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• a simple model for this: equilibrium inverse Ising problem.

• adding dynamics: kinetic Ising model.

• problem of hidden nodes

• make lower dimensional statistical descriptions of these data 
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equilibrium inverse Ising problem

Pr(s1, . . . , sN ) =

1

Z
exp

2

4
X

i

hisi +
X

i<j

Jijsisj

3

5
(1)

1

Tuesday, February 12, 13



equilibrium inverse Ising problem

Cij = hsisji � hsiihsji (1)

1

mi = hsii (1)

1

Pr(s1, . . . , sN ) =

1

Z
exp

2

4
X

i

hisi +
X

i<j

Jijsisj

3

5
(1)

1

Tuesday, February 12, 13



equilibrium inverse Ising problem

Cij = hsisji � hsiihsji (1)

1

mi = hsii (1)

1

Pr(s1, . . . , sN ) =

1

Z
exp

2

4
X

i

hisi +
X

i<j

Jijsisj

3

5
(1)

1

find    and    ofhi (1)

1

Jij (1)

1

Tuesday, February 12, 13



Maximum-Likelihood approach

• the probability that the data is generated 
by the model at a given set of parameters 
(the likelihood)

• maximize the likelihood over the parameters.

• typically done iteratively
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suppose we are given a set of L spin configuration
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• how to find  hi, Jij  for large N?
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• how to find  hi, Jij  for large N?

Exact method: Boltzmann learning

requires long Monte Carlo runs to compute model statistics

fast and reliable approximate methods exist

Ackley, Hinton, Sejnowski 85
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approximate learning
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the forward problem can be solved 
using a number of ways

• mean-field approximations

• Bethe approximation

• iterative algorithms like Belief propagation

they give you mean magnetization as a function of 
J and h.

• combining these with susceptibility-response 
relation gives ways to solve the inverse 
problem 
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independent-pairs

high absolute magnetization expansion
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kinetic Ising model

synchronous discrete time

asynchronous update

randomly pick a spin at a time
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exact learning for synchronous update
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There has been recent progress on the problem of inferring the structure of interactions in complex
networks when they are in stationary states satisfying detailed balance, but little has been done for
non-equilibrium systems. Here we introduce an approach to this problem, considering, as an exam-
ple, the question of recovering the interactions in an asymmetrically-coupled, synchronously-updated
Sherrington-Kirkpatrick model. We derive an exact iterative inversion algorithm and develop effi-
cient approximations based on dynamical mean-field and Thouless-Anderson-Palmer equations that
express the interactions in terms of equal-time and one time step-delayed correlation functions.

PACS numbers: 05.10.-a,02.50.Tt,75.10.Nr

Introduction.— Finding the connectivity in complex
networks is an important step in understanding how they
operate. The types of data required for reconstructing
many biological networks have become available recently,
thanks to advances in recording technology, e.g., gene mi-
croarrays and multi-electrode arrays. These techniques
allow us to observe simultaneously the activity of many
elements in a system. What is needed now is appropriate
theoretical tools for analyzing these data and extracting
the connectivity.

In much recent work on this subject [1–4], the prob-
lem has been posed as that of inferring the parameters of
a stationary Gibbs distribution modeling the system. In
this case, techniques from equilibrium statistical mechan-
ics can be exploited to develop fast and efficient inference
methods [3–6]. In biological systems, however, the as-
sumption of Gibbs equilibrium is unlikely to hold, due to
several factors: these systems are usually driven by time-
dependent external fields, the interactions may not sat-
isfy detailed balance, or the system may only be observed
while the dynamics is dominated by transients. Applying
the equilibrium approach to these non-equilibrium cases
usually yields effective interactions that do not bear any
obvious relationship to the real ones [3].

In this paper we study how the parameters of a dy-
namical system which is not necessarily in Gibbs equi-
librium can be efficiently inferred from observing it. A
convenient platform to illustrate our approach is a kinetic
Ising model with random asymmetric interactions (Jji in-
dependent of Jij), driven by an external field which may
be time-dependent. This case is of interest for analyzing
multiple neural spike trains recorded while the animal is
subjected to a time-varying stimulus. Even if the field
is time-independent and the model is in a steady state,
this system is not in a Gibbs equilibrium because de-
tailed balance does not hold for asymmetric interactions.
However, we show that, like its equilibrium counterpart,
the non-equilibrium inverse problem for this model can
be solved using a gradient descent method. We then go
on to build systematic approximations using dynamical
mean-field (MF) and Thouless-Anderson-Palmer (TAP)

equations. We show that for both the stationary and non-
stationary systems these methods provide efficient and
effective reconstruction of interactions from state sam-
ples.

The model and the exact learning rule.— Con-
sider the following discrete-time, synchronously updated
kinetic Ising model composed of N spins si = ±1:

Pr(s(t+ 1)|s(t)) =
∏

i

exp[si(t+ 1)θi(t)]

2 cosh(θi(t))
(1)

where θi(t) = hi(t) +
∑

j Jijsj(t) and the couplings Jij
are independent Gaussian variables with variance g2/N .
A model like this can be readily applied to time-binned
neural spike trains, where t labels the bins, si(t) = ±1
represents a spike or no spike by neuron i in bin t [1]. The
temperature has been set equal to 1, since any effects of
changing the temperature can be realized by changing
the coupling parameter g and the field strengths.

Suppose that we have observed R realizations of du-
ration L time steps of this system. We denote the ob-
served state of the system at time t of realization r by
s
r(t) = {sr1(t), · · · , srN (t)}, r = 1 . . . R. We further as-

sume that all realizations are generated with the same
initial condition and external fields, and that they only
differ in the realization of thermal noise. To find the
couplings and external fields that best fit these data, we
maximize the log-likelihood of the observed states under
the model in Eqn. (1)

L(h, J) =
∑

t,r,i

[

his
r
i (t+ 1) +

∑

j

Jijs
r
i (t+ 1)srj(t)

− log 2 cosh(hi(t) +
∑

j

Jijs
r
j(t))

]

. (2)

This maximization can be done using an iterative algo-
rithm, analogous to Boltzmann learning for the equilib-
rium model. One starts from an initial set of couplings
and fields and adjusts them iteratively by steps of sizes

suppose we have observed R repeats each of length L
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subjected to a time-varying stimulus. Even if the field
is time-independent and the model is in a steady state,
this system is not in a Gibbs equilibrium because de-
tailed balance does not hold for asymmetric interactions.
However, we show that, like its equilibrium counterpart,
the non-equilibrium inverse problem for this model can
be solved using a gradient descent method. We then go
on to build systematic approximations using dynamical
mean-field (MF) and Thouless-Anderson-Palmer (TAP)

equations. We show that for both the stationary and non-
stationary systems these methods provide efficient and
effective reconstruction of interactions from state sam-
ples.

The model and the exact learning rule.— Con-
sider the following discrete-time, synchronously updated
kinetic Ising model composed of N spins si = ±1:

Pr(s(t+ 1)|s(t)) =
∏

i

exp[si(t+ 1)θi(t)]

2 cosh(θi(t))
(1)

where θi(t) = hi(t) +
∑

j Jijsj(t) and the couplings Jij
are independent Gaussian variables with variance g2/N .
A model like this can be readily applied to time-binned
neural spike trains, where t labels the bins, si(t) = ±1
represents a spike or no spike by neuron i in bin t [1]. The
temperature has been set equal to 1, since any effects of
changing the temperature can be realized by changing
the coupling parameter g and the field strengths.

Suppose that we have observed R realizations of du-
ration L time steps of this system. We denote the ob-
served state of the system at time t of realization r by
s
r(t) = {sr1(t), · · · , srN (t)}, r = 1 . . . R. We further as-

sume that all realizations are generated with the same
initial condition and external fields, and that they only
differ in the realization of thermal noise. To find the
couplings and external fields that best fit these data, we
maximize the log-likelihood of the observed states under
the model in Eqn. (1)

L(h, J) =
∑

t,r,i

[

his
r
i (t+ 1) +

∑

j

Jijs
r
i (t+ 1)srj(t)

− log 2 cosh(hi(t) +
∑

j

Jijs
r
j(t))

]

. (2)

This maximization can be done using an iterative algo-
rithm, analogous to Boltzmann learning for the equilib-
rium model. One starts from an initial set of couplings
and fields and adjusts them iteratively by steps of sizes

suppose we have observed R repeats each of length L

2

δhi = ηh
∂L
∂hi

and δJij = ηJ
∂L
∂Jij

, that is

δhi(t) = ηh
{

〈si(t+ 1)〉r − 〈tanh[hi(t) +
∑

k

Jiksk(t))]〉r]
}

(3a)

δJij = ηJ
{

〈si(t+ 1)sj(t)〉

− 〈tanh[hi(t) +
∑

k

Jiksk(t)]sj(t)〉
}

, (3b)

where ηh and ηJ are learning rates. Here and in what
follows 〈· · · 〉r, 〈· · · 〉t, 〈· · · 〉 represent averaging over re-
peats, time, and both repeats and time, respectively. An
overline, instead, indicates averaging over the spins.

The algorithm Eqn. (3) is effectively N independent
stochastic delta-rule algorithms (with the negative log-
likelihood as cost function), one for each spin; see sec-
tion 5.6 in [7]. It is faster than Boltzmann learning
for the equilibrium case, because evaluating the second
term does not require Monte Carlo runs. However, it is
still slow for large systems. Therefore, faster algorithms
would be useful.

In what follows, we derive fast inversion formulae,
based on dynamical MF and TAP equations, that would
be exact for N → ∞ and infinite data. We also quantify
the performance of the algorithms outside these limits.

Inverse MF and TAP.— For simplicity, we consider
first the stationary case, for which the sequence index
r is superfluous. This is because in this case averaging
over time and repeats would be equivalent. We start with
the maximum likelihood conditions (3) with δhi and δJij
equal to zero. Assume first that the magnetizations mi =
〈si〉 satisfy the MF equationsmi = tanh(hi+

∑

j J
MF
ik mk)

. We write the si that occur in Eqn. (3) as mi + δsi
and expand the tanh in the δsi. The zeroth-order terms
vanish, and the bilinear terms give

〈δsi(t+1)δsj(t)〉 = (1−m2
i )

∑

k

JMF
ik 〈δsk(t)δsj(t)〉. (4)

Defining matrices Dij = 〈δsi(t + 1)δsj(t)〉 (the one-step
delayed correlation matrix), Cij = 〈δsi(t)δsj(t)〉 (the
equal-time correlation matrix) and Aij = (1 − m2

i )δij ,
(4) can be solved to give JMF = A−1DC−1. This is our
MF inversion formula.

To get the TAP inversion formula, we start instead
by assuming that the mi satisfy the TAP equations
mi = tanh[hi +

∑

k J
TAP
ik mk −mi

∑

k(J
TAP)2ik(1−m2

k)].
These equations improve over the MF ones by taking
into account the Onsager reaction field. It was proved
by Kappen and Spanjers [8] that the TAP equations, al-
though usually derived for the equilibrium (symmetric-
J) SK model, also hold for the asynchronously updated,
asymmetric-J model in a stationary state. We have veri-
fied that they are also valid in our synchronously-updated
model [9]. We again write si = mi + δsi, expand-
ing the tanh to third order in powers of

∑

k J
TAP
ik δsk +

mi

∑

k(J
TAP)2ik(1 −m2

k). Keeping terms up to order g3

leads to D = ATAPJTAPC , where

ATAP
ij = δij(1−m2

i )[1− (1−m2
i )

∑

l

(JTAP)2il(1−m2
l )].

These equations cannot be solved directly as in the MF
case because ATAP depends on JTAP. However, one
can derive a cubic equation for the quantities Fi =
(1−m2

i )
∑

l(J
TAP)2il(1−m2

l ):

Fi(1− F 2
i ) = (1−m2

i )
∑

j

(JMF)2ij(1−m2
j ). (5)

This determines ATAP
ii = (1 − m2

i )(1 − Fi), so we can
evaluate JTAP

ij = JMF
ij /(1 − Fi). The physically relevant

root of Eqn. (5) can not exceed 2/(3
√
3), restricting this

technique to weak correlations.
For both MF and TAP reconstruction, the fields hi can

be found by solving the respective magnetization equa-
tions after the Jij have been obtained, just as in the
equilibrium problem [5].

Performance of the algorithms.— We have veri-
fied that the algorithm (3) recovers the couplings of an
asymmetric SK model exactly in the limit of infinite data
(L → ∞) for a wide range of coupling strengths g, ex-
ternal fields and system sizes. The mean square error,
εexact, is in general proportional to 1/L, and in the weak-
coupling limit a quadratic expansion of Eqn. (2) yields

εexact = δJ2
ij ≡ (Jij − J0

ij)
2 =

1

(1−m2
i )L

, (6)

where J0
ij are the true couplings and Jij are those found

by the algorithm.
We find that the MF algorithm leads to an error, εMF,

of the form εexact + ε∞MF, where ε∞MF is independent of L
and proportional to 1/N . Thus, for data sets of length
much smaller than L∗ = 1/ε∞MF ∝ N , MF does almost as
well as the exact algorithm, and, furthermore, the larger
the network, the better MF does. The errors for the exact
and MF algorithms are plotted as functions of L in Fig.
1a.

For weak coupling, we can calculate the asymptotic
MF error, ε∞MF, analytically as follows. We present the
zero-field case here for simplicity. We expand the tanh in
the maximum-likelihood equation to third order, giving

Din =
∑

k

Jik〈sksn〉 − 1
3

∑

klm

JikJilJim〈skslsmsn〉+ · · · .

(7)
Correlations here are at equal times, except forDin. The
dominant contributions in the sum over k, l, and m are
those with k = l, l = m and m = k. Multiplying on the
right by (C−1)nj , summing over n and using Eqn. (4) for
JMF, we get

JMF
ij = Jij −

∑

k

J2
ikJij , (8)
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much smaller than L∗ = 1/ε∞MF ∝ N , MF does almost as
well as the exact algorithm, and, furthermore, the larger
the network, the better MF does. The errors for the exact
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Introduction.— Finding the connectivity in complex
networks is an important step in understanding how they
operate. The types of data required for reconstructing
many biological networks have become available recently,
thanks to advances in recording technology, e.g., gene mi-
croarrays and multi-electrode arrays. These techniques
allow us to observe simultaneously the activity of many
elements in a system. What is needed now is appropriate
theoretical tools for analyzing these data and extracting
the connectivity.

In much recent work on this subject [1–4], the prob-
lem has been posed as that of inferring the parameters of
a stationary Gibbs distribution modeling the system. In
this case, techniques from equilibrium statistical mechan-
ics can be exploited to develop fast and efficient inference
methods [3–6]. In biological systems, however, the as-
sumption of Gibbs equilibrium is unlikely to hold, due to
several factors: these systems are usually driven by time-
dependent external fields, the interactions may not sat-
isfy detailed balance, or the system may only be observed
while the dynamics is dominated by transients. Applying
the equilibrium approach to these non-equilibrium cases
usually yields effective interactions that do not bear any
obvious relationship to the real ones [3].

In this paper we study how the parameters of a dy-
namical system which is not necessarily in Gibbs equi-
librium can be efficiently inferred from observing it. A
convenient platform to illustrate our approach is a kinetic
Ising model with random asymmetric interactions (Jji in-
dependent of Jij), driven by an external field which may
be time-dependent. This case is of interest for analyzing
multiple neural spike trains recorded while the animal is
subjected to a time-varying stimulus. Even if the field
is time-independent and the model is in a steady state,
this system is not in a Gibbs equilibrium because de-
tailed balance does not hold for asymmetric interactions.
However, we show that, like its equilibrium counterpart,
the non-equilibrium inverse problem for this model can
be solved using a gradient descent method. We then go
on to build systematic approximations using dynamical
mean-field (MF) and Thouless-Anderson-Palmer (TAP)

equations. We show that for both the stationary and non-
stationary systems these methods provide efficient and
effective reconstruction of interactions from state sam-
ples.

The model and the exact learning rule.— Con-
sider the following discrete-time, synchronously updated
kinetic Ising model composed of N spins si = ±1:

Pr(s(t+ 1)|s(t)) =
∏

i

exp[si(t+ 1)θi(t)]

2 cosh(θi(t))
(1)

where θi(t) = hi(t) +
∑

j Jijsj(t) and the couplings Jij
are independent Gaussian variables with variance g2/N .
A model like this can be readily applied to time-binned
neural spike trains, where t labels the bins, si(t) = ±1
represents a spike or no spike by neuron i in bin t [1]. The
temperature has been set equal to 1, since any effects of
changing the temperature can be realized by changing
the coupling parameter g and the field strengths.

Suppose that we have observed R realizations of du-
ration L time steps of this system. We denote the ob-
served state of the system at time t of realization r by
s
r(t) = {sr1(t), · · · , srN (t)}, r = 1 . . . R. We further as-

sume that all realizations are generated with the same
initial condition and external fields, and that they only
differ in the realization of thermal noise. To find the
couplings and external fields that best fit these data, we
maximize the log-likelihood of the observed states under
the model in Eqn. (1)

L(h, J) =
∑

t,r,i

[

his
r
i (t+ 1) +

∑

j

Jijs
r
i (t+ 1)srj(t)

− log 2 cosh(hi(t) +
∑

j

Jijs
r
j(t))

]

. (2)

This maximization can be done using an iterative algo-
rithm, analogous to Boltzmann learning for the equilib-
rium model. One starts from an initial set of couplings
and fields and adjusts them iteratively by steps of sizes
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a stationary Gibbs distribution modeling the system. In
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ics can be exploited to develop fast and efficient inference
methods [3–6]. In biological systems, however, the as-
sumption of Gibbs equilibrium is unlikely to hold, due to
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while the dynamics is dominated by transients. Applying
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usually yields effective interactions that do not bear any
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A model like this can be readily applied to time-binned
neural spike trains, where t labels the bins, si(t) = ±1
represents a spike or no spike by neuron i in bin t [1]. The
temperature has been set equal to 1, since any effects of
changing the temperature can be realized by changing
the coupling parameter g and the field strengths.

Suppose that we have observed R realizations of du-
ration L time steps of this system. We denote the ob-
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differ in the realization of thermal noise. To find the
couplings and external fields that best fit these data, we
maximize the log-likelihood of the observed states under
the model in Eqn. (1)

L(h, J) =
∑

t,r,i

[

his
r
i (t+ 1) +

∑

j

Jijs
r
i (t+ 1)srj(t)

− log 2 cosh(hi(t) +
∑

j

Jijs
r
j(t))

]

. (2)

This maximization can be done using an iterative algo-
rithm, analogous to Boltzmann learning for the equilib-
rium model. One starts from an initial set of couplings
and fields and adjusts them iteratively by steps of sizes

log likelihood of this data is
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where ηh and ηJ are learning rates. Here and in what
follows 〈· · · 〉r, 〈· · · 〉t, 〈· · · 〉 represent averaging over re-
peats, time, and both repeats and time, respectively. An
overline, instead, indicates averaging over the spins.

The algorithm Eqn. (3) is effectively N independent
stochastic delta-rule algorithms (with the negative log-
likelihood as cost function), one for each spin; see sec-
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term does not require Monte Carlo runs. However, it is
still slow for large systems. Therefore, faster algorithms
would be useful.

In what follows, we derive fast inversion formulae,
based on dynamical MF and TAP equations, that would
be exact for N → ∞ and infinite data. We also quantify
the performance of the algorithms outside these limits.
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This determines ATAP
ii = (1 − m2

i )(1 − Fi), so we can
evaluate JTAP

ij = JMF
ij /(1 − Fi). The physically relevant

root of Eqn. (5) can not exceed 2/(3
√
3), restricting this

technique to weak correlations.
For both MF and TAP reconstruction, the fields hi can

be found by solving the respective magnetization equa-
tions after the Jij have been obtained, just as in the
equilibrium problem [5].

Performance of the algorithms.— We have veri-
fied that the algorithm (3) recovers the couplings of an
asymmetric SK model exactly in the limit of infinite data
(L → ∞) for a wide range of coupling strengths g, ex-
ternal fields and system sizes. The mean square error,
εexact, is in general proportional to 1/L, and in the weak-
coupling limit a quadratic expansion of Eqn. (2) yields

εexact = δJ2
ij ≡ (Jij − J0

ij)
2 =
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(1−m2
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, (6)

where J0
ij are the true couplings and Jij are those found

by the algorithm.
We find that the MF algorithm leads to an error, εMF,

of the form εexact + ε∞MF, where ε∞MF is independent of L
and proportional to 1/N . Thus, for data sets of length
much smaller than L∗ = 1/ε∞MF ∝ N , MF does almost as
well as the exact algorithm, and, furthermore, the larger
the network, the better MF does. The errors for the exact
and MF algorithms are plotted as functions of L in Fig.
1a.

For weak coupling, we can calculate the asymptotic
MF error, ε∞MF, analytically as follows. We present the
zero-field case here for simplicity. We expand the tanh in
the maximum-likelihood equation to third order, giving

Din =
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, that is
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follows 〈· · · 〉r, 〈· · · 〉t, 〈· · · 〉 represent averaging over re-
peats, time, and both repeats and time, respectively. An
overline, instead, indicates averaging over the spins.

The algorithm Eqn. (3) is effectively N independent
stochastic delta-rule algorithms (with the negative log-
likelihood as cost function), one for each spin; see sec-
tion 5.6 in [7]. It is faster than Boltzmann learning
for the equilibrium case, because evaluating the second
term does not require Monte Carlo runs. However, it is
still slow for large systems. Therefore, faster algorithms
would be useful.

In what follows, we derive fast inversion formulae,
based on dynamical MF and TAP equations, that would
be exact for N → ∞ and infinite data. We also quantify
the performance of the algorithms outside these limits.

Inverse MF and TAP.— For simplicity, we consider
first the stationary case, for which the sequence index
r is superfluous. This is because in this case averaging
over time and repeats would be equivalent. We start with
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well as the exact algorithm, and, furthermore, the larger
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for the equilibrium case, because evaluating the second
term does not require Monte Carlo runs. However, it is
still slow for large systems. Therefore, faster algorithms
would be useful.

In what follows, we derive fast inversion formulae,
based on dynamical MF and TAP equations, that would
be exact for N → ∞ and infinite data. We also quantify
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by Kappen and Spanjers [8] that the TAP equations, al-
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tions after the Jij have been obtained, just as in the
equilibrium problem [5].
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asymmetric SK model exactly in the limit of infinite data
(L → ∞) for a wide range of coupling strengths g, ex-
ternal fields and system sizes. The mean square error,
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εexact = δJ2
ij ≡ (Jij − J0
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of the form εexact + ε∞MF, where ε∞MF is independent of L
and proportional to 1/N . Thus, for data sets of length
much smaller than L∗ = 1/ε∞MF ∝ N , MF does almost as
well as the exact algorithm, and, furthermore, the larger
the network, the better MF does. The errors for the exact
and MF algorithms are plotted as functions of L in Fig.
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For weak coupling, we can calculate the asymptotic
MF error, ε∞MF, analytically as follows. We present the
zero-field case here for simplicity. We expand the tanh in
the maximum-likelihood equation to third order, giving
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MF inversion formula.

To get the TAP inversion formula, we start instead
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tions after the Jij have been obtained, just as in the
equilibrium problem [5].
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We find that the MF algorithm leads to an error, εMF,

of the form εexact + ε∞MF, where ε∞MF is independent of L
and proportional to 1/N . Thus, for data sets of length
much smaller than L∗ = 1/ε∞MF ∝ N , MF does almost as
well as the exact algorithm, and, furthermore, the larger
the network, the better MF does. The errors for the exact
and MF algorithms are plotted as functions of L in Fig.
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and δJij = ηJ
∂L
∂Jij

, that is

δhi(t) = ηh
{

〈si(t+ 1)〉r − 〈tanh[hi(t) +
∑

k

Jiksk(t))]〉r]
}

(3a)

δJij = ηJ
{

〈si(t+ 1)sj(t)〉

− 〈tanh[hi(t) +
∑

k

Jiksk(t)]sj(t)〉
}

, (3b)

where ηh and ηJ are learning rates. Here and in what
follows 〈· · · 〉r, 〈· · · 〉t, 〈· · · 〉 represent averaging over re-
peats, time, and both repeats and time, respectively. An
overline, instead, indicates averaging over the spins.

The algorithm Eqn. (3) is effectively N independent
stochastic delta-rule algorithms (with the negative log-
likelihood as cost function), one for each spin; see sec-
tion 5.6 in [7]. It is faster than Boltzmann learning
for the equilibrium case, because evaluating the second
term does not require Monte Carlo runs. However, it is
still slow for large systems. Therefore, faster algorithms
would be useful.

In what follows, we derive fast inversion formulae,
based on dynamical MF and TAP equations, that would
be exact for N → ∞ and infinite data. We also quantify
the performance of the algorithms outside these limits.

Inverse MF and TAP.— For simplicity, we consider
first the stationary case, for which the sequence index
r is superfluous. This is because in this case averaging
over time and repeats would be equivalent. We start with
the maximum likelihood conditions (3) with δhi and δJij
equal to zero. Assume first that the magnetizations mi =
〈si〉 satisfy the MF equationsmi = tanh(hi+

∑

j J
MF
ik mk)

. We write the si that occur in Eqn. (3) as mi + δsi
and expand the tanh in the δsi. The zeroth-order terms
vanish, and the bilinear terms give

〈δsi(t+1)δsj(t)〉 = (1−m2
i )

∑

k

JMF
ik 〈δsk(t)δsj(t)〉. (4)

Defining matrices Dij = 〈δsi(t + 1)δsj(t)〉 (the one-step
delayed correlation matrix), Cij = 〈δsi(t)δsj(t)〉 (the
equal-time correlation matrix) and Aij = (1 − m2

i )δij ,
(4) can be solved to give JMF = A−1DC−1. This is our
MF inversion formula.

To get the TAP inversion formula, we start instead
by assuming that the mi satisfy the TAP equations
mi = tanh[hi +

∑

k J
TAP
ik mk −mi

∑

k(J
TAP)2ik(1−m2

k)].
These equations improve over the MF ones by taking
into account the Onsager reaction field. It was proved
by Kappen and Spanjers [8] that the TAP equations, al-
though usually derived for the equilibrium (symmetric-
J) SK model, also hold for the asynchronously updated,
asymmetric-J model in a stationary state. We have veri-
fied that they are also valid in our synchronously-updated
model [9]. We again write si = mi + δsi, expand-
ing the tanh to third order in powers of

∑

k J
TAP
ik δsk +

mi

∑

k(J
TAP)2ik(1 −m2

k). Keeping terms up to order g3

leads to D = ATAPJTAPC , where

ATAP
ij = δij(1−m2

i )[1− (1−m2
i )

∑

l

(JTAP)2il(1−m2
l )].

These equations cannot be solved directly as in the MF
case because ATAP depends on JTAP. However, one
can derive a cubic equation for the quantities Fi =
(1−m2

i )
∑

l(J
TAP)2il(1−m2

l ):

Fi(1− F 2
i ) = (1−m2

i )
∑

j

(JMF)2ij(1−m2
j ). (5)

This determines ATAP
ii = (1 − m2

i )(1 − Fi), so we can
evaluate JTAP

ij = JMF
ij /(1 − Fi). The physically relevant

root of Eqn. (5) can not exceed 2/(3
√
3), restricting this

technique to weak correlations.
For both MF and TAP reconstruction, the fields hi can

be found by solving the respective magnetization equa-
tions after the Jij have been obtained, just as in the
equilibrium problem [5].

Performance of the algorithms.— We have veri-
fied that the algorithm (3) recovers the couplings of an
asymmetric SK model exactly in the limit of infinite data
(L → ∞) for a wide range of coupling strengths g, ex-
ternal fields and system sizes. The mean square error,
εexact, is in general proportional to 1/L, and in the weak-
coupling limit a quadratic expansion of Eqn. (2) yields

εexact = δJ2
ij ≡ (Jij − J0

ij)
2 =

1

(1−m2
i )L

, (6)

where J0
ij are the true couplings and Jij are those found

by the algorithm.
We find that the MF algorithm leads to an error, εMF,

of the form εexact + ε∞MF, where ε∞MF is independent of L
and proportional to 1/N . Thus, for data sets of length
much smaller than L∗ = 1/ε∞MF ∝ N , MF does almost as
well as the exact algorithm, and, furthermore, the larger
the network, the better MF does. The errors for the exact
and MF algorithms are plotted as functions of L in Fig.
1a.

For weak coupling, we can calculate the asymptotic
MF error, ε∞MF, analytically as follows. We present the
zero-field case here for simplicity. We expand the tanh in
the maximum-likelihood equation to third order, giving

Din =
∑

k

Jik〈sksn〉 − 1
3

∑

klm

JikJilJim〈skslsmsn〉+ · · · .

