9]. We again write si = mi + δsi, expand-
ing the tanh to third order in powers of

∑

k J
TAP
ik δsk +

mi

∑

k(J
TAP)2ik(1 −m2

k). Keeping terms up to order g3

leads to D = ATAPJTAPC , where

ATAP
ij = δij(1−m2

i )[1− (1−m2
i )

∑

l

(JTAP)2il(1−m2
l )].

These equations cannot be solved directly as in the MF
case because ATAP depends on JTAP. However, one
can derive a cubic equation for the quantities Fi =
(1−m2

i )
∑

l(J
TAP)2il(1−m2

l ):

Fi(1− F 2
i ) = (1−m2

i )
∑

j

(JMF)2ij(1−m2
j ). (5)

This determines ATAP
ii = (1 − m2

i )(1 − Fi), so we can
evaluate JTAP

ij = JMF
ij /(1 − Fi). The physically relevant

root of Eqn. (5) can not exceed 2/(3
√
3), restricting this

technique to weak correlations.
For both MF and TAP reconstruction, the fields hi can

be found by solving the respective magnetization equa-
tions after the Jij have been obtained, just as in the
equilibrium problem [5].

Performance of the algorithms.— We have veri-
fied that the algorithm (3) recovers the couplings of an
asymmetric SK model exactly in the limit of infinite data
(L → ∞) for a wide range of coupling strengths g, ex-
ternal fields and system sizes. The mean square error,
ϵexact, is in general proportional to 1/L, and in the weak-
coupling limit a quadratic expansion of Eqn. (2) yields

ϵexact = δJ2
ij ≡ (Jij − J0

ij)
2 =

1

(1−m2
i )L

, (6)

where J0
ij are the true couplings and Jij are those found

by the algorithm.
We find that the MF algorithm leads to an error, ϵMF,

of the form ϵexact + ϵ∞MF, where ϵ∞MF is independent of L
and proportional to 1/N . Thus, for data sets of length
much smaller than L∗ = 1/ϵ∞MF ∝ N , MF does almost as
well as the exact algorithm, and, furthermore, the larger
the network, the better MF does. The errors for the exact
and MF algorithms are plotted as functions of L in Fig.
1a.

For weak coupling, we can calculate the asymptotic
MF error, ϵ∞MF, analytically as follows. We present the
zero-field case here for simplicity. We expand the tanh in
the maximum-likelihood equation to third order, giving

Din =
∑

k

Jik⟨sksn⟩ − 1
3

∑

klm

JikJilJim⟨skslsmsn⟩+ · · · .

(7)
Correlations here are at equal times, except forDin. The
dominant contributions in the sum over k, l, and m are
those with k = l, l = m and m = k. Multiplying on the
right by (C−1)nj , summing over n and using Eqn. (4) for
JMF, we get

JMF
ij = Jij −

∑

k

J2
ikJij , (8)

like (batch version) delta-rule for N independent perceptrons
Much faster than Boltzmann learning for the symmetric case
because it doesn’t need long Monte Carlo runs to evaluate
the second term



what if we don’t see all spins?

exp

hX
i
si(t+ 1)gi(t) +

X
a
�a(t+ 1)ga(t)

i
Z(t)�1

p({s,�}(t+ 1)|{s,�}(t)) =
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Y
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2 cosh[gi(t)] 2 cosh[ga(t)]
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X
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X
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p[{�(t)}Tt=1|{s(t)}Tt=1] =
p[{�(t)}Tt=1 , {s(t)}Tt=1]

p[{s(t)}Tt=1]

• infer the state of hidden spins: we need the posterior

p[{s(t)}Tt=1] = Tr�
Y

t

p[{s,�}(t+ 1)|{s,�}(t)]

• learn the Js: we need to calculate the likelihood of the data

L[ ] ⌘ log Trace�

Y

t

e
P

a  a(t)�a(t)p[{s,�}(t+ 1)|{s,�}(t)].

if we calculate,

we have both the likelihood and the posterior

{�(1), . . . ,�(T )}but this involves a trace over



L[ ] ⌘ log Trace�

Y

t

e
P

a  a(t)�a(t)p[{s,�}(t+ 1)|{s,�}(t)].

This can be written as a path integral and studied using a 
Plefka-like expansion.
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what if we did not even know that there are hidden spins?
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summary

• spin glasses show interesting physics and 
analyzing them yields powerful tools.

• many other complex systems show similar behaviors, 
and can be analyzed using the same tools including 
optimization problems, learning in neural networks, 
statistical inference. 
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