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Overview

Overview of the presentation

• Optimal Transport on Network
• Leaf venation
• Interacting polymers
• The cavity approach
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General framework

• Distribution Networks:

  

G = {V ,E} : network
Supply of resource: Electricity, water, oxygen...
Nodes can be Sources and sinks. Find the configuration of
currents that minimize the dissipation in the network

Static Problems
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General Framework

• Communication networks
a, b nodes; messages (...or car) µ that go from aµ to bµ.

  

Find the paths that constitute the best compromize between
total path length and network congestion

Static Problems
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Distribution Network

• Currents are generated and absorbed on nodes (a = 1, ...,N)

ia > 0 Source ;
ia < 0 Sink

• They circulate through edges:
Iab current circulating on edge (a→ b) (directed)

• Current conservation (Kirchoff law).

ia =
∑

b Iab
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Distribution Network

• Energy dissipations J

Edges; characterized by
“distance” dab ; intrinsic
conductance Kab = kabdab = 1/Rab ; they can be changed.

• J =
∑

(ab)
Iab

dabkab

• Cost to build up the network C [{kab, dab}]

C [{kab}] =
∑
ab

kγab

S. Bohn, M. Magnasco PRL 98, 088702 (2007)
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Distribution Network

• Minimize dissipation for fixed construction cost

C [{kab}] =
∑
ab

kγab = K

  

• γ > 1 (Convex cost) many small transmission lines
• γ < 1 (Concave cost) few big transmission lines
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Result of optimization

• Triangular Lattice
• One source, N − 1 sinks.
• Various values of γ.

  

• Unique (smooth) minimum for γ > 1
• Local minima for γ < 1. Trees.
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A Little theorem

If C [{kab}] is concave the optimal transport network ia a Tree.

  

Loops emerge from other needs:

• Robustness of transport to damage
• Fluctuations in the network use.
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Robustness of transport to damage

• Compute the power dissipated if Pab if the edge (ab) is
removed

• Consider as function to be optimized

R =
∑
(ab)

Pab

Katifori et al. PRL 2008
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Fluctuating Network Usage

• Assume that ia are fluctuating with probability P(i)
• Optimaze the average dissipation

Jav =
∑
ab

〈I 2
ab〉

Kab

Katifori et al. PRL 2010
Carlson PRL 2010
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Loops & Hierarchy
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Communication Networks

• Networking: routing, frequency allocation, information
spreading, dynamic network allocation.

• Routing: Find the best route from a to b.

    

• Table based; Not dynamical ; insensitive to congestion
• Greedy: transmit to the neighbour close to destination

Frequency allocation to minimize interferences. Graph Coloring
kind of problem.
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Routing and the Physics of Polymers

  

• Neglect time: Static Paths on networks. M paths M ∼ N.
Chi Ho Yeung and David Saad PRL 2012

• Avoid Congestion : Interaction between paths.

σµab = 0,±1 Iab =
∑
µ

σµab − σ
µ
ba

E [{Iab}] =
∑
ab

Iαab iµa =
∑
b

σµab

α > 1, minimize length, penalise congestion.
Polymers on networks with repulsive interaction.
At each node: A separate conservation law for each polymer.
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Cavity approach

• At each node: A separate conservation law for each polymer.
• Defining Messages on Edges.
• Message Ea→b(Σ) ; Σ = {σ1, ..., σM}

  

Ea→b(Σab) = Iαab + min
{I | Constraints }

∑
c∈∂a−b

Ec→a(Σca)

2M messages at each link. Simplifications needed.
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Cavity approach

• Multiple sender ; Single receiver.
• A unique conservation law at each node.

ia =
∑
b

Ia,b

Ea→b(Iab) = Iαab + min
{I | Constraint }

∑
c∈∂a−b

Ec→a(Ica)

|I | < M. α > 1 iterative procedure to compute the messages.
Convex cost function.
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Some results

Study of average Energy diss. and Length as a function of the
fraction of senders f for different graph models.
• Erdos-Renyi, Random regular, Scale free
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Some generalizations

• Non Convex cost functions
• Different kind of Receiver and Senders
• Effect of exclusion
• Free-flow and Jammed Phases.
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