(7)
Correlations here are at equal times, except forDin. The
dominant contributions in the sum over k, l, and m are
those with k = l, l = m and m = k. Multiplying on the
right by (C−1)nj , summing over n and using Eqn. (4) for
JMF, we get

JMF
ij = Jij −

∑

k

J2
ikJij , (8)
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would be useful.
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by Kappen and Spanjers [8] that the TAP equations, al-
though usually derived for the equilibrium (symmetric-
J) SK model, also hold for the asynchronously updated,
asymmetric-J model in a stationary state. We have veri-
fied that they are also valid in our synchronously-updated
model [9]. We again write si = mi + δsi, expand-
ing the tanh to third order in powers of

∑

k J
TAP
ik δsk +

mi

∑

k(J
TAP)2ik(1 −m2

k). Keeping terms up to order g3

leads to D = ATAPJTAPC , where

ATAP
ij = δij(1−m2

i )[1− (1−m2
i )

∑

l

(JTAP)2il(1−m2
l )].

These equations cannot be solved directly as in the MF
case because ATAP depends on JTAP. However, one
can derive a cubic equation for the quantities Fi =
(1−m2

i )
∑

l(J
TAP)2il(1−m2

l ):

Fi(1− F 2
i ) = (1−m2

i )
∑

j

(JMF)2ij(1−m2
j ). (5)

This determines ATAP
ii = (1 − m2

i )(1 − Fi), so we can
evaluate JTAP

ij = JMF
ij /(1 − Fi). The physically relevant

root of Eqn. (5) can not exceed 2/(3
√
3), restricting this

technique to weak correlations.
For both MF and TAP reconstruction, the fields hi can

be found by solving the respective magnetization equa-
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much smaller than L∗ = 1/ε∞MF ∝ N , MF does almost as
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and MF algorithms are plotted as functions of L in Fig.
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be exact for N → ∞ and infinite data. We also quantify
the performance of the algorithms outside these limits.
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asymmetric SK model exactly in the limit of infinite data
(L → ∞) for a wide range of coupling strengths g, ex-
ternal fields and system sizes. The mean square error,
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ij are the true couplings and Jij are those found
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of the form εexact + ε∞MF, where ε∞MF is independent of L
and proportional to 1/N . Thus, for data sets of length
much smaller than L∗ = 1/ε∞MF ∝ N , MF does almost as
well as the exact algorithm, and, furthermore, the larger
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and MF algorithms are plotted as functions of L in Fig.
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couplings for the synchronous dynamics.

2. Dynamical Model

We consider a system of N Ising spins si = ±1, i = 1, · · · , N and assume that its state

at time t, s(t) = {s1(t), . . . , sN(t)}, follows one of the following dynamics:

(i) Synchronous dynamics. In this case time is discretized and the probability of

being in state s at time step t, pt(s), is given by

pt(s) =
∑

s
′

Wt[s; s
′]pt−1(s

′) (1a)

Wt[s; s
′] =

∏

i

exp(siθi(t− 1))

2 cosh(θi(t− 1))
(1b)

θi(t) = hi(t) +
∑

j

Jijs
′

j(t), (1c)

(ii) Asynchronous dynamics. In this case time is continuous and, pt(s) satisfies the

following equation
d

dt
pt(s) =

∑

i

[pt(Fis)wi(Fis; t)− pt(s)wi(s; t)] (2a)

wi(s; t) =
1

2
[1− si tanh[θi(s; t)]], (2b)

where the operator Fi acting on s flips its ith spin.

For each of these processes one can define a generating functional. For the synchronous

case it takes the form of

Z[ψ, h] =

〈

exp
[

∑

i,t

ψi(t)si(t)
]

〉

, (3)

where for any quantity A defined as a function of a path (s(T ), . . . , s(0)), 〈· · ·〉 indicates

averaging over the paths taken by s(t) under the stochastic dynamics of Eqs. (1a) –

(1c), i.e.

〈A〉 = Tr WT−1[s(T ); s(T − 1)] · · ·W0[s(1); s(0)] p0(s(0)) A(s(T ), . . . , s(0)), (4)

and

Tr ≡
∑

s(T )

∑

s(T−1)

· · ·
∑

s(0)

. (5)

The asynchronous case is similar expect that the sum over t in Eq. (3) should be replaced

by an integration; see Appendix B.

It is useful to rewrite the generating functional by considering θi(t) for each spin and

each time step as a free parameter, integrate over it, and make sure that the definition

Eq. (1c) is satisfied by inserting an appropriate delta function. This yields

Z[ψ, h] =
∫

Dθ

〈

exp
[

∑

i,t

ψi(t)si(t)
]

〉

∏

i,t

δ
(

θi(t)− hi(t)−
∑

j

Jijsj(t)
)

=
∫

Dθθ̂

〈

exp
[

i
∑

i,t

θ̂i(t){θi(t)− hi(t)−
∑

j

Jijsj(t)}+
∑

i,t

ψi(t)si(t)
]

〉

(6)
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where Dθ =
∏

i,t dθi(t) and Dθθ̂ =
∏

i,t
1
2πdθi(t)dθ̂i(t). Using Eq. (4) in Eq. (6), we get

Zα[ψ, h] =
∫

Dθθ̂ Tr exp[Lα] (7a)

Lα =
∑

i,t

{iθ̂i(t)[θi(t)− α
∑

j

Jijsj(t)] + si(t+ 1)θj(t)− log cosh θi(t)

− ihi(t)θ̂i(t) + ψi(t)si(t)}, (7b)

where the parameter α is introduced to control the magnitude of the couplings, as will

become clear later.

The generating functional has the property that its derivatives with respect to ψ

and h give the averages of the correlators involving the spins and auxiliary fields. In

particular, defining

〈A〉α =

∫

Dθθ̂ TrA exp[Lα]
∫

Dθθ̂ Tr exp[Lα]
(8)

and

−im̂i(t) ≡
∂ logZ

∂hi(t)
= −i〈θ̂i(t)〉α (9a)

mi(t) ≡
∂ logZ

∂ψi(t)
= 〈si(t)〉α, (9b)

we can see that

〈θ̂i(t)〉 = lim
ψ→0

m̂i(t) = 0 (10)

〈si(t)〉 = lim
ψ→0

mi(t). (11)

For a detailed discussion about these and other dynamical processes on Ising spin models

see [9].

To derive the dynamical mean-field and TAP equations, one first calculates the

Legendre transform of the logarithm of the generating functional of the process defined

by Eqs. (1a) – (1c). In this dynamical case, the logarithm of the generating functional

plays the role of the Helmholtz free energy in the equilibrium statistical mechanics while

its Legendre transform corresponds to the Gibbs free energy. One then expands this

dynamical Gibbs free energy around the zero couplings limit, similarly to the equilibrium

case [3] and the soft spin model [10]. In the following, we do this for Ising spins up

to linear order in the couplings for the synchronous update and use it to derive the

dynamical mean-field equations. The details of how to proceed to the TAP for the

synchronous and asynchronous dynamics are provided in the Appendices.

3. Outline of the derivation of the dynamical equations

The Legendre transform of the logarithm of the generating functional with respect to

the real fields, hi, and the auxiliary fields, ψi reads

Γ[m̂,m] ≡ logZ[ψ[m̂,m], h[m̂,m]]−
∑

i,t

ψi[m̂,m](t)mi(t) + i
∑

i,t

hi[m̂,m](t)m̂i(t), (12)
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average over stochastic path

auxiliary field
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couplings for the synchronous dynamics.

2. Dynamical Model

We consider a system of N Ising spins si = ±1, i = 1, · · · , N and assume that its state

at time t, s(t) = {s1(t), . . . , sN(t)}, follows one of the following dynamics:

(i) Synchronous dynamics. In this case time is discretized and the probability of

being in state s at time step t, pt(s), is given by

pt(s) =
∑

s
′

Wt[s; s
′]pt−1(s

′) (1a)

Wt[s; s
′] =

∏

i

exp(siθi(t− 1))

2 cosh(θi(t− 1))
(1b)

θi(t) = hi(t) +
∑

j

Jijs
′

j(t), (1c)

(ii) Asynchronous dynamics. In this case time is continuous and, pt(s) satisfies the

following equation
d

dt
pt(s) =

∑

i

[pt(Fis)wi(Fis; t)− pt(s)wi(s; t)] (2a)

wi(s; t) =
1

2
[1− si tanh[θi(s; t)]], (2b)

where the operator Fi acting on s flips its ith spin.

For each of these processes one can define a generating functional. For the synchronous

case it takes the form of

Z[ψ, h] =

〈

exp
[

∑

i,t

ψi(t)si(t)
]

〉

, (3)

where for any quantity A defined as a function of a path (s(T ), . . . , s(0)), 〈· · ·〉 indicates

averaging over the paths taken by s(t) under the stochastic dynamics of Eqs. (1a) –

(1c), i.e.

〈A〉 = Tr WT−1[s(T ); s(T − 1)] · · ·W0[s(1); s(0)] p0(s(0)) A(s(T ), . . . , s(0)), (4)

and

Tr ≡
∑

s(T )

∑

s(T−1)

· · ·
∑

s(0)

. (5)

The asynchronous case is similar expect that the sum over t in Eq. (3) should be replaced

by an integration; see Appendix B.

It is useful to rewrite the generating functional by considering θi(t) for each spin and

each time step as a free parameter, integrate over it, and make sure that the definition

Eq. (1c) is satisfied by inserting an appropriate delta function. This yields

Z[ψ, h] =
∫

Dθ

〈

exp
[

∑

i,t

ψi(t)si(t)
]

〉

∏

i,t

δ
(

θi(t)− hi(t)−
∑

j

Jijsj(t)
)

=
∫

Dθθ̂

〈

exp
[

i
∑

i,t

θ̂i(t){θi(t)− hi(t)−
∑

j

Jijsj(t)}+
∑

i,t

ψi(t)si(t)
]

〉

(6)

average over stochastic path

auxiliary field
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where the parameter α is introduced to control the magnitude of the couplings, as will

become clear later.
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and h give the averages of the correlators involving the spins and auxiliary fields. In
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and
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= −i〈θ̂i(t)〉α (9a)

mi(t) ≡
∂ logZ

∂ψi(t)
= 〈si(t)〉α, (9b)

we can see that

〈θ̂i(t)〉 = lim
ψ→0

m̂i(t) = 0 (10)

〈si(t)〉 = lim
ψ→0

mi(t). (11)

For a detailed discussion about these and other dynamical processes on Ising spin models

see [9].

To derive the dynamical mean-field and TAP equations, one first calculates the

Legendre transform of the logarithm of the generating functional of the process defined

by Eqs. (1a) – (1c). In this dynamical case, the logarithm of the generating functional

plays the role of the Helmholtz free energy in the equilibrium statistical mechanics while

its Legendre transform corresponds to the Gibbs free energy. One then expands this

dynamical Gibbs free energy around the zero couplings limit, similarly to the equilibrium

case [3] and the soft spin model [10]. In the following, we do this for Ising spins up

to linear order in the couplings for the synchronous update and use it to derive the

dynamical mean-field equations. The details of how to proceed to the TAP for the

synchronous and asynchronous dynamics are provided in the Appendices.

3. Outline of the derivation of the dynamical equations
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· · ·
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The asynchronous case is similar expect that the sum over t in Eq. (3) should be replaced

by an integration; see Appendix B.

It is useful to rewrite the generating functional by considering θi(t) for each spin and

each time step as a free parameter, integrate over it, and make sure that the definition

Eq. (1c) is satisfied by inserting an appropriate delta function. This yields
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couplings for the synchronous dynamics.

2. Dynamical Model
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being in state s at time step t, pt(s), is given by

pt(s) =
∑

s
′

Wt[s; s
′]pt−1(s

′) (1a)

Wt[s; s
′] =

∏

i

exp(siθi(t− 1))

2 cosh(θi(t− 1))
(1b)

θi(t) = hi(t) +
∑

j

Jijs
′

j(t), (1c)

(ii) Asynchronous dynamics. In this case time is continuous and, pt(s) satisfies the

following equation
d

dt
pt(s) =

∑

i

[pt(Fis)wi(Fis; t)− pt(s)wi(s; t)] (2a)

wi(s; t) =
1

2
[1− si tanh[θi(s; t)]], (2b)

where the operator Fi acting on s flips its ith spin.

For each of these processes one can define a generating functional. For the synchronous

case it takes the form of

Z[ψ, h] =

〈

exp
[

∑

i,t

ψi(t)si(t)
]

〉

, (3)

where for any quantity A defined as a function of a path (s(T ), . . . , s(0)), 〈· · ·〉 indicates

averaging over the paths taken by s(t) under the stochastic dynamics of Eqs. (1a) –

(1c), i.e.

〈A〉 = Tr WT−1[s(T ); s(T − 1)] · · ·W0[s(1); s(0)] p0(s(0)) A(s(T ), . . . , s(0)), (4)

and

Tr ≡
∑

s(T )

∑

s(T−1)

· · ·
∑

s(0)

. (5)

The asynchronous case is similar expect that the sum over t in Eq. (3) should be replaced

by an integration; see Appendix B.

It is useful to rewrite the generating functional by considering θi(t) for each spin and

each time step as a free parameter, integrate over it, and make sure that the definition

Eq. (1c) is satisfied by inserting an appropriate delta function. This yields

Z[ψ, h] =
∫

Dθ

〈

exp
[

∑

i,t

ψi(t)si(t)
]

〉

∏

i,t

δ
(

θi(t)− hi(t)−
∑

j

Jijsj(t)
)

=
∫

Dθθ̂

〈

exp
[

i
∑

i,t

θ̂i(t){θi(t)− hi(t)−
∑

j

Jijsj(t)}+
∑

i,t

ψi(t)si(t)
]

〉

(6)
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average over stochastic path
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where ψ and h are now treated as functions of m̂ and m through the following equalities

∂Γ

∂mi(t)
= −ψi[m̂,m](t) (13a)

∂Γ

∂m̂i(t)
= ihi[m̂,m](t) (13b)

Eqs. (13a) and (13b) together with the definition of Γα in Eq. (12) imply Eqs. (9a)

and (9b). Using Eq. (3) in Eq. (7b), Γα can also be written as

Γα[m̂,m] = log
∫

Dθθ̂ Tr eΩα (14a)

Ωα =
∑

i,t

{

iθ̂i(t)[θi(t)− α
∑

j

Jijsj(t)] + si(t+ 1)θi(t)− log cosh(θi(t)) (14b)

− ihi(t)[θ̂i(t)− m̂i(t)] + ψi(t)[si(t)−mi(s)]
}

The idea now is that for α = 0 the generating functional and its Legendre transform

can be easily calculated, as the spins will be independent of each other. For the

generating functional we have

Z0[ψ, h] =
∏

i

T
∏

t=1

2 cosh[hi(t− 1) + ψi(t)]

2 cosh(hi(t− 1))
, (15)

and for the Legendre transform of logZ0 we have

Γ0[m̂,m] =
∑

i,t

[log(2 cosh(h0
i (t) + ψ0

i (t+ 1))− log 2 cosh(h0
i (t)) (16)

− ψ0
i (t)mi(t) + ih0

i (t)m̂i(t)],

where h0 and ψ0 are the real and auxiliary fields for which Eqs. (9a) and (9b) are satisfied

for given m and m̂ at zero coupling (α = 0), i.e.

mi(t) = tanh[h0
i (t− 1) + ψ0

i (t)] (17a)

− im̂i(t) = tanh[h0
i (t) + ψ0

i (t+ 1)]− tanh[h0
i (t)]. (17b)

This can be used to express h0 and ψ0 in terms of m and m̂ as

h0
i (t) = tanh−1 Mi(t) (18a)

ψ0
i (t) = tanh−1 mi(t)− tanh−1 Mi(t− 1), (18b)

where Mi(t) = mi(t+ 1) + im̂i(t).

To calculate the integral on the right hand side of Eq. (14a) for α = 1, we can

expand Γα around α = 0 and eventually set α = 1. Using the fact that
∫

Dθθ̂ TrA exp[Ωα]
∫

Dθθ̂ Tr exp[Ωα]
=

∫

Dθθ̂ TrA exp[Lα]
∫

Dθθ̂ Tr exp[Lα]
= 〈A〉α, (19)

for the first derivative of Γα with respect to α we have

∂Γα

∂α
=

〈

∂Ω

∂α

〉

α

, (20)
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generating functional we have

Z0[ψ, h] =
∏

i

T
∏

t=1

2 cosh[hi(t− 1) + ψi(t)]

2 cosh(hi(t− 1))
, (15)

and for the Legendre transform of logZ0 we have

Γ0[m̂,m] =
∑

i,t

[log(2 cosh(h0
i (t) + ψ0

i (t+ 1))− log 2 cosh(h0
i (t)) (16)

− ψ0
i (t)mi(t) + ih0

i (t)m̂i(t)],

where h0 and ψ0 are the real and auxiliary fields for which Eqs. (9a) and (9b) are satisfied

for given m and m̂ at zero coupling (α = 0), i.e.

mi(t) = tanh[h0
i (t− 1) + ψ0

i (t)] (17a)

− im̂i(t) = tanh[h0
i (t) + ψ0

i (t+ 1)]− tanh[h0
i (t)]. (17b)

This can be used to express h0 and ψ0 in terms of m and m̂ as

h0
i (t) = tanh−1 Mi(t) (18a)

ψ0
i (t) = tanh−1 mi(t)− tanh−1 Mi(t− 1), (18b)

where Mi(t) = mi(t+ 1) + im̂i(t).

To calculate the integral on the right hand side of Eq. (14a) for α = 1, we can

expand Γα around α = 0 and eventually set α = 1. Using the fact that
∫

Dθθ̂ TrA exp[Ωα]
∫

Dθθ̂ Tr exp[Ωα]
=

∫

Dθθ̂ TrA exp[Lα]
∫

Dθθ̂ Tr exp[Lα]
= 〈A〉α, (19)

for the first derivative of Γα with respect to α we have

∂Γα

∂α
=

〈

∂Ω

∂α

〉

α

, (20)
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To find the time evolving magnetizations for given external field and coupling within

the TAP approximation, the above equation should be solved self consistently for mi(t)

at each time step. Note the form of the Onsager correction (the last term in Eq. (28)).

The (1 −m2
j) term is evaluated at the previous time step (t − 1), but mi is evaluated

at the present step (t). Thus (28) is a set of equations to be solved for mi(t), not just

a simple expression for mi(t) in terms of the mj(t− 1), as in naive mean field theory.

The derivations of dynamical naive mean-field and TAP equations for the case of

asynchronous dynamics defined in Eqs. (2a) and (2b) are given in Appendix B. As

shown there, these equations read

mi(t) +
dmi(t)

dt
= tanh



hi(t) +
∑

j

Jijmj(t)



 (29)

mi(t) +
dmi(t)

dt
= tanh



hi(t) +
∑

j

Jijmj(t)−
(

mi(t) +
dmi(t)

dt

)

∑

j

J2
ij(1−m2

j(t))



 (30)

mi(t+ 1) = tanh



hi(t) +
∑

j

Jijmj(t)



 (31)

mi(t+ 1) = tanh



hi(t) +
∑

j

Jijmj(t)−mi(t+ 1)
∑

j

J2
ij(1−m2

j(t))



 (32)

4. Numerical results

To test the dynamical naive mean field (hereafter: nMF) and TAP equations (27) and

(28), we ran simulations in which we simulated the process define by (1a)-(1c) for L time

steps, for couplings drawn from a zero mean Gaussian distribution with variance g2/N

(Jij is drawn independent of Jji) and subjected to two alternative types of external field.

One was a temporally constant field with a magnitude drawn independently for each

spin from a zero mean, unit variance Gaussian distribution. The other was a sinusoidally

varying external field. For each sample of the Js and the fields, we generated data from

the system for r repeats, calculatedmi(t) from these repeats, and used it in (27) and (28)

to predict mi(t + 1). Finally, we calculated the mean squared errors of these predicted

values

MSEnMF/TAP =
1

LN

N
∑

i=1

L
∑

t=1

[mnMF/TAP
i (t+ 1)−mi(t)]

2 (33)

The results for the two external fields used are shown below.

4.1. Uniform field

Fig. 1A shows the dependence of the error for predicting the magnetizations at time

t + 1, given the measured magnetizations at t. Both TAP and nMF errors increase as
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for given m and m̂ at zero coupling (α = 0), i.e.
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i (t− 1) + ψ0

i (t)] (17a)

− im̂i(t) = tanh[h0
i (t) + ψ0

i (t+ 1)]− tanh[h0
i (t)]. (17b)

This can be used to express h0 and ψ0 in terms of m and m̂ as

h0
i (t) = tanh−1 Mi(t) (18a)

ψ0
i (t) = tanh−1 mi(t)− tanh−1 Mi(t− 1), (18b)

where Mi(t) = mi(t+ 1) + im̂i(t).
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∫

Dθθ̂ TrA exp[Ωα]
∫

Dθθ̂ Tr exp[Ωα]
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∫
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∫

Dθθ̂ Tr exp[Lα]
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for the first derivative of Γα with respect to α we have
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=

〈

∂Ω
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〉

α
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To find the time evolving magnetizations for given external field and coupling within

the TAP approximation, the above equation should be solved self consistently for mi(t)

at each time step. Note the form of the Onsager correction (the last term in Eq. (28)).

The (1 −m2
j) term is evaluated at the previous time step (t − 1), but mi is evaluated

at the present step (t). Thus (28) is a set of equations to be solved for mi(t), not just

a simple expression for mi(t) in terms of the mj(t− 1), as in naive mean field theory.

The derivations of dynamical naive mean-field and TAP equations for the case of

asynchronous dynamics defined in Eqs. (2a) and (2b) are given in Appendix B. As

shown there, these equations read

mi(t) +
dmi(t)

dt
= tanh



hi(t) +
∑

j

Jijmj(t)



 (29)

mi(t) +
dmi(t)

dt
= tanh



hi(t) +
∑

j

Jijmj(t)−
(

mi(t) +
dmi(t)

dt

)

∑

j

J2
ij(1−m2

j(t))



 (30)

4. Numerical results

To test the dynamical naive mean field (hereafter: nMF) and TAP equations (27) and

(28), we ran simulations in which we simulated the process define by (1a)-(1c) for L time

steps, for couplings drawn from a zero mean Gaussian distribution with variance g2/N

(Jij is drawn independent of Jji) and subjected to two alternative types of external field.

One was a temporally constant field with a magnitude drawn independently for each

spin from a zero mean, unit variance Gaussian distribution. The other was a sinusoidally

varying external field. For each sample of the Js and the fields, we generated data from

the system for r repeats, calculatedmi(t) from these repeats, and used it in (27) and (28)

to predict mi(t + 1). Finally, we calculated the mean squared errors of these predicted

values

MSEnMF/TAP =
1

LN

N
∑

i=1

L
∑

t=1

[mnMF/TAP
i (t+ 1)−mi(t)]

2 (31)

The results for the two external fields used are shown below.

4.1. Uniform field

Fig. 1A shows the dependence of the error for predicting the magnetizations at time

t + 1, given the measured magnetizations at t. Both TAP and nMF errors increase as

g increases, but the error of nMF is always larger than that of TAP. Furthermore, how

close to the true (r → ∞) values the measured magnetizations are systematically affects

the nMF and TAP predictions: increasing r decreases the errors for all g. This can also

be seen in Fig. 1B, where the errors at g = 0.3 are shown as functions of r, also for two

different values of N .

asynchronous update
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2

δhi = ηh
∂L
∂hi

and δJij = ηJ
∂L
∂Jij

, that is

δhi(t) = ηh
{

〈si(t+ 1)〉r − 〈tanh[hi(t) +
∑

k

Jiksk(t))]〉r]
}

(3a)

δJij = ηJ
{

〈si(t+ 1)sj(t)〉

− 〈tanh[hi(t) +
∑

k

Jiksk(t)]sj(t)〉
}

, (3b)

where ηh and ηJ are learning rates. Here and in what
follows 〈· · · 〉r, 〈· · · 〉t, 〈· · · 〉 represent averaging over re-
peats, time, and both repeats and time, respectively. An
overline, instead, indicates averaging over the spins.

The algorithm Eqn. (3) is effectively N independent
stochastic delta-rule algorithms (with the negative log-
likelihood as cost function), one for each spin; see sec-
tion 5.6 in [7]. It is faster than Boltzmann learning
for the equilibrium case, because evaluating the second
term does not require Monte Carlo runs. However, it is
still slow for large systems. Therefore, faster algorithms
would be useful.

In what follows, we derive fast inversion formulae,
based on dynamical MF and TAP equations, that would
be exact for N → ∞ and infinite data. We also quantify
the performance of the algorithms outside these limits.

Inverse MF and TAP.— For simplicity, we consider
first the stationary case, for which the sequence index
r is superfluous. This is because in this case averaging
over time and repeats would be equivalent. We start with
the maximum likelihood conditions (3) with δhi and δJij
equal to zero. Assume first that the magnetizations mi =
〈si〉 satisfy the MF equationsmi = tanh(hi+

∑

j J
MF
ik mk)

. We write the si that occur in Eqn. (3) as mi + δsi
and expand the tanh in the δsi. The zeroth-order terms
vanish, and the bilinear terms give

〈δsi(t+1)δsj(t)〉 = (1−m2
i )

∑

k

JMF
ik 〈δsk(t)δsj(t)〉. (4)

Defining matrices Dij = 〈δsi(t + 1)δsj(t)〉 (the one-step
delayed correlation matrix), Cij = 〈δsi(t)δsj(t)〉 (the
equal-time correlation matrix) and Aij = (1 − m2

i )δij ,
(4) can be solved to give JMF = A−1DC−1. This is our
MF inversion formula.

To get the TAP inversion formula, we start instead
by assuming that the mi satisfy the TAP equations
mi = tanh[hi +

∑

k J
TAP
ik mk −mi

∑

k(J
TAP)2ik(1−m2

k)].
These equations improve over the MF ones by taking
into account the Onsager reaction field. It was proved
by Kappen and Spanjers [8] that the TAP equations, al-
though usually derived for the equilibrium (symmetric-
J) SK model, also hold for the asynchronously updated,
asymmetric-J model in a stationary state. We have veri-
fied that they are also valid in our synchronously-updated
model [9]. We again write si = mi + δsi, expand-
ing the tanh to third order in powers of

∑

k J
TAP
ik δsk +

mi

∑

k(J
TAP)2ik(1 −m2

k). Keeping terms up to order g3

leads to D = ATAPJTAPC , where

ATAP
ij = δij(1−m2

i )[1− (1−m2
i )

∑

l

(JTAP)2il(1−m2
l )].

These equations cannot be solved directly as in the MF
case because ATAP depends on JTAP. However, one
can derive a cubic equation for the quantities Fi =
(1−m2

i )
∑

l(J
TAP)2il(1−m2

l ):

Fi(1− F 2
i ) = (1−m2

i )
∑

j

(JMF)2ij(1−m2
j ). (5)

This determines ATAP
ii = (1 − m2

i )(1 − Fi), so we can
evaluate JTAP

ij = JMF
ij /(1 − Fi). The physically relevant

root of Eqn. (5) can not exceed 2/(3
√
3), restricting this

technique to weak correlations.
For both MF and TAP reconstruction, the fields hi can

be found by solving the respective magnetization equa-
tions after the Jij have been obtained, just as in the
equilibrium problem [5].

Performance of the algorithms.— We have veri-
fied that the algorithm (3) recovers the couplings of an
asymmetric SK model exactly in the limit of infinite data
(L → ∞) for a wide range of coupling strengths g, ex-
ternal fields and system sizes. The mean square error,
εexact, is in general proportional to 1/L, and in the weak-
coupling limit a quadratic expansion of Eqn. (2) yields

εexact = δJ2
ij ≡ (Jij − J0

ij)
2 =

1

(1−m2
i )L

, (6)

where J0
ij are the true couplings and Jij are those found

by the algorithm.
We find that the MF algorithm leads to an error, εMF,

of the form εexact + ε∞MF, where ε∞MF is independent of L
and proportional to 1/N . Thus, for data sets of length
much smaller than L∗ = 1/ε∞MF ∝ N , MF does almost as
well as the exact algorithm, and, furthermore, the larger
the network, the better MF does. The errors for the exact
and MF algorithms are plotted as functions of L in Fig.
1a.

For weak coupling, we can calculate the asymptotic
MF error, ε∞MF, analytically as follows. We present the
zero-field case here for simplicity. We expand the tanh in
the maximum-likelihood equation to third order, giving

Din =
∑

k

Jik〈sksn〉 − 1
3

∑

klm

JikJilJim〈skslsmsn〉+ · · · .

(7)
Correlations here are at equal times, except forDin. The
dominant contributions in the sum over k, l, and m are
those with k = l, l = m and m = k. Multiplying on the
right by (C−1)nj , summing over n and using Eqn. (4) for
JMF, we get

JMF
ij = Jij −

∑

k

J2
ikJij , (8)
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MF inversion formula.

To get the TAP inversion formula, we start instead
by assuming that the mi satisfy the TAP equations
mi = tanh[hi +

∑

k J
TAP
ik mk −mi

∑

k(J
TAP)2ik(1−m2

k)].
These equations improve over the MF ones by taking
into account the Onsager reaction field. It was proved
by Kappen and Spanjers [8] that the TAP equations, al-
though usually derived for the equilibrium (symmetric-
J) SK model, also hold for the asynchronously updated,
asymmetric-J model in a stationary state. We have veri-
fied that they are also valid in our synchronously-updated
model [9]. We again write si = mi + δsi, expand-
ing the tanh to third order in powers of

∑

k J
TAP
ik δsk +

mi

∑

k(J
TAP)2ik(1 −m2

k). Keeping terms up to order g3

leads to D = ATAPJTAPC , where

ATAP
ij = δij(1−m2

i )[1− (1−m2
i )

∑

l

(JTAP)2il(1−m2
l )].

