Networking and Optimal Transport

Silvio Franz

Laboratoire de Physique Théorique et Modèles Statistiques Université Paris-Sud

Netadis February 2013 Torino

S. Franz (LPTMS)

Networking and Optimal Transport

September 2012 1 / 18

Overview of the presentation

- Optimal Transport on Network
- Leaf venation
- Interacting polymers
- The cavity approach

General framework

• Distribution Networks:

 $G = \{V, E\}$: network Supply of resource: Electricity, water, oxygen... Nodes can be Sources and sinks. Find the configuration of currents that minimize the dissipation in the network

Static Problems

General Framework

Communication networks

a, *b* nodes; messages (...or car) μ that go from a^{μ} to b^{μ} .

Find the paths that constitute the best compromize between total path length and network congestion

Static Problems

Distribution Network

- Currents are generated and absorbed on nodes (a = 1, ..., N)
 - i_a > 0 Source ; i_a < 0 Sink
- They circulate through edges: I_{ab} current circulating on edge $(a \rightarrow b)$ (directed)
- Current conservation (Kirchoff law).

 $i_a = \sum_b I_{ab}$

Distribution Network

• Energy dissipations J

Edges; characterized by "distance" d_{ab} ; intrinsic conductance $K_{ab} = k_{ab}d_{ab} = 1/R_{ab}$; they can be changed.

•
$$J = \sum_{(ab)} \frac{I_{ab}}{d_{ab}k_{ab}}$$

• Cost to build up the network $C[\{k_{ab}, d_{ab}\}]$

$$C[\{k_{ab}\}] = \sum_{ab} k_{ab}^{\gamma}$$

S. Bohn, M. Magnasco PRL 98, 088702 (2007)

Distribution Network

• Minimize dissipation for fixed construction cost

$$C[\{k_{ab}\}] = \sum_{ab} k_{ab}^{\gamma} = K$$

- $\gamma > 1$ (Convex cost) many small transmission lines
- $\gamma < 1$ (Concave cost) few big transmission lines

Result of optimization

- Triangular Lattice
- One source, N − 1 sinks.
- Various values of γ .

FIG. 2: Examples of the conductivity distributions. Results of the relaxation algorithm with different initial conditions: (a) $\gamma = 2.0$ and (b) $\gamma = 0.5$. (c) Result with optimized topology with $\gamma = 0.5$. the arrow indicated the localized inlet, the remaining nodes are outlets with constant i_k .

- Unique (smooth) minimum for $\gamma>1$
- Local minima for $\gamma < 1$. Trees.

・ロト ・ 一下・ ・ ヨト ・ モート

A Little theorem

If $C[\{k_{ab}\}]$ is concave the optimal transport network ia a Tree.

Loops emerge from other needs:

- Robustness of transport to damage
- Fluctuations in the network use.

Robustness of transport to damage

- Compute the power dissipated if P_{ab} if the edge (ab) is removed
- Consider as function to be optimized

$$R = \sum_{(ab)} P_{ab}$$

Katifori et al. PRL 2008

Fluctuating Network Usage

- Assume that i_a are fluctuating with probability $P(\mathbf{i})$
- Optimaze the average dissipation

$$J_{av} = \sum_{ab} \frac{\langle I_{ab}^2 \rangle}{K_{ab}}$$

Katifori et al. PRL 2010 Carlson PRL 2010

Loops & Hierarchy

FIG. 2: Loops as a result of optimizing under damage to links (left column) and under a fluctuating load (right column). In all plots the vein thickness is proportional to $C^{(\gamma+1/2)/3}$.

S. Franz (LPTMS)

Networking and Optimal Transport

September 2012

э

<ロト < 四ト < 回ト < 回ト

Communication Networks

- **Networking:** routing, frequency allocation, information spreading, dynamic network allocation.
- Routing: Find the best route from *a* to *b*.

- Table based; Not dynamical ; insensitive to congestion
- Greedy: transmit to the neighbour close to destination

Frequency allocation to minimize interferences. Graph Coloring kind of problem.

S. Franz (LPTMS)

September 2012

13 / 18

Routing and the Physics of Polymers

- Neglect time: Static Paths on networks. *M* paths *M* ~ *N*. Chi Ho Yeung and David Saad PRL 2012
- Avoid Congestion : Interaction between paths.

$$\sigma_{ab}^{\mu} = 0, \pm 1 \qquad I_{ab} = \sum_{\mu} \sigma_{ab}^{\mu} - \sigma_{ba}^{\mu}$$
$$E[\{I_{ab}\}] = \sum_{ab} I_{ab}^{\alpha} \qquad i_{a}^{\mu} = \sum_{b} \sigma_{ab}^{\mu}$$

lpha > 1, minimize length, penalise congestion. Polymers on networks with repulsive interaction. At each node: A separate conservation law for each polymer.

S. Franz (LPTMS)

Networking and Optimal Transport

Cavity approach

- At each node: A separate conservation law for each polymer.
- Defining Messages on Edges.
- Message $E_{a \rightarrow b}(\Sigma)$; $\Sigma = \{\sigma^1, ..., \sigma^M\}$

 2^M messages at each link. Simplifications needed.

S. Franz (LPTMS)

15 / 18

Cavity approach

- Multiple sender ; Single receiver.
- A unique conservation law at each node.

$$i_{a} = \sum_{b} I_{a,b}$$

$$E_{a o b}(I_{ab}) = I^{lpha}_{ab} + \min_{\{I \mid Constraint \}} \sum_{c \in \partial a - b} E_{c o a}(I_{ca})$$

 $|I| < M. \ \alpha > 1$ iterative procedure to compute the messages. Convex cost function.

Some results

Study of average Energy diss. and Length as a function of the fraction of senders f for different graph models.

• Erdos-Renyi, Random regular, Scale free

S. Franz (LPTMS)

Networking and Optimal Transport

September 2012

17 / 18

Some generalizations

- Non Convex cost functions
- Different kind of Receiver and Senders
- Effect of exclusion
- Free-flow and Jammed Phases.