These equations cannot be solved directly as in the MF
case because ATAP depends on JTAP. However, one
can derive a cubic equation for the quantities Fi =
(1−m2

i )
∑

l(J
TAP)2il(1−m2

l ):

Fi(1− F 2
i ) = (1−m2

i )
∑

j

(JMF)2ij(1−m2
j ). (5)

This determines ATAP
ii = (1 − m2

i )(1 − Fi), so we can
evaluate JTAP

ij = JMF
ij /(1 − Fi). The physically relevant

root of Eqn. (5) can not exceed 2/(3
√
3), restricting this

technique to weak correlations.
For both MF and TAP reconstruction, the fields hi can

be found by solving the respective magnetization equa-
tions after the Jij have been obtained, just as in the
equilibrium problem [5].

Performance of the algorithms.— We have veri-
fied that the algorithm (3) recovers the couplings of an
asymmetric SK model exactly in the limit of infinite data
(L → ∞) for a wide range of coupling strengths g, ex-
ternal fields and system sizes. The mean square error,
εexact, is in general proportional to 1/L, and in the weak-
coupling limit a quadratic expansion of Eqn. (2) yields

εexact = δJ2
ij ≡ (Jij − J0

ij)
2 =

1

(1−m2
i )L

, (6)

where J0
ij are the true couplings and Jij are those found

by the algorithm.
We find that the MF algorithm leads to an error, εMF,

of the form εexact + ε∞MF, where ε∞MF is independent of L
and proportional to 1/N . Thus, for data sets of length
much smaller than L∗ = 1/ε∞MF ∝ N , MF does almost as
well as the exact algorithm, and, furthermore, the larger
the network, the better MF does. The errors for the exact
and MF algorithms are plotted as functions of L in Fig.
1a.

For weak coupling, we can calculate the asymptotic
MF error, ε∞MF, analytically as follows. We present the
zero-field case here for simplicity. We expand the tanh in
the maximum-likelihood equation to third order, giving

Din =
∑

k

Jik〈sksn〉 − 1
3

∑

klm

JikJilJim〈skslsmsn〉+ · · · .

(7)
Correlations here are at equal times, except forDin. The
dominant contributions in the sum over k, l, and m are
those with k = l, l = m and m = k. Multiplying on the
right by (C−1)nj , summing over n and using Eqn. (4) for
JMF, we get

JMF
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∑

k

J2
ikJij , (8)
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would be useful.
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be exact for N → ∞ and infinite data. We also quantify
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equal to zero. Assume first that the magnetizations mi =
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by assuming that the mi satisfy the TAP equations
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These equations improve over the MF ones by taking
into account the Onsager reaction field. It was proved
by Kappen and Spanjers [8] that the TAP equations, al-
though usually derived for the equilibrium (symmetric-
J) SK model, also hold for the asynchronously updated,
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well as the exact algorithm, and, furthermore, the larger
the network, the better MF does. The errors for the exact
and MF algorithms are plotted as functions of L in Fig.
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for the equilibrium case, because evaluating the second
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still slow for large systems. Therefore, faster algorithms
would be useful.
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be exact for N → ∞ and infinite data. We also quantify
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coupling limit a quadratic expansion of Eqn. (2) yields

εexact = δJ2
ij ≡ (Jij − J0

ij)
2 =

1

(1−m2
i )L

, (6)

where J0
ij are the true couplings and Jij are those found

by the algorithm.
We find that the MF algorithm leads to an error, εMF,

of the form εexact + ε∞MF, where ε∞MF is independent of L
and proportional to 1/N . Thus, for data sets of length
much smaller than L∗ = 1/ε∞MF ∝ N , MF does almost as
well as the exact algorithm, and, furthermore, the larger
the network, the better MF does. The errors for the exact
and MF algorithms are plotted as functions of L in Fig.
1a.

For weak coupling, we can calculate the asymptotic
MF error, ε∞MF, analytically as follows. We present the
zero-field case here for simplicity. We expand the tanh in
the maximum-likelihood equation to third order, giving

Din =
∑

k

Jik〈sksn〉 − 1
3

∑

klm

JikJilJim〈skslsmsn〉+ · · · .

(7)
Correlations here are at equal times, except forDin. The
dominant contributions in the sum over k, l, and m are
those with k = l, l = m and m = k. Multiplying on the
right by (C−1)nj , summing over n and using Eqn. (4) for
JMF, we get

JMF
ij = Jij −
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k

J2
ikJij , (8)
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FIG. 1. The quality of the exact algorithm, the MF approxi-
mation (a) and the TAP approximation (b), versus the length
of data L. Results are shown for g = 0.1 (blue stars), 0.12
(magenta crosses), 0.14 (red circles) and 0.16 (black x) and
all for N = 20. The solid lines are the theoretical predictions,
in the TAP case together with the finite size corrections.

with corrections of relative order 1/N . This yields the
TAP-approximation couplings found above, showing that
the TAP reconstruction indeed corrects the leading MF
errors. To leading order the sum on k is just g2, and the
asymptotic mean square MF error is

ε∞MF = (Jij − JMF
ij )2 =

g6

N
. (9)

The solid curves in Fig. 1a are 1/L + g6/N ; the fit is
evidently good.

Fig. 2 illustrates the systematic nature of the MF er-
rors in a scatter plot of the JMF

ij s against the true Jijs:
One can see that MF systematically underestimates the
magnitude of the couplings. The factor 1−Fi in the TAP
formula corrects for this to relative order g2.
The error using the TAP reconstruction is much lower

than that for the MF one and reaches its minimum at
much larger L: for N = 20 and the coupling strengths
we studied, we had to go to L > 109 to see the error flat-
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and proceed to evaluate the averages in the same way.
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into account this finite size correction, we can predict the
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Non-stationary case.— The magnetizations,
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FIG. 2. The systematic nature of MF and TAP errors. We
show the couplings inferred using MF (black dots) and TAP
(red squares) vs the true ones for a network of N = 20 with
g = 0.35 using (a) L = 104 and (b) L = 106 samples.

mi(t) = 〈sri (t)〉r, are now time-dependent and, for MF,
solve

mi(t+ 1) = tanh[hi(t) +
∑

j

JMF
ij mj(t)]. (10)

We have also proved [9] that the TAP equations hold
even in a nonstationary state, in the form

mi(t+ 1) = tanh[hi(t) +
∑

j

JTAP
ij mj(t)

− mi(t+ 1)
∑

j

(JTAP)2ij(1−m2
j (t))]. (11)

Thus, we can extend both our inversion algorithms to
nonstationary systems, as we show in the following.

We start by defining time-dependent correlation ma-
trices Dij(t) ≡ 〈δsri (t + 1)δsrj(t)〉r and Cij(t) ≡
〈δsri (t)δsrj(t)〉r. For MF, using the same procedure that
lead to Eqn. (4), we find

〈Dij(t)〉t =
∑

k

JMF
ik 〈(1−m2

i (t+ 1))Ckj(t)〉t. (12)

One can still solve for J by simple matrix algebra:

JMF
ij =

∑

k

〈Dik(t)〉t[(B(i))−1]kj , (13)

where B(i)
kj = 〈(1 − m2

i (t + 1))Ckj(t)〉t. The problem is
more complex than the stationary one only because one
has to invert a different matrix B(i) for each i.
For TAP, analogously to the stationary case, the B(i)

acquire an extra factor inside the time average:

B(i)
kj = 〈(1−m2

i (t+ 1))(1− Fi(t))Ckj(t)〉t, (14a)

Fi(t) = (1−m2
i (t+ 1))

∑

l

(JTAP)2il(1−m2
l (t)). (14b)

Exact TAP inversion requires iterative solution of Eqn.
(13), with JTAP

ij instead of JMF
ij , together with Eqn. (14).

We have found, however, that effective reconstruction is
still possible under the simplifying approximation that

after the learning is converged
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δhi = ηh
∂L
∂hi

and δJij = ηJ
∂L
∂Jij

, that is

δhi(t) = ηh
{

〈si(t+ 1)〉r − 〈tanh[hi(t) +
∑

k

Jiksk(t))]〉r]
}

(3a)

δJij = ηJ
{

〈si(t+ 1)sj(t)〉

− 〈tanh[hi(t) +
∑

k

Jiksk(t)]sj(t)〉
}

, (3b)

where ηh and ηJ are learning rates. Here and in what
follows 〈· · · 〉r, 〈· · · 〉t, 〈· · · 〉 represent averaging over re-
peats, time, and both repeats and time, respectively. An
overline, instead, indicates averaging over the spins.

The algorithm Eqn. (3) is effectively N independent
stochastic delta-rule algorithms (with the negative log-
likelihood as cost function), one for each spin; see sec-
tion 5.6 in [7]. It is faster than Boltzmann learning
for the equilibrium case, because evaluating the second
term does not require Monte Carlo runs. However, it is
still slow for large systems. Therefore, faster algorithms
would be useful.

In what follows, we derive fast inversion formulae,
based on dynamical MF and TAP equations, that would
be exact for N → ∞ and infinite data. We also quantify
the performance of the algorithms outside these limits.

Inverse MF and TAP.— For simplicity, we consider
first the stationary case, for which the sequence index
r is superfluous. This is because in this case averaging
over time and repeats would be equivalent. We start with
the maximum likelihood conditions (3) with δhi and δJij
equal to zero. Assume first that the magnetizations mi =
〈si〉 satisfy the MF equationsmi = tanh(hi+

∑

j J
MF
ik mk)

. We write the si that occur in Eqn. (3) as mi + δsi
and expand the tanh in the δsi. The zeroth-order terms
vanish, and the bilinear terms give

〈δsi(t+1)δsj(t)〉 = (1−m2
i )

∑

k

JMF
ik 〈δsk(t)δsj(t)〉. (4)

Defining matrices Dij = 〈δsi(t + 1)δsj(t)〉 (the one-step
delayed correlation matrix), Cij = 〈δsi(t)δsj(t)〉 (the
equal-time correlation matrix) and Aij = (1 − m2

i )δij ,
(4) can be solved to give JMF = A−1DC−1. This is our
MF inversion formula.

To get the TAP inversion formula, we start instead
by assuming that the mi satisfy the TAP equations
mi = tanh[hi +

∑

k J
TAP
ik mk −mi

∑

k(J
TAP)2ik(1−m2

k)].
These equations improve over the MF ones by taking
into account the Onsager reaction field. It was proved
by Kappen and Spanjers [8] that the TAP equations, al-
though usually derived for the equilibrium (symmetric-
J) SK model, also hold for the asynchronously updated,
asymmetric-J model in a stationary state. We have veri-
fied that they are also valid in our synchronously-updated
model [9]. We again write si = mi + δsi, expand-
ing the tanh to third order in powers of

∑

k J
TAP
ik δsk +

mi

∑

k(J
TAP)2ik(1 −m2

k). Keeping terms up to order g3

leads to D = ATAPJTAPC , where

ATAP
ij = δij(1−m2

i )[1− (1−m2
i )

∑

l

(JTAP)2il(1−m2
l )].

These equations cannot be solved directly as in the MF
case because ATAP depends on JTAP. However, one
can derive a cubic equation for the quantities Fi =
(1−m2

i )
∑

l(J
TAP)2il(1−m2

l ):

Fi(1− F 2
i ) = (1−m2

i )
∑

j

(JMF)2ij(1−m2
j ). (5)

This determines ATAP
ii = (1 − m2

i )(1 − Fi), so we can
evaluate JTAP

ij = JMF
ij /(1 − Fi). The physically relevant

root of Eqn. (5) can not exceed 2/(3
√
3), restricting this

technique to weak correlations.
For both MF and TAP reconstruction, the fields hi can

be found by solving the respective magnetization equa-
tions after the Jij have been obtained, just as in the
equilibrium problem [5].

Performance of the algorithms.— We have veri-
fied that the algorithm (3) recovers the couplings of an
asymmetric SK model exactly in the limit of infinite data
(L → ∞) for a wide range of coupling strengths g, ex-
ternal fields and system sizes. The mean square error,
εexact, is in general proportional to 1/L, and in the weak-
coupling limit a quadratic expansion of Eqn. (2) yields

εexact = δJ2
ij ≡ (Jij − J0

ij)
2 =

1

(1−m2
i )L

, (6)

where J0
ij are the true couplings and Jij are those found

by the algorithm.
We find that the MF algorithm leads to an error, εMF,

of the form εexact + ε∞MF, where ε∞MF is independent of L
and proportional to 1/N . Thus, for data sets of length
much smaller than L∗ = 1/ε∞MF ∝ N , MF does almost as
well as the exact algorithm, and, furthermore, the larger
the network, the better MF does. The errors for the exact
and MF algorithms are plotted as functions of L in Fig.
1a.

For weak coupling, we can calculate the asymptotic
MF error, ε∞MF, analytically as follows. We present the
zero-field case here for simplicity. We expand the tanh in
the maximum-likelihood equation to third order, giving

Din =
∑

k

Jik〈sksn〉 − 1
3

∑

klm

JikJilJim〈skslsmsn〉+ · · · .

(7)
Correlations here are at equal times, except forDin. The
dominant contributions in the sum over k, l, and m are
those with k = l, l = m and m = k. Multiplying on the
right by (C−1)nj , summing over n and using Eqn. (4) for
JMF, we get

JMF
ij = Jij −

∑

k

J2
ikJij , (8)
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likelihood as cost function), one for each spin; see sec-
tion 5.6 in [7]. It is faster than Boltzmann learning
for the equilibrium case, because evaluating the second
term does not require Monte Carlo runs. However, it is
still slow for large systems. Therefore, faster algorithms
would be useful.

In what follows, we derive fast inversion formulae,
based on dynamical MF and TAP equations, that would
be exact for N → ∞ and infinite data. We also quantify
the performance of the algorithms outside these limits.

Inverse MF and TAP.— For simplicity, we consider
first the stationary case, for which the sequence index
r is superfluous. This is because in this case averaging
over time and repeats would be equivalent. We start with
the maximum likelihood conditions (3) with δhi and δJij
equal to zero. Assume first that the magnetizations mi =
〈si〉 satisfy the MF equationsmi = tanh(hi+
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equal-time correlation matrix) and Aij = (1 − m2
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by assuming that the mi satisfy the TAP equations
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TAP
ik mk −mi

∑

k(J
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These equations improve over the MF ones by taking
into account the Onsager reaction field. It was proved
by Kappen and Spanjers [8] that the TAP equations, al-
though usually derived for the equilibrium (symmetric-
J) SK model, also hold for the asynchronously updated,
asymmetric-J model in a stationary state. We have veri-
fied that they are also valid in our synchronously-updated
model [9]. We again write si = mi + δsi, expand-
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evaluate JTAP
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root of Eqn. (5) can not exceed 2/(3
√
3), restricting this
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be found by solving the respective magnetization equa-
tions after the Jij have been obtained, just as in the
equilibrium problem [5].

Performance of the algorithms.— We have veri-
fied that the algorithm (3) recovers the couplings of an
asymmetric SK model exactly in the limit of infinite data
(L → ∞) for a wide range of coupling strengths g, ex-
ternal fields and system sizes. The mean square error,
εexact, is in general proportional to 1/L, and in the weak-
coupling limit a quadratic expansion of Eqn. (2) yields
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2 =
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where J0
ij are the true couplings and Jij are those found

by the algorithm.
We find that the MF algorithm leads to an error, εMF,

of the form εexact + ε∞MF, where ε∞MF is independent of L
and proportional to 1/N . Thus, for data sets of length
much smaller than L∗ = 1/ε∞MF ∝ N , MF does almost as
well as the exact algorithm, and, furthermore, the larger
the network, the better MF does. The errors for the exact
and MF algorithms are plotted as functions of L in Fig.
1a.

For weak coupling, we can calculate the asymptotic
MF error, ε∞MF, analytically as follows. We present the
zero-field case here for simplicity. We expand the tanh in
the maximum-likelihood equation to third order, giving

Din =
∑

k
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Correlations here are at equal times, except forDin. The
dominant contributions in the sum over k, l, and m are
those with k = l, l = m and m = k. Multiplying on the
right by (C−1)nj , summing over n and using Eqn. (4) for
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where ηh and ηJ are learning rates. Here and in what
follows 〈· · · 〉r, 〈· · · 〉t, 〈· · · 〉 represent averaging over re-
peats, time, and both repeats and time, respectively. An
overline, instead, indicates averaging over the spins.

The algorithm Eqn. (3) is effectively N independent
stochastic delta-rule algorithms (with the negative log-
likelihood as cost function), one for each spin; see sec-
tion 5.6 in [7]. It is faster than Boltzmann learning
for the equilibrium case, because evaluating the second
term does not require Monte Carlo runs. However, it is
still slow for large systems. Therefore, faster algorithms
would be useful.

In what follows, we derive fast inversion formulae,
based on dynamical MF and TAP equations, that would
be exact for N → ∞ and infinite data. We also quantify
the performance of the algorithms outside these limits.

Inverse MF and TAP.— For simplicity, we consider
first the stationary case, for which the sequence index
r is superfluous. This is because in this case averaging
over time and repeats would be equivalent. We start with
the maximum likelihood conditions (3) with δhi and δJij
equal to zero. Assume first that the magnetizations mi =
〈si〉 satisfy the MF equationsmi = tanh(hi+
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. We write the si that occur in Eqn. (3) as mi + δsi
and expand the tanh in the δsi. The zeroth-order terms
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delayed correlation matrix), Cij = 〈δsi(t)δsj(t)〉 (the
equal-time correlation matrix) and Aij = (1 − m2

i )δij ,
(4) can be solved to give JMF = A−1DC−1. This is our
MF inversion formula.

To get the TAP inversion formula, we start instead
by assuming that the mi satisfy the TAP equations
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TAP
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These equations improve over the MF ones by taking
into account the Onsager reaction field. It was proved
by Kappen and Spanjers [8] that the TAP equations, al-
though usually derived for the equilibrium (symmetric-
J) SK model, also hold for the asynchronously updated,
asymmetric-J model in a stationary state. We have veri-
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be found by solving the respective magnetization equa-
tions after the Jij have been obtained, just as in the
equilibrium problem [5].

Performance of the algorithms.— We have veri-
fied that the algorithm (3) recovers the couplings of an
asymmetric SK model exactly in the limit of infinite data
(L → ∞) for a wide range of coupling strengths g, ex-
ternal fields and system sizes. The mean square error,
εexact, is in general proportional to 1/L, and in the weak-
coupling limit a quadratic expansion of Eqn. (2) yields

εexact = δJ2
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2 =
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where J0
ij are the true couplings and Jij are those found
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We find that the MF algorithm leads to an error, εMF,

of the form εexact + ε∞MF, where ε∞MF is independent of L
and proportional to 1/N . Thus, for data sets of length
much smaller than L∗ = 1/ε∞MF ∝ N , MF does almost as
well as the exact algorithm, and, furthermore, the larger
the network, the better MF does. The errors for the exact
and MF algorithms are plotted as functions of L in Fig.
1a.

For weak coupling, we can calculate the asymptotic
MF error, ε∞MF, analytically as follows. We present the
zero-field case here for simplicity. We expand the tanh in
the maximum-likelihood equation to third order, giving
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likelihood as cost function), one for each spin; see sec-
tion 5.6 in [7]. It is faster than Boltzmann learning
for the equilibrium case, because evaluating the second
term does not require Monte Carlo runs. However, it is
still slow for large systems. Therefore, faster algorithms
would be useful.

In what follows, we derive fast inversion formulae,
based on dynamical MF and TAP equations, that would
be exact for N → ∞ and infinite data. We also quantify
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Inverse MF and TAP.— For simplicity, we consider
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r is superfluous. This is because in this case averaging
over time and repeats would be equivalent. We start with
the maximum likelihood conditions (3) with δhi and δJij
equal to zero. Assume first that the magnetizations mi =
〈si〉 satisfy the MF equationsmi = tanh(hi+
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MF
ik mk)

. We write the si that occur in Eqn. (3) as mi + δsi
and expand the tanh in the δsi. The zeroth-order terms
vanish, and the bilinear terms give

〈δsi(t+1)δsj(t)〉 = (1−m2
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JMF
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Defining matrices Dij = 〈δsi(t + 1)δsj(t)〉 (the one-step
delayed correlation matrix), Cij = 〈δsi(t)δsj(t)〉 (the
equal-time correlation matrix) and Aij = (1 − m2

i )δij ,
(4) can be solved to give JMF = A−1DC−1. This is our
MF inversion formula.

To get the TAP inversion formula, we start instead
by assuming that the mi satisfy the TAP equations
mi = tanh[hi +
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TAP
ik mk −mi
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TAP)2ik(1−m2

k)].
These equations improve over the MF ones by taking
into account the Onsager reaction field. It was proved
by Kappen and Spanjers [8] that the TAP equations, al-
though usually derived for the equilibrium (symmetric-
J) SK model, also hold for the asynchronously updated,
asymmetric-J model in a stationary state. We have veri-
fied that they are also valid in our synchronously-updated
model [9]. We again write si = mi + δsi, expand-
ing the tanh to third order in powers of
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This determines ATAP
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i )(1 − Fi), so we can
evaluate JTAP
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root of Eqn. (5) can not exceed 2/(3
√
3), restricting this

technique to weak correlations.
For both MF and TAP reconstruction, the fields hi can

be found by solving the respective magnetization equa-
tions after the Jij have been obtained, just as in the
equilibrium problem [5].

Performance of the algorithms.— We have veri-
fied that the algorithm (3) recovers the couplings of an
asymmetric SK model exactly in the limit of infinite data
(L → ∞) for a wide range of coupling strengths g, ex-
ternal fields and system sizes. The mean square error,
εexact, is in general proportional to 1/L, and in the weak-
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where J0
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by the algorithm.
We find that the MF algorithm leads to an error, εMF,

of the form εexact + ε∞MF, where ε∞MF is independent of L
and proportional to 1/N . Thus, for data sets of length
much smaller than L∗ = 1/ε∞MF ∝ N , MF does almost as
well as the exact algorithm, and, furthermore, the larger
the network, the better MF does. The errors for the exact
and MF algorithms are plotted as functions of L in Fig.
1a.

For weak coupling, we can calculate the asymptotic
MF error, ε∞MF, analytically as follows. We present the
zero-field case here for simplicity. We expand the tanh in
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Din =
∑

k

Jik〈sksn〉 − 1
3

∑

klm

JikJilJim〈skslsmsn〉+ · · · .

(7)
Correlations here are at equal times, except forDin. The
dominant contributions in the sum over k, l, and m are
those with k = l, l = m and m = k. Multiplying on the
right by (C−1)nj , summing over n and using Eqn. (4) for
JMF, we get

JMF
ij = Jij −

∑

k

J2
ikJij , (8)

2

δhi = ηh
∂L
∂hi

and δJij = ηJ
∂L
∂Jij

, that is

δhi(t) = ηh
{

〈si(t+ 1)〉r − 〈tanh[hi(t) +
∑

k

Jiksk(t))]〉r]
}

(3a)

δJij = ηJ
{

〈si(t+ 1)sj(t)〉

− 〈tanh[hi(t) +
∑

k

Jiksk(t)]sj(t)〉
}

, (3b)

where ηh and ηJ are learning rates. Here and in what
follows 〈· · · 〉r, 〈· · · 〉t, 〈· · · 〉 represent averaging over re-
peats, time, and both repeats and time, respectively. An
overline, instead, indicates averaging over the spins.
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would be useful.

In what follows, we derive fast inversion formulae,
based on dynamical MF and TAP equations, that would
be exact for N → ∞ and infinite data. We also quantify
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Inverse MF and TAP.— For simplicity, we consider
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and proportional to 1/N . Thus, for data sets of length
much smaller than L∗ = 1/ε∞MF ∝ N , MF does almost as
well as the exact algorithm, and, furthermore, the larger
the network, the better MF does. The errors for the exact
and MF algorithms are plotted as functions of L in Fig.
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stochastic delta-rule algorithms (with the negative log-
likelihood as cost function), one for each spin; see sec-
tion 5.6 in [7]. It is faster than Boltzmann learning
for the equilibrium case, because evaluating the second
term does not require Monte Carlo runs. However, it is
still slow for large systems. Therefore, faster algorithms
would be useful.

In what follows, we derive fast inversion formulae,
based on dynamical MF and TAP equations, that would
be exact for N → ∞ and infinite data. We also quantify
the performance of the algorithms outside these limits.

Inverse MF and TAP.— For simplicity, we consider
first the stationary case, for which the sequence index
r is superfluous. This is because in this case averaging
over time and repeats would be equivalent. We start with
the maximum likelihood conditions (3) with δhi and δJij
equal to zero. Assume first that the magnetizations mi =
〈si〉 satisfy the MF equationsmi = tanh(hi+
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delayed correlation matrix), Cij = 〈δsi(t)δsj(t)〉 (the
equal-time correlation matrix) and Aij = (1 − m2
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(4) can be solved to give JMF = A−1DC−1. This is our
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by assuming that the mi satisfy the TAP equations
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TAP
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k)].
These equations improve over the MF ones by taking
into account the Onsager reaction field. It was proved
by Kappen and Spanjers [8] that the TAP equations, al-
though usually derived for the equilibrium (symmetric-
J) SK model, also hold for the asynchronously updated,
asymmetric-J model in a stationary state. We have veri-
fied that they are also valid in our synchronously-updated
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be found by solving the respective magnetization equa-
tions after the Jij have been obtained, just as in the
equilibrium problem [5].

Performance of the algorithms.— We have veri-
fied that the algorithm (3) recovers the couplings of an
asymmetric SK model exactly in the limit of infinite data
(L → ∞) for a wide range of coupling strengths g, ex-
ternal fields and system sizes. The mean square error,
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ij are the true couplings and Jij are those found
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of the form εexact + ε∞MF, where ε∞MF is independent of L
and proportional to 1/N . Thus, for data sets of length
much smaller than L∗ = 1/ε∞MF ∝ N , MF does almost as
well as the exact algorithm, and, furthermore, the larger
the network, the better MF does. The errors for the exact
and MF algorithms are plotted as functions of L in Fig.
1a.

For weak coupling, we can calculate the asymptotic
MF error, ε∞MF, analytically as follows. We present the
zero-field case here for simplicity. We expand the tanh in
the maximum-likelihood equation to third order, giving
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term does not require Monte Carlo runs. However, it is
still slow for large systems. Therefore, faster algorithms
would be useful.
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based on dynamical MF and TAP equations, that would
be exact for N → ∞ and infinite data. We also quantify
the performance of the algorithms outside these limits.

Inverse MF and TAP.— For simplicity, we consider
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r is superfluous. This is because in this case averaging
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be found by solving the respective magnetization equa-
tions after the Jij have been obtained, just as in the
equilibrium problem [5].

Performance of the algorithms.— We have veri-
fied that the algorithm (3) recovers the couplings of an
asymmetric SK model exactly in the limit of infinite data
(L → ∞) for a wide range of coupling strengths g, ex-
ternal fields and system sizes. The mean square error,
εexact, is in general proportional to 1/L, and in the weak-
coupling limit a quadratic expansion of Eqn. (2) yields

εexact = δJ2
ij ≡ (Jij − J0

ij)
2 =

1

(1−m2
i )L

, (6)

where J0
ij are the true couplings and Jij are those found

by the algorithm.
We find that the MF algorithm leads to an error, εMF,

of the form εexact + ε∞MF, where ε∞MF is independent of L
and proportional to 1/N . Thus, for data sets of length
much smaller than L∗ = 1/ε∞MF ∝ N , MF does almost as
well as the exact algorithm, and, furthermore, the larger
the network, the better MF does. The errors for the exact
and MF algorithms are plotted as functions of L in Fig.
1a.

For weak coupling, we can calculate the asymptotic
MF error, ε∞MF, analytically as follows. We present the
zero-field case here for simplicity. We expand the tanh in
the maximum-likelihood equation to third order, giving

Din =
∑

k

Jik〈sksn〉 − 1
3

∑

klm

JikJilJim〈skslsmsn〉+ · · · .

(7)
Correlations here are at equal times, except forDin. The
dominant contributions in the sum over k, l, and m are
those with k = l, l = m and m = k. Multiplying on the
right by (C−1)nj , summing over n and using Eqn. (4) for
JMF, we get

JMF
ij = Jij −

∑

k

J2
ikJij , (8)
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FIG. 1. The quality of the exact algorithm, the MF approxi-
mation (a) and the TAP approximation (b), versus the length
of data L. Results are shown for g = 0.1 (blue stars), 0.12
(magenta crosses), 0.14 (red circles) and 0.16 (black x) and
all for N = 20. The solid lines are the theoretical predictions,
in the TAP case together with the finite size corrections.

with corrections of relative order 1/N . This yields the
TAP-approximation couplings found above, showing that
the TAP reconstruction indeed corrects the leading MF
errors. To leading order the sum on k is just g2, and the
asymptotic mean square MF error is

ε∞MF = (Jij − JMF
ij )2 =

g6

N
. (9)

The solid curves in Fig. 1a are 1/L + g6/N ; the fit is
evidently good.

Fig. 2 illustrates the systematic nature of the MF er-
rors in a scatter plot of the JMF

ij s against the true Jijs:
One can see that MF systematically underestimates the
magnitude of the couplings. The factor 1−Fi in the TAP
formula corrects for this to relative order g2.
The error using the TAP reconstruction is much lower

than that for the MF one and reaches its minimum at
much larger L: for N = 20 and the coupling strengths
we studied, we had to go to L > 109 to see the error flat-
ten; see Fig. 1b. To calculate the asymptotic reconstruc-
tion error for TAP, we can expand the tanh to 5th order
and proceed to evaluate the averages in the same way.
The MF error terms analyzed above are compensated
(for N → ∞) for by the TAP equations, leading to an
asymptotic ε∞TAP = 4g10/N . However, the errors found
by applying the TAP algorithm to a simulated network
of N = 20 (Fig. 1b) are much larger than this. We have
traced this discrepancy to a finite-size effect of relative
order 1/N2: In making that TAP correction, the term
in (7) with k = l = m has been counted three times in
obtaining (8) instead of once. The resulting mean square

error is (2/3)2J6
ij = (20g6)/(3N3). These corrections will

be negligible relative to the asymptotic g10/N term only
for N $ 1/g2, which is not generally satisfied for the
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TAP error reasonably well, as shown in Fig. 1b.

Non-stationary case.— The magnetizations,
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FIG. 2. The systematic nature of MF and TAP errors. We
show the couplings inferred using MF (black dots) and TAP
(red squares) vs the true ones for a network of N = 20 with
g = 0.35 using (a) L = 104 and (b) L = 106 samples.

mi(t) = 〈sri (t)〉r, are now time-dependent and, for MF,
solve

mi(t+ 1) = tanh[hi(t) +
∑

j

JMF
ij mj(t)]. (10)

We have also proved [9] that the TAP equations hold
even in a nonstationary state, in the form

mi(t+ 1) = tanh[hi(t) +
∑

j

JTAP
ij mj(t)

− mi(t+ 1)
∑

j

(JTAP)2ij(1−m2
j (t))]. (11)

Thus, we can extend both our inversion algorithms to
nonstationary systems, as we show in the following.

We start by defining time-dependent correlation ma-
trices Dij(t) ≡ 〈δsri (t + 1)δsrj(t)〉r and Cij(t) ≡
〈δsri (t)δsrj(t)〉r. For MF, using the same procedure that
lead to Eqn. (4), we find

〈Dij(t)〉t =
∑

k

JMF
ik 〈(1−m2

i (t+ 1))Ckj(t)〉t. (12)

One can still solve for J by simple matrix algebra:

JMF
ij =

∑

k

〈Dik(t)〉t[(B(i))−1]kj , (13)

where B(i)
kj = 〈(1 − m2

i (t + 1))Ckj(t)〉t. The problem is
more complex than the stationary one only because one
has to invert a different matrix B(i) for each i.
For TAP, analogously to the stationary case, the B(i)

acquire an extra factor inside the time average:

B(i)
kj = 〈(1−m2

i (t+ 1))(1− Fi(t))Ckj(t)〉t, (14a)

Fi(t) = (1−m2
i (t+ 1))

∑

l

(JTAP)2il(1−m2
l (t)). (14b)

Exact TAP inversion requires iterative solution of Eqn.
(13), with JTAP

ij instead of JMF
ij , together with Eqn. (14).

We have found, however, that effective reconstruction is
still possible under the simplifying approximation that

after the learning is converged
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δhi = ηh
∂L
∂hi

and δJij = ηJ
∂L
∂Jij

, that is

δhi(t) = ηh
{

〈si(t+ 1)〉r − 〈tanh[hi(t) +
∑

k

Jiksk(t))]〉r]
}

(3a)

δJij = ηJ
{

〈si(t+ 1)sj(t)〉

− 〈tanh[hi(t) +
∑

k

Jiksk(t)]sj(t)〉
}

, (3b)

where ηh and ηJ are learning rates. Here and in what
follows 〈· · · 〉r, 〈· · · 〉t, 〈· · · 〉 represent averaging over re-
peats, time, and both repeats and time, respectively. An
overline, instead, indicates averaging over the spins.

The algorithm Eqn. (3) is effectively N independent
stochastic delta-rule algorithms (with the negative log-
likelihood as cost function), one for each spin; see sec-
tion 5.6 in [7]. It is faster than Boltzmann learning
for the equilibrium case, because evaluating the second
term does not require Monte Carlo runs. However, it is
still slow for large systems. Therefore, faster algorithms
would be useful.

In what follows, we derive fast inversion formulae,
based on dynamical MF and TAP equations, that would
be exact for N → ∞ and infinite data. We also quantify
the performance of the algorithms outside these limits.

Inverse MF and TAP.— For simplicity, we consider
first the stationary case, for which the sequence index
r is superfluous. This is because in this case averaging
over time and repeats would be equivalent. We start with
the maximum likelihood conditions (3) with δhi and δJij
equal to zero. Assume first that the magnetizations mi =
〈si〉 satisfy the MF equationsmi = tanh(hi+

∑

j J
MF
ik mk)

. We write the si that occur in Eqn. (3) as mi + δsi
and expand the tanh in the δsi. The zeroth-order terms
vanish, and the bilinear terms give

〈δsi(t+1)δsj(t)〉 = (1−m2
i )

∑

k

JMF
ik 〈δsk(t)δsj(t)〉. (4)

Defining matrices Dij = 〈δsi(t + 1)δsj(t)〉 (the one-step
delayed correlation matrix), Cij = 〈δsi(t)δsj(t)〉 (the
equal-time correlation matrix) and Aij = (1 − m2

i )δij ,
(4) can be solved to give JMF = A−1DC−1. This is our
MF inversion formula.

To get the TAP inversion formula, we start instead
by assuming that the mi satisfy the TAP equations
mi = tanh[hi +

∑

k J
TAP
ik mk −mi

∑

k(J
TAP)2ik(1−m2

k)].
These equations improve over the MF ones by taking
into account the Onsager reaction field. It was proved
by Kappen and Spanjers [8] that the TAP equations, al-
though usually derived for the equilibrium (symmetric-
J) SK model, also hold for the asynchronously updated,
asymmetric-J model in a stationary state. We have veri-
fied that they are also valid in our synchronously-updated
model [9]. We again write si = mi + δsi, expand-
ing the tanh to third order in powers of

∑

k J
TAP
ik δsk +

mi

∑

k(J
TAP)2ik(1 −m2

k). Keeping terms up to order g3

leads to D = ATAPJTAPC , where

ATAP
ij = δij(1−m2

i )[1− (1−m2
i )

∑

l

(JTAP)2il(1−m2
l )].

These equations cannot be solved directly as in the MF
case because ATAP depends on JTAP. However, one
can derive a cubic equation for the quantities Fi =
(1−m2

i )
∑

l(J
TAP)2il(1−m2

l ):

Fi(1− F 2
i ) = (1−m2

i )
∑

j

(JMF)2ij(1−m2
j ). (5)

This determines ATAP
ii = (1 − m2

i )(1 − Fi), so we can
evaluate JTAP

ij = JMF
ij /(1 − Fi). The physically relevant

root of Eqn. (5) can not exceed 2/(3
√
3), restricting this

technique to weak correlations.
For both MF and TAP reconstruction, the fields hi can

be found by solving the respective magnetization equa-
tions after the Jij have been obtained, just as in the
equilibrium problem [5].

Performance of the algorithms.— We have veri-
fied that the algorithm (3) recovers the couplings of an
asymmetric SK model exactly in the limit of infinite data
(L → ∞) for a wide range of coupling strengths g, ex-
ternal fields and system sizes. The mean square error,
εexact, is in general proportional to 1/L, and in the weak-
coupling limit a quadratic expansion of Eqn. (2) yields

εexact = δJ2
ij ≡ (Jij − J0

ij)
2 =

1

(1−m2
i )L

, (6)

where J0
ij are the true couplings and Jij are those found

by the algorithm.
We find that the MF algorithm leads to an error, εMF,

of the form εexact + ε∞MF, where ε∞MF is independent of L
and proportional to 1/N . Thus, for data sets of length
much smaller than L∗ = 1/ε∞MF ∝ N , MF does almost as
well as the exact algorithm, and, furthermore, the larger
the network, the better MF does. The errors for the exact
and MF algorithms are plotted as functions of L in Fig.
1a.

For weak coupling, we can calculate the asymptotic
MF error, ε∞MF, analytically as follows. We present the
zero-field case here for simplicity. We expand the tanh in
the maximum-likelihood equation to third order, giving

Din =
∑

k

Jik〈sksn〉 − 1
3

∑

klm

JikJilJim〈skslsmsn〉+ · · · .

(7)
Correlations here are at equal times, except forDin. The
dominant contributions in the sum over k, l, and m are
those with k = l, l = m and m = k. Multiplying on the
right by (C−1)nj , summing over n and using Eqn. (4) for
JMF, we get

JMF
ij = Jij −

∑

k

J2
ikJij , (8)
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follows 〈· · · 〉r, 〈· · · 〉t, 〈· · · 〉 represent averaging over re-
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overline, instead, indicates averaging over the spins.
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stochastic delta-rule algorithms (with the negative log-
likelihood as cost function), one for each spin; see sec-
tion 5.6 in [7]. It is faster than Boltzmann learning
for the equilibrium case, because evaluating the second
term does not require Monte Carlo runs. However, it is
still slow for large systems. Therefore, faster algorithms
would be useful.

In what follows, we derive fast inversion formulae,
based on dynamical MF and TAP equations, that would
be exact for N → ∞ and infinite data. We also quantify
the performance of the algorithms outside these limits.

Inverse MF and TAP.— For simplicity, we consider
first the stationary case, for which the sequence index
r is superfluous. This is because in this case averaging
over time and repeats would be equivalent. We start with
the maximum likelihood conditions (3) with δhi and δJij
equal to zero. Assume first that the magnetizations mi =
〈si〉 satisfy the MF equationsmi = tanh(hi+
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. We write the si that occur in Eqn. (3) as mi + δsi
and expand the tanh in the δsi. The zeroth-order terms
vanish, and the bilinear terms give
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delayed correlation matrix), Cij = 〈δsi(t)δsj(t)〉 (the
equal-time correlation matrix) and Aij = (1 − m2
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(4) can be solved to give JMF = A−1DC−1. This is our
MF inversion formula.

To get the TAP inversion formula, we start instead
by assuming that the mi satisfy the TAP equations
mi = tanh[hi +

∑
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TAP
ik mk −mi

∑

k(J
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k)].
These equations improve over the MF ones by taking
into account the Onsager reaction field. It was proved
by Kappen and Spanjers [8] that the TAP equations, al-
though usually derived for the equilibrium (symmetric-
J) SK model, also hold for the asynchronously updated,
asymmetric-J model in a stationary state. We have veri-
fied that they are also valid in our synchronously-updated
model [9]. We again write si = mi + δsi, expand-
ing the tanh to third order in powers of
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k). Keeping terms up to order g3
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ATAP
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These equations cannot be solved directly as in the MF
case because ATAP depends on JTAP. However, one
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This determines ATAP
ii = (1 − m2

i )(1 − Fi), so we can
evaluate JTAP

ij = JMF
ij /(1 − Fi). The physically relevant

root of Eqn. (5) can not exceed 2/(3
√
3), restricting this

technique to weak correlations.
For both MF and TAP reconstruction, the fields hi can

be found by solving the respective magnetization equa-
tions after the Jij have been obtained, just as in the
equilibrium problem [5].

Performance of the algorithms.— We have veri-
fied that the algorithm (3) recovers the couplings of an
asymmetric SK model exactly in the limit of infinite data
(L → ∞) for a wide range of coupling strengths g, ex-
ternal fields and system sizes. The mean square error,
εexact, is in general proportional to 1/L, and in the weak-
coupling limit a quadratic expansion of Eqn. (2) yields

εexact = δJ2
ij ≡ (Jij − J0
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2 =
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(1−m2
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, (6)

where J0
ij are the true couplings and Jij are those found

by the algorithm.
We find that the MF algorithm leads to an error, εMF,

of the form εexact + ε∞MF, where ε∞MF is independent of L
and proportional to 1/N . Thus, for data sets of length
much smaller than L∗ = 1/ε∞MF ∝ N , MF does almost as
well as the exact algorithm, and, furthermore, the larger
the network, the better MF does. The errors for the exact
and MF algorithms are plotted as functions of L in Fig.
1a.

For weak coupling, we can calculate the asymptotic
MF error, ε∞MF, analytically as follows. We present the
zero-field case here for simplicity. We expand the tanh in
the maximum-likelihood equation to third order, giving

Din =
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Jik〈sksn〉 − 1
3

∑
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(7)
Correlations here are at equal times, except forDin. The
dominant contributions in the sum over k, l, and m are
those with k = l, l = m and m = k. Multiplying on the
right by (C−1)nj , summing over n and using Eqn. (4) for
JMF, we get

JMF
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where ηh and ηJ are learning rates. Here and in what
follows 〈· · · 〉r, 〈· · · 〉t, 〈· · · 〉 represent averaging over re-
peats, time, and both repeats and time, respectively. An
overline, instead, indicates averaging over the spins.

The algorithm Eqn. (3) is effectively N independent
stochastic delta-rule algorithms (with the negative log-
likelihood as cost function), one for each spin; see sec-
tion 5.6 in [7]. It is faster than Boltzmann learning
for the equilibrium case, because evaluating the second
term does not require Monte Carlo runs. However, it is
still slow for large systems. Therefore, faster algorithms
would be useful.

In what follows, we derive fast inversion formulae,
based on dynamical MF and TAP equations, that would
be exact for N → ∞ and infinite data. We also quantify
the performance of the algorithms outside these limits.

Inverse MF and TAP.— For simplicity, we consider
first the stationary case, for which the sequence index
r is superfluous. This is because in this case averaging
over time and repeats would be equivalent. We start with
the maximum likelihood conditions (3) with δhi and δJij
equal to zero. Assume first that the magnetizations mi =
〈si〉 satisfy the MF equationsmi = tanh(hi+
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ik mk)

. We write the si that occur in Eqn. (3) as mi + δsi
and expand the tanh in the δsi. The zeroth-order terms
vanish, and the bilinear terms give
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JMF
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Defining matrices Dij = 〈δsi(t + 1)δsj(t)〉 (the one-step
delayed correlation matrix), Cij = 〈δsi(t)δsj(t)〉 (the
equal-time correlation matrix) and Aij = (1 − m2

i )δij ,
(4) can be solved to give JMF = A−1DC−1. This is our
MF inversion formula.

To get the TAP inversion formula, we start instead
by assuming that the mi satisfy the TAP equations
mi = tanh[hi +

∑
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TAP
ik mk −mi

∑

k(J
TAP)2ik(1−m2

k)].
These equations improve over the MF ones by taking
into account the Onsager reaction field. It was proved
by Kappen and Spanjers [8] that the TAP equations, al-
though usually derived for the equilibrium (symmetric-
J) SK model, also hold for the asynchronously updated,
asymmetric-J model in a stationary state. We have veri-
fied that they are also valid in our synchronously-updated
model [9]. We again write si = mi + δsi, expand-
ing the tanh to third order in powers of
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evaluate JTAP
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root of Eqn. (5) can not exceed 2/(3
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3), restricting this

technique to weak correlations.
For both MF and TAP reconstruction, the fields hi can

be found by solving the respective magnetization equa-
tions after the Jij have been obtained, just as in the
equilibrium problem [5].

Performance of the algorithms.— We have veri-
fied that the algorithm (3) recovers the couplings of an
asymmetric SK model exactly in the limit of infinite data
(L → ∞) for a wide range of coupling strengths g, ex-
ternal fields and system sizes. The mean square error,
εexact, is in general proportional to 1/L, and in the weak-
coupling limit a quadratic expansion of Eqn. (2) yields

εexact = δJ2
ij ≡ (Jij − J0
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2 =
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, (6)

where J0
ij are the true couplings and Jij are those found

by the algorithm.
We find that the MF algorithm leads to an error, εMF,

of the form εexact + ε∞MF, where ε∞MF is independent of L
and proportional to 1/N . Thus, for data sets of length
much smaller than L∗ = 1/ε∞MF ∝ N , MF does almost as
well as the exact algorithm, and, furthermore, the larger
the network, the better MF does. The errors for the exact
and MF algorithms are plotted as functions of L in Fig.
1a.

For weak coupling, we can calculate the asymptotic
MF error, ε∞MF, analytically as follows. We present the
zero-field case here for simplicity. We expand the tanh in
the maximum-likelihood equation to third order, giving
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Correlations here are at equal times, except forDin. The
dominant contributions in the sum over k, l, and m are
those with k = l, l = m and m = k. Multiplying on the
right by (C−1)nj , summing over n and using Eqn. (4) for
JMF, we get
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peats, time, and both repeats and time, respectively. An
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The algorithm Eqn. (3) is effectively N independent
stochastic delta-rule algorithms (with the negative log-
likelihood as cost function), one for each spin; see sec-
tion 5.6 in [7]. It is faster than Boltzmann learning
for the equilibrium case, because evaluating the second
term does not require Monte Carlo runs. However, it is
still slow for large systems. Therefore, faster algorithms
would be useful.

In what follows, we derive fast inversion formulae,
based on dynamical MF and TAP equations, that would
be exact for N → ∞ and infinite data. We also quantify
the performance of the algorithms outside these limits.

Inverse MF and TAP.— For simplicity, we consider
first the stationary case, for which the sequence index
r is superfluous. This is because in this case averaging
over time and repeats would be equivalent. We start with
the maximum likelihood conditions (3) with δhi and δJij
equal to zero. Assume first that the magnetizations mi =
〈si〉 satisfy the MF equationsmi = tanh(hi+

∑

j J
MF
ik mk)

. We write the si that occur in Eqn. (3) as mi + δsi
and expand the tanh in the δsi. The zeroth-order terms
vanish, and the bilinear terms give

〈δsi(t+1)δsj(t)〉 = (1−m2
i )

∑

k

JMF
ik 〈δsk(t)δsj(t)〉. (4)

Defining matrices Dij = 〈δsi(t + 1)δsj(t)〉 (the one-step
delayed correlation matrix), Cij = 〈δsi(t)δsj(t)〉 (the
equal-time correlation matrix) and Aij = (1 − m2

i )δij ,
(4) can be solved to give JMF = A−1DC−1. This is our
MF inversion formula.

To get the TAP inversion formula, we start instead
by assuming that the mi satisfy the TAP equations
mi = tanh[hi +

∑
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TAP
ik mk −mi

∑

k(J
TAP)2ik(1−m2

k)].
These equations improve over the MF ones by taking
into account the Onsager reaction field. It was proved
by Kappen and Spanjers [8] that the TAP equations, al-
though usually derived for the equilibrium (symmetric-
J) SK model, also hold for the asynchronously updated,
asymmetric-J model in a stationary state. We have veri-
fied that they are also valid in our synchronously-updated
model [9]. We again write si = mi + δsi, expand-
ing the tanh to third order in powers of
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TAP
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mi

∑

k(J
TAP)2ik(1 −m2

k). Keeping terms up to order g3
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These equations cannot be solved directly as in the MF
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This determines ATAP
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i )(1 − Fi), so we can
evaluate JTAP

ij = JMF
ij /(1 − Fi). The physically relevant

root of Eqn. (5) can not exceed 2/(3
√
3), restricting this

technique to weak correlations.
For both MF and TAP reconstruction, the fields hi can

be found by solving the respective magnetization equa-
tions after the Jij have been obtained, just as in the
equilibrium problem [5].

Performance of the algorithms.— We have veri-
fied that the algorithm (3) recovers the couplings of an
asymmetric SK model exactly in the limit of infinite data
(L → ∞) for a wide range of coupling strengths g, ex-
ternal fields and system sizes. The mean square error,
εexact, is in general proportional to 1/L, and in the weak-
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2 =
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, (6)

where J0
ij are the true couplings and Jij are those found

by the algorithm.
We find that the MF algorithm leads to an error, εMF,

of the form εexact + ε∞MF, where ε∞MF is independent of L
and proportional to 1/N . Thus, for data sets of length
much smaller than L∗ = 1/ε∞MF ∝ N , MF does almost as
well as the exact algorithm, and, furthermore, the larger
the network, the better MF does. The errors for the exact
and MF algorithms are plotted as functions of L in Fig.
1a.

For weak coupling, we can calculate the asymptotic
MF error, ε∞MF, analytically as follows. We present the
zero-field case here for simplicity. We expand the tanh in
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based on dynamical MF and TAP equations, that would
be exact for N → ∞ and infinite data. We also quantify
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well as the exact algorithm, and, furthermore, the larger
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and MF algorithms are plotted as functions of L in Fig.
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where ηh and ηJ are learning rates. Here and in what
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peats, time, and both repeats and time, respectively. An
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stochastic delta-rule algorithms (with the negative log-
likelihood as cost function), one for each spin; see sec-
tion 5.6 in [7]. It is faster than Boltzmann learning
for the equilibrium case, because evaluating the second
term does not require Monte Carlo runs. However, it is
still slow for large systems. Therefore, faster algorithms
would be useful.

In what follows, we derive fast inversion formulae,
based on dynamical MF and TAP equations, that would
be exact for N → ∞ and infinite data. We also quantify
the performance of the algorithms outside these limits.

Inverse MF and TAP.— For simplicity, we consider
first the stationary case, for which the sequence index
r is superfluous. This is because in this case averaging
over time and repeats would be equivalent. We start with
the maximum likelihood conditions (3) with δhi and δJij
equal to zero. Assume first that the magnetizations mi =
〈si〉 satisfy the MF equationsmi = tanh(hi+
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. We write the si that occur in Eqn. (3) as mi + δsi
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equal-time correlation matrix) and Aij = (1 − m2
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(4) can be solved to give JMF = A−1DC−1. This is our
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by assuming that the mi satisfy the TAP equations
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TAP
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k)].
These equations improve over the MF ones by taking
into account the Onsager reaction field. It was proved
by Kappen and Spanjers [8] that the TAP equations, al-
though usually derived for the equilibrium (symmetric-
J) SK model, also hold for the asynchronously updated,
asymmetric-J model in a stationary state. We have veri-
fied that they are also valid in our synchronously-updated
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be found by solving the respective magnetization equa-
tions after the Jij have been obtained, just as in the
equilibrium problem [5].

Performance of the algorithms.— We have veri-
fied that the algorithm (3) recovers the couplings of an
asymmetric SK model exactly in the limit of infinite data
(L → ∞) for a wide range of coupling strengths g, ex-
ternal fields and system sizes. The mean square error,
εexact, is in general proportional to 1/L, and in the weak-
coupling limit a quadratic expansion of Eqn. (2) yields
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2 =
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where J0
ij are the true couplings and Jij are those found

by the algorithm.
We find that the MF algorithm leads to an error, εMF,

of the form εexact + ε∞MF, where ε∞MF is independent of L
and proportional to 1/N . Thus, for data sets of length
much smaller than L∗ = 1/ε∞MF ∝ N , MF does almost as
well as the exact algorithm, and, furthermore, the larger
the network, the better MF does. The errors for the exact
and MF algorithms are plotted as functions of L in Fig.
1a.

For weak coupling, we can calculate the asymptotic
MF error, ε∞MF, analytically as follows. We present the
zero-field case here for simplicity. We expand the tanh in
the maximum-likelihood equation to third order, giving
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for the equilibrium case, because evaluating the second
term does not require Monte Carlo runs. However, it is
still slow for large systems. Therefore, faster algorithms
would be useful.
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based on dynamical MF and TAP equations, that would
be exact for N → ∞ and infinite data. We also quantify
the performance of the algorithms outside these limits.
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first the stationary case, for which the sequence index
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over time and repeats would be equivalent. We start with
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equal to zero. Assume first that the magnetizations mi =
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the network, the better MF does. The errors for the exact
and MF algorithms are plotted as functions of L in Fig.
1a.

For weak coupling, we can calculate the asymptotic
MF error, ε∞MF, analytically as follows. We present the
zero-field case here for simplicity. We expand the tanh in
the maximum-likelihood equation to third order, giving

Din =
∑

k

Jik〈sksn〉 − 1
3

∑

klm

JikJilJim〈skslsmsn〉+ · · · .

(7)
Correlations here are at equal times, except forDin. The
dominant contributions in the sum over k, l, and m are
those with k = l, l = m and m = k. Multiplying on the
right by (C−1)nj , summing over n and using Eqn. (4) for
JMF, we get

JMF
ij = Jij −

∑

k

J2
ikJij , (8)

2

δhi = ηh
∂L
∂hi

and δJij = ηJ
∂L
∂Jij

, that is

δhi(t) = ηh
{

〈si(t+ 1)〉r − 〈tanh[hi(t) +
∑

k

Jiksk(t))]〉r]
}

(3a)

δJij = ηJ
{

〈si(t+ 1)sj(t)〉

− 〈tanh[hi(t) +
∑

k

Jiksk(t)]sj(t)〉
}

, (3b)

where ηh and ηJ are learning rates. Here and in what
follows 〈· · · 〉r, 〈· · · 〉t, 〈· · · 〉 represent averaging over re-
peats, time, and both repeats and time, respectively. An
overline, instead, indicates averaging over the spins.

The algorithm Eqn. (3) is effectively N independent
stochastic delta-rule algorithms (with the negative log-
likelihood as cost function), one for each spin; see sec-
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i )[1− (1−m2
i )

∑

l

(JTAP)2il(1−m2
l )].

These equations cannot be solved directly as in the MF
case because ATAP depends on JTAP. However, one
can derive a cubic equation for the quantities Fi =
(1−m2

i )
∑

l(J
TAP)2il(1−m2

l ):

Fi(1− F 2
i ) = (1−m2

i )
∑

j

(JMF)2ij(1−m2
j ). (5)

This determines ATAP
ii = (1 − m2

i )(1 − Fi), so we can
evaluate JTAP

ij = JMF
ij /(1 − Fi). The physically relevant

root of Eqn. (5) can not exceed 2/(3
√
3), restricting this

technique to weak correlations.
For both MF and TAP reconstruction, the fields hi can

be found by solving the respective magnetization equa-
tions after the Jij have been obtained, just as in the
equilibrium problem [5].

Performance of the algorithms.— We have veri-
fied that the algorithm (3) recovers the couplings of an
asymmetric SK model exactly in the limit of infinite data
(L → ∞) for a wide range of coupling strengths g, ex-
ternal fields and system sizes. The mean square error,
εexact, is in general proportional to 1/L, and in the weak-
coupling limit a quadratic expansion of Eqn. (2) yields

εexact = δJ2
ij ≡ (Jij − J0

ij)
2 =

1

(1−m2
i )L

, (6)

where J0
ij are the true couplings and Jij are those found

by the algorithm.
We find that the MF algorithm leads to an error, εMF,

of the form εexact + ε∞MF, where ε∞MF is independent of L
and proportional to 1/N . Thus, for data sets of length
much smaller than L∗ = 1/ε∞MF ∝ N , MF does almost as
well as the exact algorithm, and, furthermore, the larger
the network, the better MF does. The errors for the exact
and MF algorithms are plotted as functions of L in Fig.
1a.

For weak coupling, we can calculate the asymptotic
MF error, ε∞MF, analytically as follows. We present the
zero-field case here for simplicity. We expand the tanh in
the maximum-likelihood equation to third order, giving

Din =
∑

k

Jik〈sksn〉 − 1
3

∑

klm

JikJilJim〈skslsmsn〉+ · · · .

(7)
Correlations here are at equal times, except forDin. The
dominant contributions in the sum over k, l, and m are
those with k = l, l = m and m = k. Multiplying on the
right by (C−1)nj , summing over n and using Eqn. (4) for
JMF, we get

JMF
ij = Jij −

∑

k

J2
ikJij , (8)
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, that is
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where ηh and ηJ are learning rates. Here and in what
follows 〈· · · 〉r, 〈· · · 〉t, 〈· · · 〉 represent averaging over re-
peats, time, and both repeats and time, respectively. An
overline, instead, indicates averaging over the spins.

The algorithm Eqn. (3) is effectively N independent
stochastic delta-rule algorithms (with the negative log-
likelihood as cost function), one for each spin; see sec-
tion 5.6 in [7]. It is faster than Boltzmann learning
for the equilibrium case, because evaluating the second
term does not require Monte Carlo runs. However, it is
still slow for large systems. Therefore, faster algorithms
would be useful.

In what follows, we derive fast inversion formulae,
based on dynamical MF and TAP equations, that would
be exact for N → ∞ and infinite data. We also quantify
the performance of the algorithms outside these limits.

Inverse MF and TAP.— For simplicity, we consider
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r is superfluous. This is because in this case averaging
over time and repeats would be equivalent. We start with
the maximum likelihood conditions (3) with δhi and δJij
equal to zero. Assume first that the magnetizations mi =
〈si〉 satisfy the MF equationsmi = tanh(hi+
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. We write the si that occur in Eqn. (3) as mi + δsi
and expand the tanh in the δsi. The zeroth-order terms
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by assuming that the mi satisfy the TAP equations
mi = tanh[hi +
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k)].
These equations improve over the MF ones by taking
into account the Onsager reaction field. It was proved
by Kappen and Spanjers [8] that the TAP equations, al-
though usually derived for the equilibrium (symmetric-
J) SK model, also hold for the asynchronously updated,
asymmetric-J model in a stationary state. We have veri-
fied that they are also valid in our synchronously-updated
model [9]. We again write si = mi + δsi, expand-
ing the tanh to third order in powers of
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∑
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k). Keeping terms up to order g3
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These equations cannot be solved directly as in the MF
case because ATAP depends on JTAP. However, one
can derive a cubic equation for the quantities Fi =
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This determines ATAP
ii = (1 − m2

i )(1 − Fi), so we can
evaluate JTAP

ij = JMF
ij /(1 − Fi). The physically relevant

root of Eqn. (5) can not exceed 2/(3
√
3), restricting this

technique to weak correlations.
For both MF and TAP reconstruction, the fields hi can

be found by solving the respective magnetization equa-
tions after the Jij have been obtained, just as in the
equilibrium problem [5].

Performance of the algorithms.— We have veri-
fied that the algorithm (3) recovers the couplings of an
asymmetric SK model exactly in the limit of infinite data
(L → ∞) for a wide range of coupling strengths g, ex-
ternal fields and system sizes. The mean square error,
εexact, is in general proportional to 1/L, and in the weak-
coupling limit a quadratic expansion of Eqn. (2) yields

εexact = δJ2
ij ≡ (Jij − J0

ij)
2 =
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(1−m2
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, (6)

where J0
ij are the true couplings and Jij are those found

by the algorithm.
We find that the MF algorithm leads to an error, εMF,

of the form εexact + ε∞MF, where ε∞MF is independent of L
and proportional to 1/N . Thus, for data sets of length
much smaller than L∗ = 1/ε∞MF ∝ N , MF does almost as
well as the exact algorithm, and, furthermore, the larger
the network, the better MF does. The errors for the exact
and MF algorithms are plotted as functions of L in Fig.
1a.

For weak coupling, we can calculate the asymptotic
MF error, ε∞MF, analytically as follows. We present the
zero-field case here for simplicity. We expand the tanh in
the maximum-likelihood equation to third order, giving

Din =
∑
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Correlations here are at equal times, except forDin. The
dominant contributions in the sum over k, l, and m are
those with k = l, l = m and m = k. Multiplying on the
right by (C−1)nj , summing over n and using Eqn. (4) for
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FIG. 1. The quality of the exact algorithm, the MF approxi-
mation (a) and the TAP approximation (b), versus the length
of data L. Results are shown for g = 0.1 (blue stars), 0.12
(magenta crosses), 0.14 (red circles) and 0.16 (black x) and
all for N = 20. The solid lines are the theoretical predictions,
in the TAP case together with the finite size corrections.

with corrections of relative order 1/N . This yields the
TAP-approximation couplings found above, showing that
the TAP reconstruction indeed corrects the leading MF
errors. To leading order the sum on k is just g2, and the
asymptotic mean square MF error is

ε∞MF = (Jij − JMF
ij )2 =

g6

N
. (9)

The solid curves in Fig. 1a are 1/L + g6/N ; the fit is
evidently good.

Fig. 2 illustrates the systematic nature of the MF er-
rors in a scatter plot of the JMF

ij s against the true Jijs:
One can see that MF systematically underestimates the
magnitude of the couplings. The factor 1−Fi in the TAP
formula corrects for this to relative order g2.
The error using the TAP reconstruction is much lower

than that for the MF one and reaches its minimum at
much larger L: for N = 20 and the coupling strengths
we studied, we had to go to L > 109 to see the error flat-
ten; see Fig. 1b. To calculate the asymptotic reconstruc-
tion error for TAP, we can expand the tanh to 5th order
and proceed to evaluate the averages in the same way.
The MF error terms analyzed above are compensated
(for N → ∞) for by the TAP equations, leading to an
asymptotic ε∞TAP = 4g10/N . However, the errors found
by applying the TAP algorithm to a simulated network
of N = 20 (Fig. 1b) are much larger than this. We have
traced this discrepancy to a finite-size effect of relative
order 1/N2: In making that TAP correction, the term
in (7) with k = l = m has been counted three times in
obtaining (8) instead of once. The resulting mean square

error is (2/3)2J6
ij = (20g6)/(3N3). These corrections will

be negligible relative to the asymptotic g10/N term only
for N $ 1/g2, which is not generally satisfied for the
weak coupling strengths used in our simulations. Taking
into account this finite size correction, we can predict the
TAP error reasonably well, as shown in Fig. 1b.

Non-stationary case.— The magnetizations,
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FIG. 2. The systematic nature of MF and TAP errors. We
show the couplings inferred using MF (black dots) and TAP
(red squares) vs the true ones for a network of N = 20 with
g = 0.35 using (a) L = 104 and (b) L = 106 samples.

mi(t) = 〈sri (t)〉r, are now time-dependent and, for MF,
solve

mi(t+ 1) = tanh[hi(t) +
∑

j

JMF
ij mj(t)]. (10)

We have also proved [9] that the TAP equations hold
even in a nonstationary state, in the form

mi(t+ 1) = tanh[hi(t) +
∑

j

JTAP
ij mj(t)

− mi(t+ 1)
∑

j

(JTAP)2ij(1−m2
j (t))]. (11)

Thus, we can extend both our inversion algorithms to
nonstationary systems, as we show in the following.

We start by defining time-dependent correlation ma-
trices Dij(t) ≡ 〈δsri (t + 1)δsrj(t)〉r and Cij(t) ≡
〈δsri (t)δsrj(t)〉r. For MF, using the same procedure that
lead to Eqn. (4), we find

〈Dij(t)〉t =
∑

k

JMF
ik 〈(1−m2

i (t+ 1))Ckj(t)〉t. (12)

One can still solve for J by simple matrix algebra:

JMF
ij =

∑

k

〈Dik(t)〉t[(B(i))−1]kj , (13)

where B(i)
kj = 〈(1 − m2

i (t + 1))Ckj(t)〉t. The problem is
more complex than the stationary one only because one
has to invert a different matrix B(i) for each i.
For TAP, analogously to the stationary case, the B(i)

acquire an extra factor inside the time average:

B(i)
kj = 〈(1−m2

i (t+ 1))(1− Fi(t))Ckj(t)〉t, (14a)

Fi(t) = (1−m2
i (t+ 1))

∑

l

(JTAP)2il(1−m2
l (t)). (14b)

Exact TAP inversion requires iterative solution of Eqn.
(13), with JTAP

ij instead of JMF
ij , together with Eqn. (14).

We have found, however, that effective reconstruction is
still possible under the simplifying approximation that

after the learning is converged
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δhi = ηh
∂L
∂hi

and δJij = ηJ
∂L
∂Jij

, that is

δhi(t) = ηh
{

〈si(t+ 1)〉r − 〈tanh[hi(t) +
∑

k

Jiksk(t))]〉r]
}

(3a)

δJij = ηJ
{

〈si(t+ 1)sj(t)〉

− 〈tanh[hi(t) +
∑

k

Jiksk(t)]sj(t)〉
}

, (3b)

where ηh and ηJ are learning rates. Here and in what
follows 〈· · · 〉r, 〈· · · 〉t, 〈· · · 〉 represent averaging over re-
peats, time, and both repeats and time, respectively. An
overline, instead, indicates averaging over the spins.

The algorithm Eqn. (3) is effectively N independent
stochastic delta-rule algorithms (with the negative log-
likelihood as cost function), one for each spin; see sec-
tion 5.6 in [7]. It is faster than Boltzmann learning
for the equilibrium case, because evaluating the second
term does not require Monte Carlo runs. However, it is
still slow for large systems. Therefore, faster algorithms
would be useful.

In what follows, we derive fast inversion formulae,
based on dynamical MF and TAP equations, that would
be exact for N → ∞ and infinite data. We also quantify
the performance of the algorithms outside these limits.

Inverse MF and TAP.— For simplicity, we consider
first the stationary case, for which the sequence index
r is superfluous. This is because in this case averaging
over time and repeats would be equivalent. We start with
the maximum likelihood conditions (3) with δhi and δJij
equal to zero. Assume first that the magnetizations mi =
〈si〉 satisfy the MF equationsmi = tanh(hi+

∑

j J
MF
ik mk)

. We write the si that occur in Eqn. (3) as mi + δsi
and expand the tanh in the δsi. The zeroth-order terms
vanish, and the bilinear terms give

〈δsi(t+1)δsj(t)〉 = (1−m2
i )

∑

k

JMF
ik 〈δsk(t)δsj(t)〉. (4)

Defining matrices Dij = 〈δsi(t + 1)δsj(t)〉 (the one-step
delayed correlation matrix), Cij = 〈δsi(t)δsj(t)〉 (the
equal-time correlation matrix) and Aij = (1 − m2

i )δij ,
(4) can be solved to give JMF = A−1DC−1. This is our
MF inversion formula.

To get the TAP inversion formula, we start instead
by assuming that the mi satisfy the TAP equations
mi = tanh[hi +

∑

k J
TAP
ik mk −mi

∑

k(J
TAP)2ik(1−m2

k)].
These equations improve over the MF ones by taking
into account the Onsager reaction field. It was proved
by Kappen and Spanjers [8] that the TAP equations, al-
though usually derived for the equilibrium (symmetric-
J) SK model, also hold for the asynchronously updated,
asymmetric-J model in a stationary state. We have veri-
fied that they are also valid in our synchronously-updated
model [9]. We again write si = mi + δsi, expand-
ing the tanh to third order in powers of

∑

k J
TAP
ik δsk +

mi

∑

k(J
TAP)2ik(1 −m2

k). Keeping terms up to order g3

leads to D = ATAPJTAPC , where

ATAP
ij = δij(1−m2

i )[1− (1−m2
i )

∑

l

(JTAP)2il(1−m2
l )].

These equations cannot be solved directly as in the MF
case because ATAP depends on JTAP. However, one
can derive a cubic equation for the quantities Fi =
(1−m2

i )
∑

l(J
TAP)2il(1−m2

l ):

Fi(1− F 2
i ) = (1−m2

i )
∑

j

(JMF)2ij(1−m2
j ). (5)

This determines ATAP
ii = (1 − m2

i )(1 − Fi), so we can
evaluate JTAP

ij = JMF
ij /(1 − Fi). The physically relevant

root of Eqn. (5) can not exceed 2/(3
√
3), restricting this

technique to weak correlations.
For both MF and TAP reconstruction, the fields hi can

be found by solving the respective magnetization equa-
tions after the Jij have been obtained, just as in the
equilibrium problem [5].

Performance of the algorithms.— We have veri-
fied that the algorithm (3) recovers the couplings of an
asymmetric SK model exactly in the limit of infinite data
(L → ∞) for a wide range of coupling strengths g, ex-
ternal fields and system sizes. The mean square error,
εexact, is in general proportional to 1/L, and in the weak-
coupling limit a quadratic expansion of Eqn. (2) yields

εexact = δJ2
ij ≡ (Jij − J0

ij)
2 =

1

(1−m2
i )L

, (6)

where J0
ij are the true couplings and Jij are those found

by the algorithm.
We find that the MF algorithm leads to an error, εMF,

of the form εexact + ε∞MF, where ε∞MF is independent of L
and proportional to 1/N . Thus, for data sets of length
much smaller than L∗ = 1/ε∞MF ∝ N , MF does almost as
well as the exact algorithm, and, furthermore, the larger
the network, the better MF does. The errors for the exact
and MF algorithms are plotted as functions of L in Fig.
1a.

For weak coupling, we can calculate the asymptotic
MF error, ε∞MF, analytically as follows. We present the
zero-field case here for simplicity. We expand the tanh in
the maximum-likelihood equation to third order, giving

Din =
∑

k

Jik〈sksn〉 − 1
3

∑

klm

JikJilJim〈skslsmsn〉+ · · · .

(7)
Correlations here are at equal times, except forDin. The
dominant contributions in the sum over k, l, and m are
those with k = l, l = m and m = k. Multiplying on the
right by (C−1)nj , summing over n and using Eqn. (4) for
JMF, we get

JMF
ij = Jij −

∑

k

J2
ikJij , (8)
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where ηh and ηJ are learning rates. Here and in what
follows 〈· · · 〉r, 〈· · · 〉t, 〈· · · 〉 represent averaging over re-
peats, time, and both repeats and time, respectively. An
overline, instead, indicates averaging over the spins.

The algorithm Eqn. (3) is effectively N independent
stochastic delta-rule algorithms (with the negative log-
likelihood as cost function), one for each spin; see sec-
tion 5.6 in [7]. It is faster than Boltzmann learning
for the equilibrium case, because evaluating the second
term does not require Monte Carlo runs. However, it is
still slow for large systems. Therefore, faster algorithms
would be useful.

In what follows, we derive fast inversion formulae,
based on dynamical MF and TAP equations, that would
be exact for N → ∞ and infinite data. We also quantify
the performance of the algorithms outside these limits.

Inverse MF and TAP.— For simplicity, we consider
first the stationary case, for which the sequence index
r is superfluous. This is because in this case averaging
over time and repeats would be equivalent. We start with
the maximum likelihood conditions (3) with δhi and δJij
equal to zero. Assume first that the magnetizations mi =
〈si〉 satisfy the MF equationsmi = tanh(hi+
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MF
ik mk)

. We write the si that occur in Eqn. (3) as mi + δsi
and expand the tanh in the δsi. The zeroth-order terms
vanish, and the bilinear terms give

〈δsi(t+1)δsj(t)〉 = (1−m2
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∑
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JMF
ik 〈δsk(t)δsj(t)〉. (4)

Defining matrices Dij = 〈δsi(t + 1)δsj(t)〉 (the one-step
delayed correlation matrix), Cij = 〈δsi(t)δsj(t)〉 (the
equal-time correlation matrix) and Aij = (1 − m2

i )δij ,
(4) can be solved to give JMF = A−1DC−1. This is our
MF inversion formula.

To get the TAP inversion formula, we start instead
by assuming that the mi satisfy the TAP equations
mi = tanh[hi +

∑

k J
TAP
ik mk −mi

∑

k(J
TAP)2ik(1−m2

k)].
These equations improve over the MF ones by taking
into account the Onsager reaction field. It was proved
by Kappen and Spanjers [8] that the TAP equations, al-
though usually derived for the equilibrium (symmetric-
J) SK model, also hold for the asynchronously updated,
asymmetric-J model in a stationary state. We have veri-
fied that they are also valid in our synchronously-updated
model [9]. We again write si = mi + δsi, expand-
ing the tanh to third order in powers of

∑
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∑
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k). Keeping terms up to order g3

leads to D = ATAPJTAPC , where
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ij = δij(1−m2

i )[1− (1−m2
i )

∑

l

(JTAP)2il(1−m2
l )].

These equations cannot be solved directly as in the MF
case because ATAP depends on JTAP. However, one
can derive a cubic equation for the quantities Fi =
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Fi(1− F 2
i ) = (1−m2
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∑
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This determines ATAP
ii = (1 − m2

i )(1 − Fi), so we can
evaluate JTAP

ij = JMF
ij /(1 − Fi). The physically relevant

root of Eqn. (5) can not exceed 2/(3
√
3), restricting this

technique to weak correlations.
For both MF and TAP reconstruction, the fields hi can

be found by solving the respective magnetization equa-
tions after the Jij have been obtained, just as in the
equilibrium problem [5].

Performance of the algorithms.— We have veri-
fied that the algorithm (3) recovers the couplings of an
asymmetric SK model exactly in the limit of infinite data
(L → ∞) for a wide range of coupling strengths g, ex-
ternal fields and system sizes. The mean square error,
εexact, is in general proportional to 1/L, and in the weak-
coupling limit a quadratic expansion of Eqn. (2) yields

εexact = δJ2
ij ≡ (Jij − J0

ij)
2 =
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(1−m2
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, (6)

where J0
ij are the true couplings and Jij are those found

by the algorithm.
We find that the MF algorithm leads to an error, εMF,

of the form εexact + ε∞MF, where ε∞MF is independent of L
and proportional to 1/N . Thus, for data sets of length
much smaller than L∗ = 1/ε∞MF ∝ N , MF does almost as
well as the exact algorithm, and, furthermore, the larger
the network, the better MF does. The errors for the exact
and MF algorithms are plotted as functions of L in Fig.
1a.

For weak coupling, we can calculate the asymptotic
MF error, ε∞MF, analytically as follows. We present the
zero-field case here for simplicity. We expand the tanh in
the maximum-likelihood equation to third order, giving

Din =
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∑
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Correlations here are at equal times, except forDin. The
dominant contributions in the sum over k, l, and m are
those with k = l, l = m and m = k. Multiplying on the
right by (C−1)nj , summing over n and using Eqn. (4) for
JMF, we get

JMF
ij = Jij −

∑

k

J2
ikJij , (8)

Roudi and Hertz 2011, PRL

Tuesday, February 12, 13



2
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, that is
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{

〈si(t+ 1)sj(t)〉

− 〈tanh[hi(t) +
∑

k

Jiksk(t)]sj(t)〉
}

, (3b)

where ηh and ηJ are learning rates. Here and in what
follows 〈· · · 〉r, 〈· · · 〉t, 〈· · · 〉 represent averaging over re-
peats, time, and both repeats and time, respectively. An
overline, instead, indicates averaging over the spins.

The algorithm Eqn. (3) is effectively N independent
stochastic delta-rule algorithms (with the negative log-
likelihood as cost function), one for each spin; see sec-
tion 5.6 in [7]. It is faster than Boltzmann learning
for the equilibrium case, because evaluating the second
term does not require Monte Carlo runs. However, it is
still slow for large systems. Therefore, faster algorithms
would be useful.

In what follows, we derive fast inversion formulae,
based on dynamical MF and TAP equations, that would
be exact for N → ∞ and infinite data. We also quantify
the performance of the algorithms outside these limits.

Inverse MF and TAP.— For simplicity, we consider
first the stationary case, for which the sequence index
r is superfluous. This is because in this case averaging
over time and repeats would be equivalent. We start with
the maximum likelihood conditions (3) with δhi and δJij
equal to zero. Assume first that the magnetizations mi =
〈si〉 satisfy the MF equationsmi = tanh(hi+

∑

j J
MF
ik mk)

. We write the si that occur in Eqn. (3) as mi + δsi
and expand the tanh in the δsi. The zeroth-order terms
vanish, and the bilinear terms give

〈δsi(t+1)δsj(t)〉 = (1−m2
i )

∑

k

JMF
ik 〈δsk(t)δsj(t)〉. (4)

Defining matrices Dij = 〈δsi(t + 1)δsj(t)〉 (the one-step
delayed correlation matrix), Cij = 〈δsi(t)δsj(t)〉 (the
equal-time correlation matrix) and Aij = (1 − m2

i )δij ,
(4) can be solved to give JMF = A−1DC−1. This is our
MF inversion formula.

To get the TAP inversion formula, we start instead
by assuming that the mi satisfy the TAP equations
mi = tanh[hi +

∑

k J
TAP
ik mk −mi

∑

k(J
TAP)2ik(1−m2

k)].
These equations improve over the MF ones by taking
into account the Onsager reaction field. It was proved
by Kappen and Spanjers [8] that the TAP equations, al-
though usually derived for the equilibrium (symmetric-
J) SK model, also hold for the asynchronously updated,
asymmetric-J model in a stationary state. We have veri-
fied that they are also valid in our synchronously-updated
model [9]. We again write si = mi + δsi, expand-
ing the tanh to third order in powers of

∑

k J
TAP
ik δsk +

mi

∑

k(J
TAP)2ik(1 −m2

k). Keeping terms up to order g3

leads to D = ATAPJTAPC , where

ATAP
ij = δij(1−m2

i )[1− (1−m2
i )

∑

l

(JTAP)2il(1−m2
l )].

These equations cannot be solved directly as in the MF
case because ATAP depends on JTAP. However, one
can derive a cubic equation for the quantities Fi =
(1−m2

i )
∑

l(J
TAP)2il(1−m2

l ):

Fi(1− F 2
i ) = (1−m2

i )
∑

j

(JMF)2ij(1−m2
j ). (5)

This determines ATAP
ii = (1 − m2

i )(1 − Fi), so we can
evaluate JTAP

ij = JMF
ij /(1 − Fi). The physically relevant

root of Eqn. (5) can not exceed 2/(3
√
3), restricting this

technique to weak correlations.
For both MF and TAP reconstruction, the fields hi can

be found by solving the respective magnetization equa-
tions after the Jij have been obtained, just as in the
equilibrium problem [5].

Performance of the algorithms.— We have veri-
fied that the algorithm (3) recovers the couplings of an
asymmetric SK model exactly in the limit of infinite data
(L → ∞) for a wide range of coupling strengths g, ex-
ternal fields and system sizes. The mean square error,
εexact, is in general proportional to 1/L, and in the weak-
coupling limit a quadratic expansion of Eqn. (2) yields

εexact = δJ2
ij ≡ (Jij − J0

ij)
2 =

1

(1−m2
i )L

, (6)

where J0
ij are the true couplings and Jij are those found

by the algorithm.
We find that the MF algorithm leads to an error, εMF,

of the form εexact + ε∞MF, where ε∞MF is independent of L
and proportional to 1/N . Thus, for data sets of length
much smaller than L∗ = 1/ε∞MF ∝ N , MF does almost as
well as the exact algorithm, and, furthermore, the larger
the network, the better MF does. The errors for the exact
and MF algorithms are plotted as functions of L in Fig.
1a.

For weak coupling, we can calculate the asymptotic
MF error, ε∞MF, analytically as follows. We present the
zero-field case here for simplicity. We expand the tanh in
the maximum-likelihood equation to third order, giving

Din =
∑
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Jik〈sksn〉 − 1
3

∑

klm

JikJilJim〈skslsmsn〉+ · · · .

(7)
Correlations here are at equal times, except forDin. The
dominant contributions in the sum over k, l, and m are
those with k = l, l = m and m = k. Multiplying on the
right by (C−1)nj , summing over n and using Eqn. (4) for
JMF, we get

JMF
ij = Jij −

∑

k

J2
ikJij , (8)

2

δhi = ηh
∂L
∂hi

and δJij = ηJ
∂L
∂Jij

, that is

δhi(t) = ηh
{

〈si(t+ 1)〉r − 〈tanh[hi(t) +
∑

k

Jiksk(t))]〉r]
}

(3a)

δJij = ηJ
{

〈si(t+ 1)sj(t)〉

− 〈tanh[hi(t) +
∑

k

Jiksk(t)]sj(t)〉
}

, (3b)

where ηh and ηJ are learning rates. Here and in what
follows 〈· · · 〉r, 〈· · · 〉t, 〈· · · 〉 represent averaging over re-
peats, time, and both repeats and time, respectively. An
overline, instead, indicates averaging over the spins.

The algorithm Eqn. (3) is effectively N independent
stochastic delta-rule algorithms (with the negative log-
likelihood as cost function), one for each spin; see sec-
tion 5.6 in [7]. It is faster than Boltzmann learning
for the equilibrium case, because evaluating the second
term does not require Monte Carlo runs. However, it is
still slow for large systems. Therefore, faster algorithms
would be useful.

In what follows, we derive fast inversion formulae,
based on dynamical MF and TAP equations, that would
be exact for N → ∞ and infinite data. We also quantify
the performance of the algorithms outside these limits.

Inverse MF and TAP.— For simplicity, we consider
first the stationary case, for which the sequence index
r is superfluous. This is because in this case averaging
over time and repeats would be equivalent. We start with
the maximum likelihood conditions (3) with δhi and δJij
equal to zero. Assume first that the magnetizations mi =
〈si〉 satisfy the MF equationsmi = tanh(hi+

∑

j J
MF
ik mk)

. We write the si that occur in Eqn. (3) as mi + δsi
and expand the tanh in the δsi. The zeroth-order terms
vanish, and the bilinear terms give

〈δsi(t+1)δsj(t)〉 = (1−m2
i )

∑

k

JMF
ik 〈δsk(t)δsj(t)〉. (4)

Defining matrices Dij = 〈δsi(t + 1)δsj(t)〉 (the one-step
delayed correlation matrix), Cij = 〈δsi(t)δsj(t)〉 (the
equal-time correlation matrix) and Aij = (1 − m2

i )δij ,
(4) can be solved to give JMF = A−1DC−1. This is our
MF inversion formula.

To get the TAP inversion formula, we start instead
by assuming that the mi satisfy the TAP equations
mi = tanh[hi +

∑

k J
TAP
ik mk −mi

∑

k(J
TAP)2ik(1−m2

k)].
These equations improve over the MF ones by taking
into account the Onsager reaction field. It was proved
by Kappen and Spanjers [8] that the TAP equations, al-
though usually derived for the equilibrium (symmetric-
J) SK model, also hold for the asynchronously updated,
asymmetric-J model in a stationary state. We have veri-
fied that they are also valid in our synchronously-updated
model [9]. We again write si = mi + δsi, expand-
ing the tanh to third order in powers of

∑

k J
TAP
ik δsk +

mi

∑

k(J
TAP)2ik(1 −m2

k). Keeping terms up to order g3

leads to D = ATAPJTAPC , where

ATAP
ij = δij(1−m2

i )[1− (1−m2
i )

∑

l

(JTAP)2il(1−m2
l )].

These equations cannot be solved directly as in the MF
case because ATAP depends on JTAP. However, one
can derive a cubic equation for the quantities Fi =
(1−m2

i )
∑

l(J
TAP)2il(1−m2

l ):

Fi(1− F 2
i ) = (1−m2

i )
∑

j

(JMF)2ij(1−m2
j ). (5)

This determines ATAP
ii = (1 − m2

i )(1 − Fi), so we can
evaluate JTAP

ij = JMF
ij /(1 − Fi). The physically relevant

root of Eqn. (5) can not exceed 2/(3
√
3), restricting this

technique to weak correlations.
For both MF and TAP reconstruction, the fields hi can

be found by solving the respective magnetization equa-
tions after the Jij have been obtained, just as in the
equilibrium problem [5].

Performance of the algorithms.— We have veri-
fied that the algorithm (3) recovers the couplings of an
asymmetric SK model exactly in the limit of infinite data
(L → ∞) for a wide range of coupling strengths g, ex-
ternal fields and system sizes. The mean square error,
εexact, is in general proportional to 1/L, and in the weak-
coupling limit a quadratic expansion of Eqn. (2) yields

εexact = δJ2
ij ≡ (Jij − J0

ij)
2 =

1

(1−m2
i )L

, (6)

where J0
ij are the true couplings and Jij are those found

by the algorithm.
We find that the MF algorithm leads to an error, εMF,

of the form εexact + ε∞MF, where ε∞MF is independent of L
and proportional to 1/N . Thus, for data sets of length
much smaller than L∗ = 1/ε∞MF ∝ N , MF does almost as
well as the exact algorithm, and, furthermore, the larger
the network, the better MF does. The errors for the exact
and MF algorithms are plotted as functions of L in Fig.
1a.

For weak coupling, we can calculate the asymptotic
MF error, ε∞MF, analytically as follows. We present the
zero-field case here for simplicity. We expand the tanh in
the maximum-likelihood equation to third order, giving

Din =
∑

k

Jik〈sksn〉 − 1
3

∑

klm

JikJilJim〈skslsmsn〉+ · · · .

(7)
Correlations here are at equal times, except forDin. The
dominant contributions in the sum over k, l, and m are
those with k = l, l = m and m = k. Multiplying on the
right by (C−1)nj , summing over n and using Eqn. (4) for
JMF, we get

JMF
ij = Jij −

∑

k

J2
ikJij , (8)

2

δhi = ηh
∂L
∂hi

and δJij = ηJ
∂L
∂Jij

, that is

δhi(t) = ηh
{

〈si(t+ 1)〉r − 〈tanh[hi(t) +
∑

k

Jiksk(t))]〉r]
}

(3a)

δJij = ηJ
{

〈si(t+ 1)sj(t)〉

− 〈tanh[hi(t) +
∑

k

Jiksk(t)]sj(t)〉
}

, (3b)

where ηh and ηJ are learning rates. Here and in what
follows 〈· · · 〉r, 〈· · · 〉t, 〈· · · 〉 represent averaging over re-
peats, time, and both repeats and time, respectively. An
overline, instead, indicates averaging over the spins.

The algorithm Eqn. (3) is effectively N independent
stochastic delta-rule algorithms (with the negative log-
likelihood as cost function), one for each spin; see sec-
tion 5.6 in [7]. It is faster than Boltzmann learning
for the equilibrium case, because evaluating the second
term does not require Monte Carlo runs. However, it is
still slow for large systems. Therefore, faster algorithms
would be useful.

In what follows, we derive fast inversion formulae,
based on dynamical MF and TAP equations, that would
be exact for N → ∞ and infinite data. We also quantify
the performance of the algorithms outside these limits.

Inverse MF and TAP.— For simplicity, we consider
first the stationary case, for which the sequence index
r is superfluous. This is because in this case averaging
over time and repeats would be equivalent. We start with
the maximum likelihood conditions (3) with δhi and δJij
equal to zero. Assume first that the magnetizations mi =
〈si〉 satisfy the MF equationsmi = tanh(hi+

∑

j J
MF
ik mk)

. We write the si that occur in Eqn. (3) as mi + δsi
and expand the tanh in the δsi. The zeroth-order terms
vanish, and the bilinear terms give

〈δsi(t+1)δsj(t)〉 = (1−m2
i )

∑

k

JMF
ik 〈δsk(t)δsj(t)〉. (4)

Defining matrices Dij = 〈δsi(t + 1)δsj(t)〉 (the one-step
delayed correlation matrix), Cij = 〈δsi(t)δsj(t)〉 (the
equal-time correlation matrix) and Aij = (1 − m2

i )δij ,
(4) can be solved to give JMF = A−1DC−1. This is our
MF inversion formula.

To get the TAP inversion formula, we start instead
by assuming that the mi satisfy the TAP equations
mi = tanh[hi +

∑

k J
TAP
ik mk −mi

∑

k(J
TAP)2ik(1−m2

k)].
These equations improve over the MF ones by taking
into account the Onsager reaction field. It was proved
by Kappen and Spanjers [8] that the TAP equations, al-
though usually derived for the equilibrium (symmetric-
J) SK model, also hold for the asynchronously updated,
asymmetric-J model in a stationary state. We have veri-
fied that they are also valid in our synchronously-updated
model [9]. We again write si = mi + δsi, expand-
ing the tanh to third order in powers of

∑

k J
TAP
ik δsk +

mi

∑

k(J
TAP)2ik(1 −m2

k). Keeping terms up to order g3

leads to D = ATAPJTAPC , where

ATAP
ij = δij(1−m2

i )[1− (1−m2
i )

∑

l

(JTAP)2il(1−m2
l )].

These equations cannot be solved directly as in the MF
case because ATAP depends on JTAP. However, one
can derive a cubic equation for the quantities Fi =
(1−m2

i )
∑

l(J
TAP)2il(1−m2

l ):

Fi(1− F 2
i ) = (1−m2

i )
∑

j

(JMF)2ij(1−m2
j ). (5)

This determines ATAP
ii = (1 − m2

i )(1 − Fi), so we can
evaluate JTAP

ij = JMF
ij /(1 − Fi). The physically relevant

root of Eqn. (5) can not exceed 2/(3
√
3), restricting this

technique to weak correlations.
For both MF and TAP reconstruction, the fields hi can

be found by solving the respective magnetization equa-
tions after the Jij have been obtained, just as in the
equilibrium problem [5].

Performance of the algorithms.— We have veri-
fied that the algorithm (3) recovers the couplings of an
asymmetric SK model exactly in the limit of infinite data
(L → ∞) for a wide range of coupling strengths g, ex-
ternal fields and system sizes. The mean square error,
εexact, is in general proportional to 1/L, and in the weak-
coupling limit a quadratic expansion of Eqn. (2) yields

εexact = δJ2
ij ≡ (Jij − J0

ij)
2 =

1

(1−m2
i )L

, (6)

where J0
ij are the true couplings and Jij are those found

by the algorithm.
We find that the MF algorithm leads to an error, εMF,

of the form εexact + ε∞MF, where ε∞MF is independent of L
and proportional to 1/N . Thus, for data sets of length
much smaller than L∗ = 1/ε∞MF ∝ N , MF does almost as
well as the exact algorithm, and, furthermore, the larger
the network, the better MF does. The errors for the exact
and MF algorithms are plotted as functions of L in Fig.
1a.

For weak coupling, we can calculate the asymptotic
MF error, ε∞MF, analytically as follows. We present the
zero-field case here for simplicity. We expand the tanh in
the maximum-likelihood equation to third order, giving

Din =
∑

k

Jik〈sksn〉 − 1
3

∑

klm

JikJilJim〈skslsmsn〉+ · · · .

(7)
Correlations here are at equal times, except forDin. The
dominant contributions in the sum over k, l, and m are
those with k = l, l = m and m = k. Multiplying on the
right by (C−1)nj , summing over n and using Eqn. (4) for
JMF, we get

JMF
ij = Jij −

∑

k

J2
ikJij , (8)

2

δhi = ηh
∂L
∂hi

and δJij = ηJ
∂L
∂Jij

, that is

δhi(t) = ηh
{

〈si(t+ 1)〉r − 〈tanh[hi(t) +
∑

k

Jiksk(t))]〉r]
}

(3a)

δJij = ηJ
{

〈si(t+ 1)sj(t)〉

− 〈tanh[hi(t) +
∑

k

Jiksk(t)]sj(t)〉
}

, (3b)

where ηh and ηJ are learning rates. Here and in what
follows 〈· · · 〉r, 〈· · · 〉t, 〈· · · 〉 represent averaging over re-
peats, time, and both repeats and time, respectively. An
overline, instead, indicates averaging over the spins.

The algorithm Eqn. (3) is effectively N independent
stochastic delta-rule algorithms (with the negative log-
likelihood as cost function), one for each spin; see sec-
tion 5.6 in [7]. It is faster than Boltzmann learning
for the equilibrium case, because evaluating the second
term does not require Monte Carlo runs. However, it is
still slow for large systems. Therefore, faster algorithms
would be useful.

In what follows, we derive fast inversion formulae,
based on dynamical MF and TAP equations, that would
be exact for N → ∞ and infinite data. We also quantify
the performance of the algorithms outside these limits.

Inverse MF and TAP.— For simplicity, we consider
first the stationary case, for which the sequence index
r is superfluous. This is because in this case averaging
over time and repeats would be equivalent. We start with
the maximum likelihood conditions (3) with δhi and δJij
equal to zero. Assume first that the magnetizations mi =
〈si〉 satisfy the MF equationsmi = tanh(hi+

∑

j J
MF
ik mk)

. We write the si that occur in Eqn. (3) as mi + δsi
and expand the tanh in the δsi. The zeroth-order terms
vanish, and the bilinear terms give

〈δsi(t+1)δsj(t)〉 = (1−m2
i )

∑

k

JMF
ik 〈δsk(t)δsj(t)〉. (4)

Defining matrices Dij = 〈δsi(t + 1)δsj(t)〉 (the one-step
delayed correlation matrix), Cij = 〈δsi(t)δsj(t)〉 (the
equal-time correlation matrix) and Aij = (1 − m2

i )δij ,
(4) can be solved to give JMF = A−1DC−1. This is our
MF inversion formula.

To get the TAP inversion formula, we start instead
by assuming that the mi satisfy the TAP equations
mi = tanh[hi +

∑

k J
TAP
ik mk −mi

∑

k(J
TAP)2ik(1−m2

k)].
These equations improve over the MF ones by taking
into account the Onsager reaction field. It was proved
by Kappen and Spanjers [8] that the TAP equations, al-
though usually derived for the equilibrium (symmetric-
J) SK model, also hold for the asynchronously updated,
asymmetric-J model in a stationary state. We have veri-
fied that they are also valid in our synchronously-updated
model [9]. We again write si = mi + δsi, expand-
ing the tanh to third order in powers of

∑

k J
TAP
ik δsk +

mi

∑

k(J
TAP)2ik(1 −m2

k). Keeping terms up to order g3

leads to D = ATAPJTAPC , where

ATAP
ij = δij(1−m2

i )[1− (1−m2
i )

∑

l

(JTAP)2il(1−m2
l )].

These equations cannot be solved directly as in the MF
case because ATAP depends on JTAP. However, one
can derive a cubic equation for the quantities Fi =
(1−m2

i )
∑

l(J
TAP)2il(1−m2

l ):

Fi(1− F 2
i ) = (1−m2

i )
∑

j

(JMF)2ij(1−m2
j ). (5)

This determines ATAP
ii = (1 − m2

i )(1 − Fi), so we can
evaluate JTAP

ij = JMF
ij /(1 − Fi). The physically relevant

root of Eqn. (5) can not exceed 2/(3
√
3), restricting this

technique to weak correlations.
For both MF and TAP reconstruction, the fields hi can

be found by solving the respective magnetization equa-
tions after the Jij have been obtained, just as in the
equilibrium problem [5].

Performance of the algorithms.— We have veri-
fied that the algorithm (3) recovers the couplings of an
asymmetric SK model exactly in the limit of infinite data
(L → ∞) for a wide range of coupling strengths g, ex-
ternal fields and system sizes. The mean square error,
εexact, is in general proportional to 1/L, and in the weak-
coupling limit a quadratic expansion of Eqn. (2) yields

εexact = δJ2
ij ≡ (Jij − J0

ij)
2 =

1

(1−m2
i )L

, (6)

where J0
ij are the true couplings and Jij are those found

by the algorithm.
We find that the MF algorithm leads to an error, εMF,

of the form εexact + ε∞MF, where ε∞MF is independent of L
and proportional to 1/N . Thus, for data sets of length
much smaller than L∗ = 1/ε∞MF ∝ N , MF does almost as
well as the exact algorithm, and, furthermore, the larger
the network, the better MF does. The errors for the exact
and MF algorithms are plotted as functions of L in Fig.
1a.

For weak coupling, we can calculate the asymptotic
MF error, ε∞MF, analytically as follows. We present the
zero-field case here for simplicity. We expand the tanh in
the maximum-likelihood equation to third order, giving

Din =
∑

k

Jik〈sksn〉 − 1
3

∑

klm

JikJilJim〈skslsmsn〉+ · · · .

(7)
Correlations here are at equal times, except forDin. The
dominant contributions in the sum over k, l, and m are
those with k = l, l = m and m = k. Multiplying on the
right by (C−1)nj , summing over n and using Eqn. (4) for
JMF, we get

JMF
ij = Jij −

∑

k

J2
ikJij , (8)

€ 

Si = mi + δSi

2

δhi = ηh
∂L
∂hi

and δJij = ηJ
∂L
∂Jij

, that is

δhi(t) = ηh
{

〈si(t+ 1)〉r − 〈tanh[hi(t) +
∑

k

Jiksk(t))]〉r]
}

(3a)

δJij = ηJ
{

〈si(t+ 1)sj(t)〉

− 〈tanh[hi(t) +
∑

k

Jiksk(t)]sj(t)〉
}

, (3b)

where ηh and ηJ are learning rates. Here and in what
follows 〈· · · 〉r, 〈· · · 〉t, 〈· · · 〉 represent averaging over re-
peats, time, and both repeats and time, respectively. An
overline, instead, indicates averaging over the spins.

The algorithm Eqn. (3) is effectively N independent
stochastic delta-rule algorithms (with the negative log-
likelihood as cost function), one for each spin; see sec-
tion 5.6 in [7]. It is faster than Boltzmann learning
for the equilibrium case, because evaluating the second
term does not require Monte Carlo runs. However, it is
still slow for large systems. Therefore, faster algorithms
would be useful.

In what follows, we derive fast inversion formulae,
based on dynamical MF and TAP equations, that would
be exact for N → ∞ and infinite data. We also quantify
the performance of the algorithms outside these limits.

Inverse MF and TAP.— For simplicity, we consider
first the stationary case, for which the sequence index
r is superfluous. This is because in this case averaging
over time and repeats would be equivalent. We start with
the maximum likelihood conditions (3) with δhi and δJij
equal to zero. Assume first that the magnetizations mi =
〈si〉 satisfy the MF equationsmi = tanh(hi+

∑

j J
MF
ik mk)

. We write the si that occur in Eqn. (3) as mi + δsi
and expand the tanh in the δsi. The zeroth-order terms
vanish, and the bilinear terms give

〈δsi(t+1)δsj(t)〉 = (1−m2
i )

∑

k

JMF
ik 〈δsk(t)δsj(t)〉. (4)

Defining matrices Dij = 〈δsi(t + 1)δsj(t)〉 (the one-step
delayed correlation matrix), Cij = 〈δsi(t)δsj(t)〉 (the
equal-time correlation matrix) and Aij = (1 − m2

i )δij ,
(4) can be solved to give JMF = A−1DC−1. This is our
MF inversion formula.

To get the TAP inversion formula, we start instead
by assuming that the mi satisfy the TAP equations
mi = tanh[hi +

∑

k J
TAP
ik mk −mi

∑

k(J
TAP)2ik(1−m2

k)].
These equations improve over the MF ones by taking
into account the Onsager reaction field. It was proved
by Kappen and Spanjers [8] that the TAP equations, al-
though usually derived for the equilibrium (symmetric-
J) SK model, also hold for the asynchronously updated,
asymmetric-J model in a stationary state. We have veri-
fied that they are also valid in our synchronously-updated
model [9]. We again write si = mi + δsi, expand-
ing the tanh to third order in powers of

∑

k J
TAP
ik δsk +

mi

∑

k(J
TAP)2ik(1 −m2

k). Keeping terms up to order g3

leads to D = ATAPJTAPC , where

ATAP
ij = δij(1−m2

i )[1− (1−m2
i )

∑

l

(JTAP)2il(1−m2
l )].

These equations cannot be solved directly as in the MF
case because ATAP depends on JTAP. However, one
can derive a cubic equation for the quantities Fi =
(1−m2

i )
∑

l(J
TAP)2il(1−m2

l ):

Fi(1− F 2
i ) = (1−m2

i )
∑

j

(JMF)2ij(1−m2
j ). (5)

This determines ATAP
ii = (1 − m2

i )(1 − Fi), so we can
evaluate JTAP

ij = JMF
ij /(1 − Fi). The physically relevant

root of Eqn. (5) can not exceed 2/(3
√
3), restricting this

technique to weak correlations.
For both MF and TAP reconstruction, the fields hi can

be found by solving the respective magnetization equa-
tions after the Jij have been obtained, just as in the
equilibrium problem [5].

Performance of the algorithms.— We have veri-
fied that the algorithm (3) recovers the couplings of an
asymmetric SK model exactly in the limit of infinite data
(L → ∞) for a wide range of coupling strengths g, ex-
ternal fields and system sizes. The mean square error,
εexact, is in general proportional to 1/L, and in the weak-
coupling limit a quadratic expansion of Eqn. (2) yields

εexact = δJ2
ij ≡ (Jij − J0

ij)
2 =

1

(1−m2
i )L

, (6)

where J0
ij are the true couplings and Jij are those found

by the algorithm.
We find that the MF algorithm leads to an error, εMF,

of the form εexact + ε∞MF, where ε∞MF is independent of L
and proportional to 1/N . Thus, for data sets of length
much smaller than L∗ = 1/ε∞MF ∝ N , MF does almost as
well as the exact algorithm, and, furthermore, the larger
the network, the better MF does. The errors for the exact
and MF algorithms are plotted as functions of L in Fig.
1a.

For weak coupling, we can calculate the asymptotic
MF error, ε∞MF, analytically as follows. We present the
zero-field case here for simplicity. We expand the tanh in
the maximum-likelihood equation to third order, giving

Din =
∑

k

Jik〈sksn〉 − 1
3

∑

klm

JikJilJim〈skslsmsn〉+ · · · .

(7)
Correlations here are at equal times, except forDin. The
dominant contributions in the sum over k, l, and m are
those with k = l, l = m and m = k. Multiplying on the
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JMF, we get
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J2
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∂L
∂Jij
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k

Jiksk(t)]sj(t)〉
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, (3b)

where ηh and ηJ are learning rates. Here and in what
follows 〈· · · 〉r, 〈· · · 〉t, 〈· · · 〉 represent averaging over re-
peats, time, and both repeats and time, respectively. An
overline, instead, indicates averaging over the spins.

The algorithm Eqn. (3) is effectively N independent
stochastic delta-rule algorithms (with the negative log-
likelihood as cost function), one for each spin; see sec-
tion 5.6 in [7]. It is faster than Boltzmann learning
for the equilibrium case, because evaluating the second
term does not require Monte Carlo runs. However, it is
still slow for large systems. Therefore, faster algorithms
would be useful.

In what follows, we derive fast inversion formulae,
based on dynamical MF and TAP equations, that would
be exact for N → ∞ and infinite data. We also quantify
the performance of the algorithms outside these limits.

Inverse MF and TAP.— For simplicity, we consider
first the stationary case, for which the sequence index
r is superfluous. This is because in this case averaging
over time and repeats would be equivalent. We start with
the maximum likelihood conditions (3) with δhi and δJij
equal to zero. Assume first that the magnetizations mi =
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(4) can be solved to give JMF = A−1DC−1. This is our
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by assuming that the mi satisfy the TAP equations
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∑

k J
TAP
ik mk −mi

∑

k(J
TAP)2ik(1−m2

k)].
These equations improve over the MF ones by taking
into account the Onsager reaction field. It was proved
by Kappen and Spanjers [8] that the TAP equations, al-
though usually derived for the equilibrium (symmetric-
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evaluate JTAP
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root of Eqn. (5) can not exceed 2/(3
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3), restricting this
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For both MF and TAP reconstruction, the fields hi can

be found by solving the respective magnetization equa-
tions after the Jij have been obtained, just as in the
equilibrium problem [5].

Performance of the algorithms.— We have veri-
fied that the algorithm (3) recovers the couplings of an
asymmetric SK model exactly in the limit of infinite data
(L → ∞) for a wide range of coupling strengths g, ex-
ternal fields and system sizes. The mean square error,
εexact, is in general proportional to 1/L, and in the weak-
coupling limit a quadratic expansion of Eqn. (2) yields

εexact = δJ2
ij ≡ (Jij − J0
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2 =
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where J0
ij are the true couplings and Jij are those found

by the algorithm.
We find that the MF algorithm leads to an error, εMF,

of the form εexact + ε∞MF, where ε∞MF is independent of L
and proportional to 1/N . Thus, for data sets of length
much smaller than L∗ = 1/ε∞MF ∝ N , MF does almost as
well as the exact algorithm, and, furthermore, the larger
the network, the better MF does. The errors for the exact
and MF algorithms are plotted as functions of L in Fig.
1a.

For weak coupling, we can calculate the asymptotic
MF error, ε∞MF, analytically as follows. We present the
zero-field case here for simplicity. We expand the tanh in
the maximum-likelihood equation to third order, giving
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Correlations here are at equal times, except forDin. The
dominant contributions in the sum over k, l, and m are
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right by (C−1)nj , summing over n and using Eqn. (4) for
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where ηh and ηJ are learning rates. Here and in what
follows 〈· · · 〉r, 〈· · · 〉t, 〈· · · 〉 represent averaging over re-
peats, time, and both repeats and time, respectively. An
overline, instead, indicates averaging over the spins.

The algorithm Eqn. (3) is effectively N independent
stochastic delta-rule algorithms (with the negative log-
likelihood as cost function), one for each spin; see sec-
tion 5.6 in [7]. It is faster than Boltzmann learning
for the equilibrium case, because evaluating the second
term does not require Monte Carlo runs. However, it is
still slow for large systems. Therefore, faster algorithms
would be useful.

In what follows, we derive fast inversion formulae,
based on dynamical MF and TAP equations, that would
be exact for N → ∞ and infinite data. We also quantify
the performance of the algorithms outside these limits.

Inverse MF and TAP.— For simplicity, we consider
first the stationary case, for which the sequence index
r is superfluous. This is because in this case averaging
over time and repeats would be equivalent. We start with
the maximum likelihood conditions (3) with δhi and δJij
equal to zero. Assume first that the magnetizations mi =
〈si〉 satisfy the MF equationsmi = tanh(hi+
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ik mk)

. We write the si that occur in Eqn. (3) as mi + δsi
and expand the tanh in the δsi. The zeroth-order terms
vanish, and the bilinear terms give
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Defining matrices Dij = 〈δsi(t + 1)δsj(t)〉 (the one-step
delayed correlation matrix), Cij = 〈δsi(t)δsj(t)〉 (the
equal-time correlation matrix) and Aij = (1 − m2

i )δij ,
(4) can be solved to give JMF = A−1DC−1. This is our
MF inversion formula.

To get the TAP inversion formula, we start instead
by assuming that the mi satisfy the TAP equations
mi = tanh[hi +

∑

k J
TAP
ik mk −mi

∑

k(J
TAP)2ik(1−m2

k)].
These equations improve over the MF ones by taking
into account the Onsager reaction field. It was proved
by Kappen and Spanjers [8] that the TAP equations, al-
though usually derived for the equilibrium (symmetric-
J) SK model, also hold for the asynchronously updated,
asymmetric-J model in a stationary state. We have veri-
fied that they are also valid in our synchronously-updated
model [9]. We again write si = mi + δsi, expand-
ing the tanh to third order in powers of

∑

k J
TAP
ik δsk +
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leads to D = ATAPJTAPC , where
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These equations cannot be solved directly as in the MF
case because ATAP depends on JTAP. However, one
can derive a cubic equation for the quantities Fi =
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This determines ATAP
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evaluate JTAP
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ij /(1 − Fi). The physically relevant

root of Eqn. (5) can not exceed 2/(3
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3), restricting this

technique to weak correlations.
For both MF and TAP reconstruction, the fields hi can

be found by solving the respective magnetization equa-
tions after the Jij have been obtained, just as in the
equilibrium problem [5].

Performance of the algorithms.— We have veri-
fied that the algorithm (3) recovers the couplings of an
asymmetric SK model exactly in the limit of infinite data
(L → ∞) for a wide range of coupling strengths g, ex-
ternal fields and system sizes. The mean square error,
εexact, is in general proportional to 1/L, and in the weak-
coupling limit a quadratic expansion of Eqn. (2) yields

εexact = δJ2
ij ≡ (Jij − J0
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2 =
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(1−m2
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, (6)

where J0
ij are the true couplings and Jij are those found

by the algorithm.
We find that the MF algorithm leads to an error, εMF,

of the form εexact + ε∞MF, where ε∞MF is independent of L
and proportional to 1/N . Thus, for data sets of length
much smaller than L∗ = 1/ε∞MF ∝ N , MF does almost as
well as the exact algorithm, and, furthermore, the larger
the network, the better MF does. The errors for the exact
and MF algorithms are plotted as functions of L in Fig.
1a.

For weak coupling, we can calculate the asymptotic
MF error, ε∞MF, analytically as follows. We present the
zero-field case here for simplicity. We expand the tanh in
the maximum-likelihood equation to third order, giving

Din =
∑
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Correlations here are at equal times, except forDin. The
dominant contributions in the sum over k, l, and m are
those with k = l, l = m and m = k. Multiplying on the
right by (C−1)nj , summing over n and using Eqn. (4) for
JMF, we get
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follows 〈· · · 〉r, 〈· · · 〉t, 〈· · · 〉 represent averaging over re-
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likelihood as cost function), one for each spin; see sec-
tion 5.6 in [7]. It is faster than Boltzmann learning
for the equilibrium case, because evaluating the second
term does not require Monte Carlo runs. However, it is
still slow for large systems. Therefore, faster algorithms
would be useful.

In what follows, we derive fast inversion formulae,
based on dynamical MF and TAP equations, that would
be exact for N → ∞ and infinite data. We also quantify
the performance of the algorithms outside these limits.

Inverse MF and TAP.— For simplicity, we consider
first the stationary case, for which the sequence index
r is superfluous. This is because in this case averaging
over time and repeats would be equivalent. We start with
the maximum likelihood conditions (3) with δhi and δJij
equal to zero. Assume first that the magnetizations mi =
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equal-time correlation matrix) and Aij = (1 − m2
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(4) can be solved to give JMF = A−1DC−1. This is our
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To get the TAP inversion formula, we start instead
by assuming that the mi satisfy the TAP equations
mi = tanh[hi +
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TAP
ik mk −mi

∑

k(J
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k)].
These equations improve over the MF ones by taking
into account the Onsager reaction field. It was proved
by Kappen and Spanjers [8] that the TAP equations, al-
though usually derived for the equilibrium (symmetric-
J) SK model, also hold for the asynchronously updated,
asymmetric-J model in a stationary state. We have veri-
fied that they are also valid in our synchronously-updated
model [9]. We again write si = mi + δsi, expand-
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tions after the Jij have been obtained, just as in the
equilibrium problem [5].
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fied that the algorithm (3) recovers the couplings of an
asymmetric SK model exactly in the limit of infinite data
(L → ∞) for a wide range of coupling strengths g, ex-
ternal fields and system sizes. The mean square error,
εexact, is in general proportional to 1/L, and in the weak-
coupling limit a quadratic expansion of Eqn. (2) yields
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2 =
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where J0
ij are the true couplings and Jij are those found

by the algorithm.
We find that the MF algorithm leads to an error, εMF,

of the form εexact + ε∞MF, where ε∞MF is independent of L
and proportional to 1/N . Thus, for data sets of length
much smaller than L∗ = 1/ε∞MF ∝ N , MF does almost as
well as the exact algorithm, and, furthermore, the larger
the network, the better MF does. The errors for the exact
and MF algorithms are plotted as functions of L in Fig.
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MF error, ε∞MF, analytically as follows. We present the
zero-field case here for simplicity. We expand the tanh in
the maximum-likelihood equation to third order, giving
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FIG. 1. The quality of the exact algorithm, the MF approxi-
mation (a) and the TAP approximation (b), versus the length
of data L. Results are shown for g = 0.1 (blue stars), 0.12
(magenta crosses), 0.14 (red circles) and 0.16 (black x) and
all for N = 20. The solid lines are the theoretical predictions,
in the TAP case together with the finite size corrections.

with corrections of relative order 1/N . This yields the
TAP-approximation couplings found above, showing that
the TAP reconstruction indeed corrects the leading MF
errors. To leading order the sum on k is just g2, and the
asymptotic mean square MF error is

ε∞MF = (Jij − JMF
ij )2 =

g6

N
. (9)

The solid curves in Fig. 1a are 1/L + g6/N ; the fit is
evidently good.

Fig. 2 illustrates the systematic nature of the MF er-
rors in a scatter plot of the JMF

ij s against the true Jijs:
One can see that MF systematically underestimates the
magnitude of the couplings. The factor 1−Fi in the TAP
formula corrects for this to relative order g2.
The error using the TAP reconstruction is much lower

than that for the MF one and reaches its minimum at
much larger L: for N = 20 and the coupling strengths
we studied, we had to go to L > 109 to see the error flat-
ten; see Fig. 1b. To calculate the asymptotic reconstruc-
tion error for TAP, we can expand the tanh to 5th order
and proceed to evaluate the averages in the same way.
The MF error terms analyzed above are compensated
(for N → ∞) for by the TAP equations, leading to an
asymptotic ε∞TAP = 4g10/N . However, the errors found
by applying the TAP algorithm to a simulated network
of N = 20 (Fig. 1b) are much larger than this. We have
traced this discrepancy to a finite-size effect of relative
order 1/N2: In making that TAP correction, the term
in (7) with k = l = m has been counted three times in
obtaining (8) instead of once. The resulting mean square

error is (2/3)2J6
ij = (20g6)/(3N3). These corrections will

be negligible relative to the asymptotic g10/N term only
for N $ 1/g2, which is not generally satisfied for the
weak coupling strengths used in our simulations. Taking
into account this finite size correction, we can predict the
TAP error reasonably well, as shown in Fig. 1b.

Non-stationary case.— The magnetizations,
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FIG. 2. The systematic nature of MF and TAP errors. We
show the couplings inferred using MF (black dots) and TAP
(red squares) vs the true ones for a network of N = 20 with
g = 0.35 using (a) L = 104 and (b) L = 106 samples.

mi(t) = 〈sri (t)〉r, are now time-dependent and, for MF,
solve

mi(t+ 1) = tanh[hi(t) +
∑

j

JMF
ij mj(t)]. (10)

We have also proved [9] that the TAP equations hold
even in a nonstationary state, in the form

mi(t+ 1) = tanh[hi(t) +
∑

j

JTAP
ij mj(t)

− mi(t+ 1)
∑

j

(JTAP)2ij(1−m2
j (t))]. (11)

Thus, we can extend both our inversion algorithms to
nonstationary systems, as we show in the following.

We start by defining time-dependent correlation ma-
trices Dij(t) ≡ 〈δsri (t + 1)δsrj(t)〉r and Cij(t) ≡
〈δsri (t)δsrj(t)〉r. For MF, using the same procedure that
lead to Eqn. (4), we find

〈Dij(t)〉t =
∑

k

JMF
ik 〈(1−m2

i (t+ 1))Ckj(t)〉t. (12)

One can still solve for J by simple matrix algebra:

JMF
ij =

∑

k

〈Dik(t)〉t[(B(i))−1]kj , (13)

where B(i)
kj = 〈(1 − m2

i (t + 1))Ckj(t)〉t. The problem is
more complex than the stationary one only because one
has to invert a different matrix B(i) for each i.
For TAP, analogously to the stationary case, the B(i)

acquire an extra factor inside the time average:

B(i)
kj = 〈(1−m2

i (t+ 1))(1− Fi(t))Ckj(t)〉t, (14a)

Fi(t) = (1−m2
i (t+ 1))

∑

l

(JTAP)2il(1−m2
l (t)). (14b)

Exact TAP inversion requires iterative solution of Eqn.
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after the learning is converged

2
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∂hi

and δJij = ηJ
∂L
∂Jij

, that is

δhi(t) = ηh
{

〈si(t+ 1)〉r − 〈tanh[hi(t) +
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k

Jiksk(t))]〉r]
}

(3a)

δJij = ηJ
{

〈si(t+ 1)sj(t)〉

− 〈tanh[hi(t) +
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k

Jiksk(t)]sj(t)〉
}

, (3b)

where ηh and ηJ are learning rates. Here and in what
follows 〈· · · 〉r, 〈· · · 〉t, 〈· · · 〉 represent averaging over re-
peats, time, and both repeats and time, respectively. An
overline, instead, indicates averaging over the spins.

The algorithm Eqn. (3) is effectively N independent
stochastic delta-rule algorithms (with the negative log-
likelihood as cost function), one for each spin; see sec-
tion 5.6 in [7]. It is faster than Boltzmann learning
for the equilibrium case, because evaluating the second
term does not require Monte Carlo runs. However, it is
still slow for large systems. Therefore, faster algorithms
would be useful.

In what follows, we derive fast inversion formulae,
based on dynamical MF and TAP equations, that would
be exact for N → ∞ and infinite data. We also quantify
the performance of the algorithms outside these limits.

Inverse MF and TAP.— For simplicity, we consider
first the stationary case, for which the sequence index
r is superfluous. This is because in this case averaging
over time and repeats would be equivalent. We start with
the maximum likelihood conditions (3) with δhi and δJij
equal to zero. Assume first that the magnetizations mi =
〈si〉 satisfy the MF equationsmi = tanh(hi+

∑

j J
MF
ik mk)

. We write the si that occur in Eqn. (3) as mi + δsi
and expand the tanh in the δsi. The zeroth-order terms
vanish, and the bilinear terms give

〈δsi(t+1)δsj(t)〉 = (1−m2
i )

∑

k

JMF
ik 〈δsk(t)δsj(t)〉. (4)

Defining matrices Dij = 〈δsi(t + 1)δsj(t)〉 (the one-step
delayed correlation matrix), Cij = 〈δsi(t)δsj(t)〉 (the
equal-time correlation matrix) and Aij = (1 − m2

i )δij ,
(4) can be solved to give JMF = A−1DC−1. This is our
MF inversion formula.

To get the TAP inversion formula, we start instead
by assuming that the mi satisfy the TAP equations
mi = tanh[hi +

∑

k J
TAP
ik mk −mi

∑

k(J
TAP)2ik(1−m2

k)].
These equations improve over the MF ones by taking
into account the Onsager reaction field. It was proved
by Kappen and Spanjers [8] that the TAP equations, al-
though usually derived for the equilibrium (symmetric-
J) SK model, also hold for the asynchronously updated,
asymmetric-J model in a stationary state. We have veri-
fied that they are also valid in our synchronously-updated
model [9]. We again write si = mi + δsi, expand-
ing the tanh to third order in powers of

∑

k J
TAP
ik δsk +

mi

∑

k(J
TAP)2ik(1 −m2

k). Keeping terms up to order g3

leads to D = ATAPJTAPC , where

ATAP
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i )[1− (1−m2
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(JTAP)2il(1−m2
l )].

These equations cannot be solved directly as in the MF
case because ATAP depends on JTAP. However, one
can derive a cubic equation for the quantities Fi =
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i )
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l(J
TAP)2il(1−m2

l ):

Fi(1− F 2
i ) = (1−m2

i )
∑

j

(JMF)2ij(1−m2
j ). (5)

This determines ATAP
ii = (1 − m2

i )(1 − Fi), so we can
evaluate JTAP

ij = JMF
ij /(1 − Fi). The physically relevant

root of Eqn. (5) can not exceed 2/(3
√
3), restricting this

technique to weak correlations.
For both MF and TAP reconstruction, the fields hi can

be found by solving the respective magnetization equa-
tions after the Jij have been obtained, just as in the
equilibrium problem [5].

Performance of the algorithms.— We have veri-
fied that the algorithm (3) recovers the couplings of an
asymmetric SK model exactly in the limit of infinite data
(L → ∞) for a wide range of coupling strengths g, ex-
ternal fields and system sizes. The mean square error,
εexact, is in general proportional to 1/L, and in the weak-
coupling limit a quadratic expansion of Eqn. (2) yields

εexact = δJ2
ij ≡ (Jij − J0

ij)
2 =

1

(1−m2
i )L

, (6)

where J0
ij are the true couplings and Jij are those found

by the algorithm.
We find that the MF algorithm leads to an error, εMF,

of the form εexact + ε∞MF, where ε∞MF is independent of L
and proportional to 1/N . Thus, for data sets of length
much smaller than L∗ = 1/ε∞MF ∝ N , MF does almost as
well as the exact algorithm, and, furthermore, the larger
the network, the better MF does. The errors for the exact
and MF algorithms are plotted as functions of L in Fig.
1a.

For weak coupling, we can calculate the asymptotic
MF error, ε∞MF, analytically as follows. We present the
zero-field case here for simplicity. We expand the tanh in
the maximum-likelihood equation to third order, giving

Din =
∑
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3

∑
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JikJilJim〈skslsmsn〉+ · · · .

(7)
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dominant contributions in the sum over k, l, and m are
those with k = l, l = m and m = k. Multiplying on the
right by (C−1)nj , summing over n and using Eqn. (4) for
JMF, we get

JMF
ij = Jij −
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J2
ikJij , (8)
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for the equilibrium case, because evaluating the second
term does not require Monte Carlo runs. However, it is
still slow for large systems. Therefore, faster algorithms
would be useful.

In what follows, we derive fast inversion formulae,
based on dynamical MF and TAP equations, that would
be exact for N → ∞ and infinite data. We also quantify
the performance of the algorithms outside these limits.

Inverse MF and TAP.— For simplicity, we consider
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the maximum likelihood conditions (3) with δhi and δJij
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and proportional to 1/N . Thus, for data sets of length
much smaller than L∗ = 1/ε∞MF ∝ N , MF does almost as
well as the exact algorithm, and, furthermore, the larger
the network, the better MF does. The errors for the exact
and MF algorithms are plotted as functions of L in Fig.
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MF error, ε∞MF, analytically as follows. We present the
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likelihood as cost function), one for each spin; see sec-
tion 5.6 in [7]. It is faster than Boltzmann learning
for the equilibrium case, because evaluating the second
term does not require Monte Carlo runs. However, it is
still slow for large systems. Therefore, faster algorithms
would be useful.

In what follows, we derive fast inversion formulae,
based on dynamical MF and TAP equations, that would
be exact for N → ∞ and infinite data. We also quantify
the performance of the algorithms outside these limits.

Inverse MF and TAP.— For simplicity, we consider
first the stationary case, for which the sequence index
r is superfluous. This is because in this case averaging
over time and repeats would be equivalent. We start with
the maximum likelihood conditions (3) with δhi and δJij
equal to zero. Assume first that the magnetizations mi =
〈si〉 satisfy the MF equationsmi = tanh(hi+
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. We write the si that occur in Eqn. (3) as mi + δsi
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vanish, and the bilinear terms give
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delayed correlation matrix), Cij = 〈δsi(t)δsj(t)〉 (the
equal-time correlation matrix) and Aij = (1 − m2

i )δij ,
(4) can be solved to give JMF = A−1DC−1. This is our
MF inversion formula.

To get the TAP inversion formula, we start instead
by assuming that the mi satisfy the TAP equations
mi = tanh[hi +
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TAP
ik mk −mi
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k)].
These equations improve over the MF ones by taking
into account the Onsager reaction field. It was proved
by Kappen and Spanjers [8] that the TAP equations, al-
though usually derived for the equilibrium (symmetric-
J) SK model, also hold for the asynchronously updated,
asymmetric-J model in a stationary state. We have veri-
fied that they are also valid in our synchronously-updated
model [9]. We again write si = mi + δsi, expand-
ing the tanh to third order in powers of
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evaluate JTAP
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root of Eqn. (5) can not exceed 2/(3
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3), restricting this

technique to weak correlations.
For both MF and TAP reconstruction, the fields hi can

be found by solving the respective magnetization equa-
tions after the Jij have been obtained, just as in the
equilibrium problem [5].

Performance of the algorithms.— We have veri-
fied that the algorithm (3) recovers the couplings of an
asymmetric SK model exactly in the limit of infinite data
(L → ∞) for a wide range of coupling strengths g, ex-
ternal fields and system sizes. The mean square error,
εexact, is in general proportional to 1/L, and in the weak-
coupling limit a quadratic expansion of Eqn. (2) yields
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ij ≡ (Jij − J0
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2 =
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(1−m2
i )L
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where J0
ij are the true couplings and Jij are those found

by the algorithm.
We find that the MF algorithm leads to an error, εMF,

of the form εexact + ε∞MF, where ε∞MF is independent of L
and proportional to 1/N . Thus, for data sets of length
much smaller than L∗ = 1/ε∞MF ∝ N , MF does almost as
well as the exact algorithm, and, furthermore, the larger
the network, the better MF does. The errors for the exact
and MF algorithms are plotted as functions of L in Fig.
1a.

For weak coupling, we can calculate the asymptotic
MF error, ε∞MF, analytically as follows. We present the
zero-field case here for simplicity. We expand the tanh in
the maximum-likelihood equation to third order, giving

Din =
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JMF, we get
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for the equilibrium case, because evaluating the second
term does not require Monte Carlo runs. However, it is
still slow for large systems. Therefore, faster algorithms
would be useful.

In what follows, we derive fast inversion formulae,
based on dynamical MF and TAP equations, that would
be exact for N → ∞ and infinite data. We also quantify
the performance of the algorithms outside these limits.

Inverse MF and TAP.— For simplicity, we consider
first the stationary case, for which the sequence index
r is superfluous. This is because in this case averaging
over time and repeats would be equivalent. We start with
the maximum likelihood conditions (3) with δhi and δJij
equal to zero. Assume first that the magnetizations mi =
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be exact for N → ∞ and infinite data. We also quantify
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Inverse MF and TAP.— For simplicity, we consider
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equal to zero. Assume first that the magnetizations mi =
〈si〉 satisfy the MF equationsmi = tanh(hi+
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delayed correlation matrix), Cij = 〈δsi(t)δsj(t)〉 (the
equal-time correlation matrix) and Aij = (1 − m2

i )δij ,
(4) can be solved to give JMF = A−1DC−1. This is our
MF inversion formula.

To get the TAP inversion formula, we start instead
by assuming that the mi satisfy the TAP equations
mi = tanh[hi +

∑

k J
TAP
ik mk −mi

∑

k(J
TAP)2ik(1−m2

k)].
These equations improve over the MF ones by taking
into account the Onsager reaction field. It was proved
by Kappen and Spanjers [8] that the TAP equations, al-
though usually derived for the equilibrium (symmetric-
J) SK model, also hold for the asynchronously updated,
asymmetric-J model in a stationary state. We have veri-
fied that they are also valid in our synchronously-updated
model [9]. We again write si = mi + δsi, expand-
ing the tanh to third order in powers of

∑
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TAP
ik δsk +

mi

∑

k(J
TAP)2ik(1 −m2

k). Keeping terms up to order g3

leads to D = ATAPJTAPC , where
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These equations cannot be solved directly as in the MF
case because ATAP depends on JTAP. However, one
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j ). (5)

This determines ATAP
ii = (1 − m2

i )(1 − Fi), so we can
evaluate JTAP

ij = JMF
ij /(1 − Fi). The physically relevant

root of Eqn. (5) can not exceed 2/(3
√
3), restricting this

technique to weak correlations.
For both MF and TAP reconstruction, the fields hi can

be found by solving the respective magnetization equa-
tions after the Jij have been obtained, just as in the
equilibrium problem [5].

Performance of the algorithms.— We have veri-
fied that the algorithm (3) recovers the couplings of an
asymmetric SK model exactly in the limit of infinite data
(L → ∞) for a wide range of coupling strengths g, ex-
ternal fields and system sizes. The mean square error,
εexact, is in general proportional to 1/L, and in the weak-
coupling limit a quadratic expansion of Eqn. (2) yields

εexact = δJ2
ij ≡ (Jij − J0

ij)
2 =

1

(1−m2
i )L

, (6)

where J0
ij are the true couplings and Jij are those found

by the algorithm.
We find that the MF algorithm leads to an error, εMF,

of the form εexact + ε∞MF, where ε∞MF is independent of L
and proportional to 1/N . Thus, for data sets of length
much smaller than L∗ = 1/ε∞MF ∝ N , MF does almost as
well as the exact algorithm, and, furthermore, the larger
the network, the better MF does. The errors for the exact
and MF algorithms are plotted as functions of L in Fig.
1a.

For weak coupling, we can calculate the asymptotic
MF error, ε∞MF, analytically as follows. We present the
zero-field case here for simplicity. We expand the tanh in
the maximum-likelihood equation to third order, giving
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The algorithm Eqn. (3) is effectively N independent
stochastic delta-rule algorithms (with the negative log-
likelihood as cost function), one for each spin; see sec-
tion 5.6 in [7]. It is faster than Boltzmann learning
for the equilibrium case, because evaluating the second
term does not require Monte Carlo runs. However, it is
still slow for large systems. Therefore, faster algorithms
would be useful.

In what follows, we derive fast inversion formulae,
based on dynamical MF and TAP equations, that would
be exact for N → ∞ and infinite data. We also quantify
the performance of the algorithms outside these limits.

Inverse MF and TAP.— For simplicity, we consider
first the stationary case, for which the sequence index
r is superfluous. This is because in this case averaging
over time and repeats would be equivalent. We start with
the maximum likelihood conditions (3) with δhi and δJij
equal to zero. Assume first that the magnetizations mi =
〈si〉 satisfy the MF equationsmi = tanh(hi+

∑

j J
MF
ik mk)

. We write the si that occur in Eqn. (3) as mi + δsi
and expand the tanh in the δsi. The zeroth-order terms
vanish, and the bilinear terms give

〈δsi(t+1)δsj(t)〉 = (1−m2
i )

∑

k

JMF
ik 〈δsk(t)δsj(t)〉. (4)

Defining matrices Dij = 〈δsi(t + 1)δsj(t)〉 (the one-step
delayed correlation matrix), Cij = 〈δsi(t)δsj(t)〉 (the
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into account the Onsager reaction field. It was proved
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though usually derived for the equilibrium (symmetric-
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asymmetric-J model in a stationary state. We have veri-
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evaluate JTAP
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root of Eqn. (5) can not exceed 2/(3
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3), restricting this

technique to weak correlations.
For both MF and TAP reconstruction, the fields hi can

be found by solving the respective magnetization equa-
tions after the Jij have been obtained, just as in the
equilibrium problem [5].

Performance of the algorithms.— We have veri-
fied that the algorithm (3) recovers the couplings of an
asymmetric SK model exactly in the limit of infinite data
(L → ∞) for a wide range of coupling strengths g, ex-
ternal fields and system sizes. The mean square error,
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coupling limit a quadratic expansion of Eqn. (2) yields
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We find that the MF algorithm leads to an error, εMF,

of the form εexact + ε∞MF, where ε∞MF is independent of L
and proportional to 1/N . Thus, for data sets of length
much smaller than L∗ = 1/ε∞MF ∝ N , MF does almost as
well as the exact algorithm, and, furthermore, the larger
the network, the better MF does. The errors for the exact
and MF algorithms are plotted as functions of L in Fig.
1a.
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zero-field case here for simplicity. We expand the tanh in
the maximum-likelihood equation to third order, giving
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still slow for large systems. Therefore, faster algorithms
would be useful.
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be exact for N → ∞ and infinite data. We also quantify
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Inverse MF and TAP.— For simplicity, we consider
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r is superfluous. This is because in this case averaging
over time and repeats would be equivalent. We start with
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equal to zero. Assume first that the magnetizations mi =
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delayed correlation matrix), Cij = 〈δsi(t)δsj(t)〉 (the
equal-time correlation matrix) and Aij = (1 − m2
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(4) can be solved to give JMF = A−1DC−1. This is our
MF inversion formula.

To get the TAP inversion formula, we start instead
by assuming that the mi satisfy the TAP equations
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k)].
These equations improve over the MF ones by taking
into account the Onsager reaction field. It was proved
by Kappen and Spanjers [8] that the TAP equations, al-
though usually derived for the equilibrium (symmetric-
J) SK model, also hold for the asynchronously updated,
asymmetric-J model in a stationary state. We have veri-
fied that they are also valid in our synchronously-updated
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3), restricting this
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be found by solving the respective magnetization equa-
tions after the Jij have been obtained, just as in the
equilibrium problem [5].

Performance of the algorithms.— We have veri-
fied that the algorithm (3) recovers the couplings of an
asymmetric SK model exactly in the limit of infinite data
(L → ∞) for a wide range of coupling strengths g, ex-
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We find that the MF algorithm leads to an error, εMF,

of the form εexact + ε∞MF, where ε∞MF is independent of L
and proportional to 1/N . Thus, for data sets of length
much smaller than L∗ = 1/ε∞MF ∝ N , MF does almost as
well as the exact algorithm, and, furthermore, the larger
the network, the better MF does. The errors for the exact
and MF algorithms are plotted as functions of L in Fig.
1a.

For weak coupling, we can calculate the asymptotic
MF error, ε∞MF, analytically as follows. We present the
zero-field case here for simplicity. We expand the tanh in
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peats, time, and both repeats and time, respectively. An
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tion 5.6 in [7]. It is faster than Boltzmann learning
for the equilibrium case, because evaluating the second
term does not require Monte Carlo runs. However, it is
still slow for large systems. Therefore, faster algorithms
would be useful.

In what follows, we derive fast inversion formulae,
based on dynamical MF and TAP equations, that would
be exact for N → ∞ and infinite data. We also quantify
the performance of the algorithms outside these limits.

Inverse MF and TAP.— For simplicity, we consider
first the stationary case, for which the sequence index
r is superfluous. This is because in this case averaging
over time and repeats would be equivalent. We start with
the maximum likelihood conditions (3) with δhi and δJij
equal to zero. Assume first that the magnetizations mi =
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equal-time correlation matrix) and Aij = (1 − m2
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(4) can be solved to give JMF = A−1DC−1. This is our
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To get the TAP inversion formula, we start instead
by assuming that the mi satisfy the TAP equations
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These equations improve over the MF ones by taking
into account the Onsager reaction field. It was proved
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J) SK model, also hold for the asynchronously updated,
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Performance of the algorithms.— We have veri-
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asymmetric SK model exactly in the limit of infinite data
(L → ∞) for a wide range of coupling strengths g, ex-
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ij are the true couplings and Jij are those found
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We find that the MF algorithm leads to an error, εMF,

of the form εexact + ε∞MF, where ε∞MF is independent of L
and proportional to 1/N . Thus, for data sets of length
much smaller than L∗ = 1/ε∞MF ∝ N , MF does almost as
well as the exact algorithm, and, furthermore, the larger
the network, the better MF does. The errors for the exact
and MF algorithms are plotted as functions of L in Fig.
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For weak coupling, we can calculate the asymptotic
MF error, ε∞MF, analytically as follows. We present the
zero-field case here for simplicity. We expand the tanh in
the maximum-likelihood equation to third order, giving
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likelihood as cost function), one for each spin; see sec-
tion 5.6 in [7]. It is faster than Boltzmann learning
for the equilibrium case, because evaluating the second
term does not require Monte Carlo runs. However, it is
still slow for large systems. Therefore, faster algorithms
would be useful.

In what follows, we derive fast inversion formulae,
based on dynamical MF and TAP equations, that would
be exact for N → ∞ and infinite data. We also quantify
the performance of the algorithms outside these limits.

Inverse MF and TAP.— For simplicity, we consider
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equal to zero. Assume first that the magnetizations mi =
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into account the Onsager reaction field. It was proved
by Kappen and Spanjers [8] that the TAP equations, al-
though usually derived for the equilibrium (symmetric-
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(L → ∞) for a wide range of coupling strengths g, ex-
ternal fields and system sizes. The mean square error,
εexact, is in general proportional to 1/L, and in the weak-
coupling limit a quadratic expansion of Eqn. (2) yields

εexact = δJ2
ij ≡ (Jij − J0
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2 =
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where J0
ij are the true couplings and Jij are those found

by the algorithm.
We find that the MF algorithm leads to an error, εMF,

of the form εexact + ε∞MF, where ε∞MF is independent of L
and proportional to 1/N . Thus, for data sets of length
much smaller than L∗ = 1/ε∞MF ∝ N , MF does almost as
well as the exact algorithm, and, furthermore, the larger
the network, the better MF does. The errors for the exact
and MF algorithms are plotted as functions of L in Fig.
1a.

For weak coupling, we can calculate the asymptotic
MF error, ε∞MF, analytically as follows. We present the
zero-field case here for simplicity. We expand the tanh in
the maximum-likelihood equation to third order, giving
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Correlations here are at equal times, except forDin. The
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those with k = l, l = m and m = k. Multiplying on the
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JMF, we get
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, that is
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where ηh and ηJ are learning rates. Here and in what
follows 〈· · · 〉r, 〈· · · 〉t, 〈· · · 〉 represent averaging over re-
peats, time, and both repeats and time, respectively. An
overline, instead, indicates averaging over the spins.

The algorithm Eqn. (3) is effectively N independent
stochastic delta-rule algorithms (with the negative log-
likelihood as cost function), one for each spin; see sec-
tion 5.6 in [7]. It is faster than Boltzmann learning
for the equilibrium case, because evaluating the second
term does not require Monte Carlo runs. However, it is
still slow for large systems. Therefore, faster algorithms
would be useful.

In what follows, we derive fast inversion formulae,
based on dynamical MF and TAP equations, that would
be exact for N → ∞ and infinite data. We also quantify
the performance of the algorithms outside these limits.

Inverse MF and TAP.— For simplicity, we consider
first the stationary case, for which the sequence index
r is superfluous. This is because in this case averaging
over time and repeats would be equivalent. We start with
the maximum likelihood conditions (3) with δhi and δJij
equal to zero. Assume first that the magnetizations mi =
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. We write the si that occur in Eqn. (3) as mi + δsi
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well as the exact algorithm, and, furthermore, the larger
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for the equilibrium case, because evaluating the second
term does not require Monte Carlo runs. However, it is
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based on dynamical MF and TAP equations, that would
be exact for N → ∞ and infinite data. We also quantify
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equilibrium problem [5].
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fied that the algorithm (3) recovers the couplings of an
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(L → ∞) for a wide range of coupling strengths g, ex-
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ij are the true couplings and Jij are those found
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of the form εexact + ε∞MF, where ε∞MF is independent of L
and proportional to 1/N . Thus, for data sets of length
much smaller than L∗ = 1/ε∞MF ∝ N , MF does almost as
well as the exact algorithm, and, furthermore, the larger
the network, the better MF does. The errors for the exact
and MF algorithms are plotted as functions of L in Fig.
1a.

For weak coupling, we can calculate the asymptotic
MF error, ε∞MF, analytically as follows. We present the
zero-field case here for simplicity. We expand the tanh in
the maximum-likelihood equation to third order, giving
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where ηh and ηJ are learning rates. Here and in what
follows 〈· · · 〉r, 〈· · · 〉t, 〈· · · 〉 represent averaging over re-
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overline, instead, indicates averaging over the spins.
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stochastic delta-rule algorithms (with the negative log-
likelihood as cost function), one for each spin; see sec-
tion 5.6 in [7]. It is faster than Boltzmann learning
for the equilibrium case, because evaluating the second
term does not require Monte Carlo runs. However, it is
still slow for large systems. Therefore, faster algorithms
would be useful.

In what follows, we derive fast inversion formulae,
based on dynamical MF and TAP equations, that would
be exact for N → ∞ and infinite data. We also quantify
the performance of the algorithms outside these limits.

Inverse MF and TAP.— For simplicity, we consider
first the stationary case, for which the sequence index
r is superfluous. This is because in this case averaging
over time and repeats would be equivalent. We start with
the maximum likelihood conditions (3) with δhi and δJij
equal to zero. Assume first that the magnetizations mi =
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equal-time correlation matrix) and Aij = (1 − m2

i )δij ,
(4) can be solved to give JMF = A−1DC−1. This is our
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by assuming that the mi satisfy the TAP equations
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TAP
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TAP)2ik(1−m2
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These equations improve over the MF ones by taking
into account the Onsager reaction field. It was proved
by Kappen and Spanjers [8] that the TAP equations, al-
though usually derived for the equilibrium (symmetric-
J) SK model, also hold for the asynchronously updated,
asymmetric-J model in a stationary state. We have veri-
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equilibrium problem [5].
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asymmetric SK model exactly in the limit of infinite data
(L → ∞) for a wide range of coupling strengths g, ex-
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ij are the true couplings and Jij are those found
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of the form εexact + ε∞MF, where ε∞MF is independent of L
and proportional to 1/N . Thus, for data sets of length
much smaller than L∗ = 1/ε∞MF ∝ N , MF does almost as
well as the exact algorithm, and, furthermore, the larger
the network, the better MF does. The errors for the exact
and MF algorithms are plotted as functions of L in Fig.
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For weak coupling, we can calculate the asymptotic
MF error, ε∞MF, analytically as follows. We present the
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Din =
∑

k

Jik〈sksn〉 − 1
3

∑

klm

JikJilJim〈skslsmsn〉+ · · · .

(7)
Correlations here are at equal times, except forDin. The
dominant contributions in the sum over k, l, and m are
those with k = l, l = m and m = k. Multiplying on the
right by (C−1)nj , summing over n and using Eqn. (4) for
JMF, we get

JMF
ij = Jij −

∑

k

J2
ikJij , (8)

2

δhi = ηh
∂L
∂hi

and δJij = ηJ
∂L
∂Jij

, that is

δhi(t) = ηh
{

〈si(t+ 1)〉r − 〈tanh[hi(t) +
∑

k

Jiksk(t))]〉r]
}

(3a)

δJij = ηJ
{

〈si(t+ 1)sj(t)〉

− 〈tanh[hi(t) +
∑

k

Jiksk(t)]sj(t)〉
}

, (3b)

where ηh and ηJ are learning rates. Here and in what
follows 〈· · · 〉r, 〈· · · 〉t, 〈· · · 〉 represent averaging over re-
peats, time, and both repeats and time, respectively. An
overline, instead, indicates averaging over the spins.

The algorithm Eqn. (3) is effectively N independent
stochastic delta-rule algorithms (with the negative log-
likelihood as cost function), one for each spin; see sec-
tion 5.6 in [7]. It is faster than Boltzmann learning
for the equilibrium case, because evaluating the second
term does not require Monte Carlo runs. However, it is
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FIG. 1. The quality of the exact algorithm, the MF approxi-
mation (a) and the TAP approximation (b), versus the length
of data L. Results are shown for g = 0.1 (blue stars), 0.12
(magenta crosses), 0.14 (red circles) and 0.16 (black x) and
all for N = 20. The solid lines are the theoretical predictions,
in the TAP case together with the finite size corrections.

with corrections of relative order 1/N . This yields the
TAP-approximation couplings found above, showing that
the TAP reconstruction indeed corrects the leading MF
errors. To leading order the sum on k is just g2, and the
asymptotic mean square MF error is

ε∞MF = (Jij − JMF
ij )2 =

g6

N
. (9)

The solid curves in Fig. 1a are 1/L + g6/N ; the fit is
evidently good.

Fig. 2 illustrates the systematic nature of the MF er-
rors in a scatter plot of the JMF

ij s against the true Jijs:
One can see that MF systematically underestimates the
magnitude of the couplings. The factor 1−Fi in the TAP
formula corrects for this to relative order g2.
The error using the TAP reconstruction is much lower

than that for the MF one and reaches its minimum at
much larger L: for N = 20 and the coupling strengths
we studied, we had to go to L > 109 to see the error flat-
ten; see Fig. 1b. To calculate the asymptotic reconstruc-
tion error for TAP, we can expand the tanh to 5th order
and proceed to evaluate the averages in the same way.
The MF error terms analyzed above are compensated
(for N → ∞) for by the TAP equations, leading to an
asymptotic ε∞TAP = 4g10/N . However, the errors found
by applying the TAP algorithm to a simulated network
of N = 20 (Fig. 1b) are much larger than this. We have
traced this discrepancy to a finite-size effect of relative
order 1/N2: In making that TAP correction, the term
in (7) with k = l = m has been counted three times in
obtaining (8) instead of once. The resulting mean square

error is (2/3)2J6
ij = (20g6)/(3N3). These corrections will

be negligible relative to the asymptotic g10/N term only
for N $ 1/g2, which is not generally satisfied for the
weak coupling strengths used in our simulations. Taking
into account this finite size correction, we can predict the
TAP error reasonably well, as shown in Fig. 1b.

Non-stationary case.— The magnetizations,
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FIG. 2. The systematic nature of MF and TAP errors. We
show the couplings inferred using MF (black dots) and TAP
(red squares) vs the true ones for a network of N = 20 with
g = 0.35 using (a) L = 104 and (b) L = 106 samples.

mi(t) = 〈sri (t)〉r, are now time-dependent and, for MF,
solve

mi(t+ 1) = tanh[hi(t) +
∑

j

JMF
ij mj(t)]. (10)

We have also proved [9] that the TAP equations hold
even in a nonstationary state, in the form

mi(t+ 1) = tanh[hi(t) +
∑

j

JTAP
ij mj(t)

− mi(t+ 1)
∑

j

(JTAP)2ij(1−m2
j (t))]. (11)

Thus, we can extend both our inversion algorithms to
nonstationary systems, as we show in the following.

We start by defining time-dependent correlation ma-
trices Dij(t) ≡ 〈δsri (t + 1)δsrj(t)〉r and Cij(t) ≡
〈δsri (t)δsrj(t)〉r. For MF, using the same procedure that
lead to Eqn. (4), we find

〈Dij(t)〉t =
∑

k

JMF
ik 〈(1−m2

i (t+ 1))Ckj(t)〉t. (12)

One can still solve for J by simple matrix algebra:

JMF
ij =

∑

k

〈Dik(t)〉t[(B(i))−1]kj , (13)

where B(i)
kj = 〈(1 − m2

i (t + 1))Ckj(t)〉t. The problem is
more complex than the stationary one only because one
has to invert a different matrix B(i) for each i.
For TAP, analogously to the stationary case, the B(i)

acquire an extra factor inside the time average:

B(i)
kj = 〈(1−m2

i (t+ 1))(1− Fi(t))Ckj(t)〉t, (14a)

Fi(t) = (1−m2
i (t+ 1))

∑

l

(JTAP)2il(1−m2
l (t)). (14b)

Exact TAP inversion requires iterative solution of Eqn.
(13), with JTAP

ij instead of JMF
ij , together with Eqn. (14).

We have found, however, that effective reconstruction is
still possible under the simplifying approximation that

after the learning is converged

2

δhi = ηh
∂L
∂hi

and δJij = ηJ
∂L
∂Jij

, that is

δhi(t) = ηh
{

〈si(t+ 1)〉r − 〈tanh[hi(t) +
∑

k

Jiksk(t))]〉r]
}

(3a)

δJij = ηJ
{

〈si(t+ 1)sj(t)〉

− 〈tanh[hi(t) +
∑

k

Jiksk(t)]sj(t)〉
}

, (3b)

where ηh and ηJ are learning rates. Here and in what
follows 〈· · · 〉r, 〈· · · 〉t, 〈· · · 〉 represent averaging over re-
peats, time, and both repeats and time, respectively. An
overline, instead, indicates averaging over the spins.

The algorithm Eqn. (3) is effectively N independent
stochastic delta-rule algorithms (with the negative log-
likelihood as cost function), one for each spin; see sec-
tion 5.6 in [7]. It is faster than Boltzmann learning
for the equilibrium case, because evaluating the second
term does not require Monte Carlo runs. However, it is
still slow for large systems. Therefore, faster algorithms
would be useful.

In what follows, we derive fast inversion formulae,
based on dynamical MF and TAP equations, that would
be exact for N → ∞ and infinite data. We also quantify
the performance of the algorithms outside these limits.

Inverse MF and TAP.— For simplicity, we consider
first the stationary case, for which the sequence index
r is superfluous. This is because in this case averaging
over time and repeats would be equivalent. We start with
the maximum likelihood conditions (3) with δhi and δJij
equal to zero. Assume first that the magnetizations mi =
〈si〉 satisfy the MF equationsmi = tanh(hi+

∑

j J
MF
ik mk)

. We write the si that occur in Eqn. (3) as mi + δsi
and expand the tanh in the δsi. The zeroth-order terms
vanish, and the bilinear terms give

〈δsi(t+1)δsj(t)〉 = (1−m2
i )

∑

k

JMF
ik 〈δsk(t)δsj(t)〉. (4)

Defining matrices Dij = 〈δsi(t + 1)δsj(t)〉 (the one-step
delayed correlation matrix), Cij = 〈δsi(t)δsj(t)〉 (the
equal-time correlation matrix) and Aij = (1 − m2

i )δij ,
(4) can be solved to give JMF = A−1DC−1. This is our
MF inversion formula.

To get the TAP inversion formula, we start instead
by assuming that the mi satisfy the TAP equations
mi = tanh[hi +

∑

k J
TAP
ik mk −mi

∑

k(J
TAP)2ik(1−m2

k)].
These equations improve over the MF ones by taking
into account the Onsager reaction field. It was proved
by Kappen and Spanjers [8] that the TAP equations, al-
though usually derived for the equilibrium (symmetric-
J) SK model, also hold for the asynchronously updated,
asymmetric-J model in a stationary state. We have veri-
fied that they are also valid in our synchronously-updated
model [9]. We again write si = mi + δsi, expand-
ing the tanh to third order in powers of

∑

k J
TAP
ik δsk +

mi

∑

k(J
TAP)2ik(1 −m2

k). Keeping terms up to order g3

leads to D = ATAPJTAPC , where

ATAP
ij = δij(1−m2

i )[1− (1−m2
i )

∑

l

(JTAP)2il(1−m2
l )].

These equations cannot be solved directly as in the MF
case because ATAP depends on JTAP. However, one
can derive a cubic equation for the quantities Fi =
(1−m2

i )
∑

l(J
TAP)2il(1−m2

l ):

Fi(1− F 2
i ) = (1−m2

i )
∑

j

(JMF)2ij(1−m2
j ). (5)

This determines ATAP
ii = (1 − m2

i )(1 − Fi), so we can
evaluate JTAP

ij = JMF
ij /(1 − Fi). The physically relevant

root of Eqn. (5) can not exceed 2/(3
√
3), restricting this

technique to weak correlations.
For both MF and TAP reconstruction, the fields hi can

be found by solving the respective magnetization equa-
tions after the Jij have been obtained, just as in the
equilibrium problem [5].

Performance of the algorithms.— We have veri-
fied that the algorithm (3) recovers the couplings of an
asymmetric SK model exactly in the limit of infinite data
(L → ∞) for a wide range of coupling strengths g, ex-
ternal fields and system sizes. The mean square error,
εexact, is in general proportional to 1/L, and in the weak-
coupling limit a quadratic expansion of Eqn. (2) yields

εexact = δJ2
ij ≡ (Jij − J0

ij)
2 =

1

(1−m2
i )L

, (6)

where J0
ij are the true couplings and Jij are those found

by the algorithm.
We find that the MF algorithm leads to an error, εMF,

of the form εexact + ε∞MF, where ε∞MF is independent of L
and proportional to 1/N . Thus, for data sets of length
much smaller than L∗ = 1/ε∞MF ∝ N , MF does almost as
well as the exact algorithm, and, furthermore, the larger
the network, the better MF does. The errors for the exact
and MF algorithms are plotted as functions of L in Fig.
1a.

For weak coupling, we can calculate the asymptotic
MF error, ε∞MF, analytically as follows. We present the
zero-field case here for simplicity. We expand the tanh in
the maximum-likelihood equation to third order, giving

Din =
∑

k

Jik〈sksn〉 − 1
3

∑

klm

JikJilJim〈skslsmsn〉+ · · · .

(7)
Correlations here are at equal times, except forDin. The
dominant contributions in the sum over k, l, and m are
those with k = l, l = m and m = k. Multiplying on the
right by (C−1)nj , summing over n and using Eqn. (4) for
JMF, we get

JMF
ij = Jij −

∑

k

J2
ikJij , (8)
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where ηh and ηJ are learning rates. Here and in what
follows 〈· · · 〉r, 〈· · · 〉t, 〈· · · 〉 represent averaging over re-
peats, time, and both repeats and time, respectively. An
overline, instead, indicates averaging over the spins.
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stochastic delta-rule algorithms (with the negative log-
likelihood as cost function), one for each spin; see sec-
tion 5.6 in [7]. It is faster than Boltzmann learning
for the equilibrium case, because evaluating the second
term does not require Monte Carlo runs. However, it is
still slow for large systems. Therefore, faster algorithms
would be useful.

In what follows, we derive fast inversion formulae,
based on dynamical MF and TAP equations, that would
be exact for N → ∞ and infinite data. We also quantify
the performance of the algorithms outside these limits.

Inverse MF and TAP.— For simplicity, we consider
first the stationary case, for which the sequence index
r is superfluous. This is because in this case averaging
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the maximum likelihood conditions (3) with δhi and δJij
equal to zero. Assume first that the magnetizations mi =
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delayed correlation matrix), Cij = 〈δsi(t)δsj(t)〉 (the
equal-time correlation matrix) and Aij = (1 − m2

i )δij ,
(4) can be solved to give JMF = A−1DC−1. This is our
MF inversion formula.

To get the TAP inversion formula, we start instead
by assuming that the mi satisfy the TAP equations
mi = tanh[hi +

∑
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TAP
ik mk −mi

∑

k(J
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These equations improve over the MF ones by taking
into account the Onsager reaction field. It was proved
by Kappen and Spanjers [8] that the TAP equations, al-
though usually derived for the equilibrium (symmetric-
J) SK model, also hold for the asynchronously updated,
asymmetric-J model in a stationary state. We have veri-
fied that they are also valid in our synchronously-updated
model [9]. We again write si = mi + δsi, expand-
ing the tanh to third order in powers of

∑
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∑
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k). Keeping terms up to order g3

leads to D = ATAPJTAPC , where

ATAP
ij = δij(1−m2

i )[1− (1−m2
i )

∑
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These equations cannot be solved directly as in the MF
case because ATAP depends on JTAP. However, one
can derive a cubic equation for the quantities Fi =
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This determines ATAP
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i )(1 − Fi), so we can
evaluate JTAP
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ij /(1 − Fi). The physically relevant

root of Eqn. (5) can not exceed 2/(3
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3), restricting this

technique to weak correlations.
For both MF and TAP reconstruction, the fields hi can

be found by solving the respective magnetization equa-
tions after the Jij have been obtained, just as in the
equilibrium problem [5].

Performance of the algorithms.— We have veri-
fied that the algorithm (3) recovers the couplings of an
asymmetric SK model exactly in the limit of infinite data
(L → ∞) for a wide range of coupling strengths g, ex-
ternal fields and system sizes. The mean square error,
εexact, is in general proportional to 1/L, and in the weak-
coupling limit a quadratic expansion of Eqn. (2) yields

εexact = δJ2
ij ≡ (Jij − J0

ij)
2 =
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(1−m2
i )L

, (6)

where J0
ij are the true couplings and Jij are those found

by the algorithm.
We find that the MF algorithm leads to an error, εMF,

of the form εexact + ε∞MF, where ε∞MF is independent of L
and proportional to 1/N . Thus, for data sets of length
much smaller than L∗ = 1/ε∞MF ∝ N , MF does almost as
well as the exact algorithm, and, furthermore, the larger
the network, the better MF does. The errors for the exact
and MF algorithms are plotted as functions of L in Fig.
1a.

For weak coupling, we can calculate the asymptotic
MF error, ε∞MF, analytically as follows. We present the
zero-field case here for simplicity. We expand the tanh in
the maximum-likelihood equation to third order, giving

Din =
∑
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Jik〈sksn〉 − 1
3

∑
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(7)
Correlations here are at equal times, except forDin. The
dominant contributions in the sum over k, l, and m are
those with k = l, l = m and m = k. Multiplying on the
right by (C−1)nj , summing over n and using Eqn. (4) for
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FIG. 1. The quality of the exact algorithm, the MF approxi-
mation (a) and the TAP approximation (b), versus the length
of data L. Results are shown for g = 0.1 (blue stars), 0.12
(magenta crosses), 0.14 (red circles) and 0.16 (black x) and
all for N = 20. The solid lines are the theoretical predictions,
in the TAP case together with the finite size corrections.

with corrections of relative order 1/N . This yields the
TAP-approximation couplings found above, showing that
the TAP reconstruction indeed corrects the leading MF
errors. To leading order the sum on k is just g2, and the
asymptotic mean square MF error is

ε∞MF = (Jij − JMF
ij )2 =

g6

N
. (9)

The solid curves in Fig. 1a are 1/L + g6/N ; the fit is
evidently good.

Fig. 2 illustrates the systematic nature of the MF er-
rors in a scatter plot of the JMF

ij s against the true Jijs:
One can see that MF systematically underestimates the
magnitude of the couplings. The factor 1−Fi in the TAP
formula corrects for this to relative order g2.
The error using the TAP reconstruction is much lower

than that for the MF one and reaches its minimum at
much larger L: for N = 20 and the coupling strengths
we studied, we had to go to L > 109 to see the error flat-
ten; see Fig. 1b. To calculate the asymptotic reconstruc-
tion error for TAP, we can expand the tanh to 5th order
and proceed to evaluate the averages in the same way.
The MF error terms analyzed above are compensated
(for N → ∞) for by the TAP equations, leading to an
asymptotic ε∞TAP = 4g10/N . However, the errors found
by applying the TAP algorithm to a simulated network
of N = 20 (Fig. 1b) are much larger than this. We have
traced this discrepancy to a finite-size effect of relative
order 1/N2: In making that TAP correction, the term
in (7) with k = l = m has been counted three times in
obtaining (8) instead of once. The resulting mean square

error is (2/3)2J6
ij = (20g6)/(3N3). These corrections will

be negligible relative to the asymptotic g10/N term only
for N $ 1/g2, which is not generally satisfied for the
weak coupling strengths used in our simulations. Taking
into account this finite size correction, we can predict the
TAP error reasonably well, as shown in Fig. 1b.

Non-stationary case.— The magnetizations,
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FIG. 2. The systematic nature of MF and TAP errors. We
show the couplings inferred using MF (black dots) and TAP
(red squares) vs the true ones for a network of N = 20 with
g = 0.35 using (a) L = 104 and (b) L = 106 samples.

mi(t) = 〈sri (t)〉r, are now time-dependent and, for MF,
solve

mi(t+ 1) = tanh[hi(t) +
∑

j

JMF
ij mj(t)]. (10)

We have also proved [9] that the TAP equations hold
even in a nonstationary state, in the form

mi(t+ 1) = tanh[hi(t) +
∑

j

JTAP
ij mj(t)

− mi(t+ 1)
∑

j

(JTAP)2ij(1−m2
j (t))]. (11)

Thus, we can extend both our inversion algorithms to
nonstationary systems, as we show in the following.

We start by defining time-dependent correlation ma-
trices Dij(t) ≡ 〈δsri (t + 1)δsrj(t)〉r and Cij(t) ≡
〈δsri (t)δsrj(t)〉r. For MF, using the same procedure that
lead to Eqn. (4), we find

〈Dij(t)〉t =
∑

k

JMF
ik 〈(1−m2

i (t+ 1))Ckj(t)〉t. (12)

One can still solve for J by simple matrix algebra:

JMF
ij =

∑

k

〈Dik(t)〉t[(B(i))−1]kj , (13)

where B(i)
kj = 〈(1 − m2

i (t + 1))Ckj(t)〉t. The problem is
more complex than the stationary one only because one
has to invert a different matrix B(i) for each i.
For TAP, analogously to the stationary case, the B(i)

acquire an extra factor inside the time average:

B(i)
kj = 〈(1−m2

i (t+ 1))(1− Fi(t))Ckj(t)〉t, (14a)

Fi(t) = (1−m2
i (t+ 1))

∑

l

(JTAP)2il(1−m2
l (t)). (14b)

Exact TAP inversion requires iterative solution of Eqn.
(13), with JTAP

ij instead of JMF
ij , together with Eqn. (14).

We have found, however, that effective reconstruction is
still possible under the simplifying approximation that
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Fi(t) in Eq. (14a) can be represented by its temporal
mean. In this case, Fi ≡ 〈Fi(t)〉t solves the cubic equa-
tion

Fi(1− Fi)
2 =

∑

j

(JMF)2ij〈(1−m2
i (t+ 1))(1−m2

j (t))〉t.

Solving it and using it in Eq. (14a), one can calculate
JTAP
ij = JMF

ij /(1 − Fi). Similar to the stationary case,
after inferring the couplings, one can use the forward
dynamical MF and TAP equations Eqns. (10) and (11)
to infer the time-varying external field.

−0.1 −0.05 0 0.05 0.1

−0.1

−0.05

0

0.05

0.1

 

 

JM
F

ij
(n
o
n
st
a
t.
)

Jtrueij

a)

−0.1 −0.05 0 0.05 0.1

−0.1

−0.05

0

0.05

0.1

 

 

Jtrueij
JM

F

ij
(s
ta
t.
)

b)

100 150 200 250 300

−0.5

0

0.5

time

h

C)

FIG. 3. The inference in nonstationary case. (a) Couplings
of a network of N = 20 driven by a sinusoidal external field
inferred using the nonstationary MF, and (b) the stationary
MF. (c) Two periods of the external field (thin blue full curve)
and its reconstruction using the nonstationary MF couplings
(red dashed curve) and stationary MF (thick black full curve).

The result of reconstructing the couplings of a net-
work driven by a common sinusoidal external field to all
spins is shown in Fig. 3. Fig. 3a shows how well the cou-
plings are inferred by nonstationary MF using L = 105

and R = 100. Nonstationary TAP couplings (not shown)
have a lower mean squared error: 6.7× 10−7 versus 10−6

for MF. In Fig. 3b, we also plot the couplings inferred
using stationary MF inversion for each of the 100 repeats
and averaging over them. Not surprisingly, the station-
ary MF performs poorly on these nonstationary data.
Importantly, there is a systematic overestimation of the
couplings in this case, because the stationary method ac-
counts for the correlations induced by the common, time-
varying external field through adjusting the couplings.
Correspondingly, if one uses the couplings inferred us-
ing the stationary MF in Eq. (10), the amplitude of the
common input is underestimated, while the use of non-
stationary MF couplings yields very good reconstruction
of the external field; see Fig. 3c.

Summary and Discussion.— We have shown how
to infer interactions in a simple but nontrivial non-
equilibrium system: a kinetic Ising model with random

and potentially asymmetric interactions. We have de-
scribed both an exact iterative algorithm and two ap-
proximate ones, based on dynamical mean-field and TAP
equations, which are correct up to corrections of order
1/N . We calculated analytically the errors of these ap-
proximations for weak coupling. The method shows par-
ticular promise when applied to nonstationary states,
where it separates true interactions from the apparent
ones found by applying a stationary theory to a nonsta-
tionary state.

A kinetic Ising model, even when fit using the exact
algorithm and with infinite data, will show an intrinsic
error when applied to a different kind of system (e.g., a
real neural network). However, it is promising that even
the MF approximation for the simple model of Eqn. 1,
when applied to data generated by a biologically realistic
model, was found to identify successfully a substantial
fraction of the connections in the network [10].

In other recent non-equilibrium approaches to prob-
lems like this, Marre et al [11] extended the equilibrium
maximum-entropy approach [1] to include non-equal-
time correlations, and Cocco et al [4] developed an ap-
proximate scheme for finding the connection strengths in
a network of integrate-and-fire neurons. There has also
been work [12] on models which can be viewed as gener-
alizations of Eqn. 1 in which si(t+ 1) depends on linear
combinations of h(t′) and s(t′) at times t′ ≤ t. In all
these and other dynamical models, we expect that it will
be possible and useful to develop analogous approximate
inversion based on dynamical MF and TAP-like equa-
tions. This could be done using the approach of [8] or
the generating functional method [13].
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Fi(t) in Eq. (14a) can be represented by its temporal
mean. In this case, Fi ≡ 〈Fi(t)〉t solves the cubic equa-
tion

Fi(1− Fi)
2 =

∑

j

(JMF)2ij〈(1−m2
i (t+ 1))(1−m2

j (t))〉t.

Solving it and using it in Eq. (14a), one can calculate
JTAP
ij = JMF

ij /(1 − Fi). Similar to the stationary case,
after inferring the couplings, one can use the forward
dynamical MF and TAP equations Eqns. (10) and (11)
to infer the time-varying external field.
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FIG. 3. The inference in nonstationary case. (a) Couplings
of a network of N = 20 driven by a sinusoidal external field
inferred using the nonstationary MF, and (b) the stationary
MF. (c) Two periods of the external field (thin blue full curve)
and its reconstruction using the nonstationary MF couplings
(red dashed curve) and stationary MF (thick black full curve).

The result of reconstructing the couplings of a net-
work driven by a common sinusoidal external field to all
spins is shown in Fig. 3. Fig. 3a shows how well the cou-
plings are inferred by nonstationary MF using L = 105

and R = 100. Nonstationary TAP couplings (not shown)
have a lower mean squared error: 6.7× 10−7 versus 10−6

for MF. In Fig. 3b, we also plot the couplings inferred
using stationary MF inversion for each of the 100 repeats
and averaging over them. Not surprisingly, the station-
ary MF performs poorly on these nonstationary data.
Importantly, there is a systematic overestimation of the
couplings in this case, because the stationary method ac-
counts for the correlations induced by the common, time-
varying external field through adjusting the couplings.
Correspondingly, if one uses the couplings inferred us-
ing the stationary MF in Eq. (10), the amplitude of the
common input is underestimated, while the use of non-
stationary MF couplings yields very good reconstruction
of the external field; see Fig. 3c.

Summary and Discussion.— We have shown how
to infer interactions in a simple but nontrivial non-
equilibrium system: a kinetic Ising model with random

and potentially asymmetric interactions. We have de-
scribed both an exact iterative algorithm and two ap-
proximate ones, based on dynamical mean-field and TAP
equations, which are correct up to corrections of order
1/N . We calculated analytically the errors of these ap-
proximations for weak coupling. The method shows par-
ticular promise when applied to nonstationary states,
where it separates true interactions from the apparent
ones found by applying a stationary theory to a nonsta-
tionary state.

A kinetic Ising model, even when fit using the exact
algorithm and with infinite data, will show an intrinsic
error when applied to a different kind of system (e.g., a
real neural network). However, it is promising that even
the MF approximation for the simple model of Eqn. 1,
when applied to data generated by a biologically realistic
model, was found to identify successfully a substantial
fraction of the connections in the network [10].

In other recent non-equilibrium approaches to prob-
lems like this, Marre et al [11] extended the equilibrium
maximum-entropy approach [1] to include non-equal-
time correlations, and Cocco et al [4] developed an ap-
proximate scheme for finding the connection strengths in
a network of integrate-and-fire neurons. There has also
been work [12] on models which can be viewed as gener-
alizations of Eqn. 1 in which si(t+ 1) depends on linear
combinations of h(t′) and s(t′) at times t′ ≤ t. In all
these and other dynamical models, we expect that it will
be possible and useful to develop analogous approximate
inversion based on dynamical MF and TAP-like equa-
tions. This could be done using the approach of [8] or
the generating functional method [13].
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FIG. 1. The quality of the exact algorithm, the MF approxi-
mation (a) and the TAP approximation (b), versus the length
of data L. Results are shown for g = 0.1 (blue stars), 0.12
(magenta crosses), 0.14 (red circles) and 0.16 (black x) and
all for N = 20. The solid lines are the theoretical predictions,
in the TAP case together with the finite size corrections.

with corrections of relative order 1/N . This yields the
TAP-approximation couplings found above, showing that
the TAP reconstruction indeed corrects the leading MF
errors. To leading order the sum on k is just g2, and the
asymptotic mean square MF error is

ε∞MF = (Jij − JMF
ij )2 =

g6

N
. (9)

The solid curves in Fig. 1a are 1/L + g6/N ; the fit is
evidently good.

Fig. 2 illustrates the systematic nature of the MF er-
rors in a scatter plot of the JMF

ij s against the true Jijs:
One can see that MF systematically underestimates the
magnitude of the couplings. The factor 1−Fi in the TAP
formula corrects for this to relative order g2.

The error using the TAP reconstruction is much lower
than that for the MF one and reaches its minimum at
much larger L: for N = 20 and the coupling strengths
we studied, we had to go to L > 109 to see the error flat-
ten; see Fig. 1b. To calculate the asymptotic reconstruc-
tion error for TAP, we can expand the tanh to 5th order
and proceed to evaluate the averages in the same way.
The MF error terms analyzed above are compensated
(for N → ∞) for by the TAP equations, leading to an
asymptotic ε∞TAP = 4g10/N . However, the errors found
by applying the TAP algorithm to a simulated network
of N = 20 (Fig. 1b) are much larger than this. We have
traced this discrepancy to a finite-size effect of relative
order 1/N2: In making that TAP correction, the term
in (7) with k = l = m has been counted three times in
obtaining (8) instead of once. The resulting mean square

error is (2/3)2J6
ij = (20g6)/(3N3). These corrections will

be negligible relative to the asymptotic g10/N term only
for N $ 1/g2, which is not generally satisfied for the
weak coupling strengths used in our simulations. Taking
into account this finite size correction, we can predict the
TAP error reasonably well, as shown in Fig. 1b.

Non-stationary case.— The magnetizations,
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FIG. 2. The systematic nature of MF and TAP errors. We
show the couplings inferred using MF (black dots) and TAP
(red squares) vs the true ones for a network of N = 20 with
g = 0.35 using (a) L = 104 and (b) L = 106 samples.

mi(t) = 〈sri (t)〉r, are now time-dependent and, for MF,
solve

mi(t+ 1) = tanh[hi(t) +
∑

j

JMF
ij mj(t)]. (10)

We have also proved [9] that the TAP equations hold
even in a nonstationary state, in the form

mi(t+ 1) = tanh[hi(t) +
∑

j

JTAP
ij mj(t)

− mi(t+ 1)
∑

j

(JTAP)2ij(1−m2
j (t))]. (11)

Thus, we can extend both our inversion algorithms to
nonstationary systems, as we show in the following.

We start by defining time-dependent correlation ma-
trices Dij(t) ≡ 〈δsri (t + 1)δsrj(t)〉r and Cij(t) ≡
〈δsri (t)δsrj(t)〉r. For MF, using the same procedure that
lead to Eqn. (4), we find

〈Dij(t)〉t =
∑

k

JMF
ik 〈(1−m2

i (t+ 1))Ckj(t)〉t. (12)

One can still solve for J by simple matrix algebra:

JMF
ij =

∑

k

〈Dik(t)〉t[(B(i))−1]kj , (13)

where B(i)
kj = 〈(1 − m2

i (t + 1))Ckj(t)〉t. The problem is
more complex than the stationary one only because one
has to invert a different matrix B(i) for each i.
For TAP, analogously to the stationary case, the B(i)

acquire an extra factor inside the time average:

B(i)
kj = 〈(1−m2

i (t+ 1))(1− Fi(t))Ckj(t)〉t, (14a)

Fi(t) = (1−m2
i (t+ 1))

∑

l

(JTAP)2il(1−m2
l (t)). (14b)

Exact TAP inversion requires iterative solution of Eqn.
(13), with JTAP

ij instead of JMF
ij , together with Eqn. (14).

We have found, however, that effective reconstruction is
still possible under the simplifying approximation that

after we inferred the couplings, we can infer the 
fields

real field      Non-stat. MF            Stat. MF
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asynchronous update

exact ML learning is has some interesting depends
on whether you know the update times or not.
 
We can also marginalize the update times. 
see Zeng, Alava, Aurell, Hertz, Roudi arXiv:1209.2401 

MF learning can also done Zeng, Alava, Aurell, Mahmoudi PRE 2011

randomly pick a spin at a time

Pr(si(t+ �t)|{s(t)}) =
exp[si(t+ �t)hi(t) +

P
j Jijsi(t+ �t)sj(t)]

2 cosh[hi(t) +
P

j Jijsj(t)]
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example application
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• genuine correlations between 
neurons may come from

• internal connections between the 
recorded neurons

• external common input
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salamander	
  reLnal	
  data
Electrode	
  array	
  in	
  salamander	
  reLna	
  	
  (N	
  =	
  40)
(courtesy	
  of	
  Michael	
  Berry,	
  Princeton	
  Univ)
recording	
  Lme:	
  3180	
  sec
ReLna	
  was	
  shown	
  a	
  26.5-­‐s	
  “movie	
  clip”	
  120	
  Lmes	
  	
  
(each	
  movie	
  	
  =	
  2650	
  10-­‐ms	
  Lme	
  bins)
(also	
  tried	
  16⅔	
  ms,	
  20	
  ms	
  Lme	
  bins)	
  
size	
  of	
  data	
  matrix	
  for	
  10-­‐ms	
  bins:	
  40	
  x	
  318000

results based on Tyrcha, Roudi, Marsili and Hertz, 
Jstat 2013 in press
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probability that neuron 
i spikes at time t+1

time
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. . 
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{
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independent neuron model with constant input 

constant external input
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probability that neuron 
i spikes at time t

time

neuron 1
neuron 2

neuron 3

neuron N

. . 
.

{

δt
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1 -1 -1 1 1 1 -1 -1 1 -1
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equilibrium Ising model

constant external input

t

Jij

total input from spiking 
neurons at time t{
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probability that neuron 
i spikes at time t+1

time
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.
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1 -1 -1 1 1 1 -1 -1 1 -1
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-1-1 11 11

Kinetic Ising model constant input

constant external input

t

Jij

total input from spiking 
neurons at time t{
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independent neuron model with time varying input

time varying external input
time
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independent neuron model with time varying input

total input from spiking 
neurons at time t

time varying external input{
time
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another way of seeing the insignificant of couplings
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42

• equilibrium Ising model and approximations for 
solving its inverse problem.

• kinetic Ising model and MF approximations for its inverse 
problem.

• can help us understand global activity in biological data. 

• Bethe approximation for dynamics. 

• hidden spins (Dunn and Roudi 2013,  Tyrcha and Hertz 2013)

• going beyond one step memory

• continuous variables
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