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Random Laser: an old idea 

Laser Random Laser
1967: VS Letokhov - JETP Lett. (theory)
Idea: Stimulated emission without a resonant cavity

1994: Lawandy 
Laser action in strongly scattering media (experiments) 
Realization: multiple scattering medium (i.e., set of 
stochastic resonators), a  multimode laser with disorder.

1958: 
Infrared and Optical Masers, by 
Arthur L. Schawlow, Charles H. Townes, 
Physical Review
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E.g., precipitate of TiO2
 particles (scatterers) in methanol solution 

doped by rhodamine (light amplifying)

Random Laser 
Pumping mode-locked laser  (pulses of high intensity) 

in an optically active disordered material (powder/precipitate in light amplifying medium)
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Pumping 
laser beam

Light Amplifying
Medium

Mode-Locking:
Short pulses (1 ns)
High intensity, with 10Hz 
freq. emission
CCD acquires for 1 ms

Random 
laser

Light Scatterers:
Stochastic Resonators

E.g., precipitate of TiO2
 particles (scatterers) 

in methanol solution doped by 
	 rhodamine (light amplifying)

Random Laser 
Pumping mode-locked laser  (pulses of high intensity) 

in an optically active disordered material (powder/precipitate in light amplifying medium)
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Pumping 
laser beam

Light Amplifying
Medium

Mode-Locking:
Short pulses (1 ns)
High intensity, with 10Hz 
freq. emission
CCD acquires for 1 ms

Random laser
Light Scatterers:
Stochastic Resonators

Experiments - Random Laser 

M. Leonetti, LL, C. Conti, unpublished,
colloidal dispersion of TiO2 particles in 
methanol solution doped by Rhodamine

H. Cao et al. 
PRL 99
ZnO powder 

S. Mujumdar     
et al. PRL ‘04
Suspensions    of 
ZnO in Rh6G
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Pumping 
laser beam

Light Amplifying
Medium

Mode-Locking:
Short pulses (1 ns)
High intensity, with 10Hz 
freq. emission
CCD acquires for 1 ms

Random laser
Light Scatterers:
Stochastic Resonators

Experiments - Random Laser 

M. Leonetti, LL, C. Conti, unpublished

FAQS
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Pumping 
laser beam

Light Amplifying
Medium

Mode-Locking:
Short pulses (1 ns)
High intensity, with 10Hz 
freq. emission
CCD acquires for 1 ms

Random laser
Light Scatterers:
Stochastic Resonators

Experiments - Random Laser 

Frequency band of excited modes not including pumping frequency

M. Leonetti, LL, C. Conti, unpublished
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Pumping 
laser beam

Light Amplifying
Medium

Mode-Locking:
Short pulses (1 ns)
High intensity, with 10Hz 
greq. emission
CCD acquires for 1 ms

Random laser
Light Scatterers:
Stochastic Resonators

Experiments - Random Laser 

M. Leonetti, LL, C. Conti, in preparation

Frequency band of excited modes not including pumping frequency
Different from multimode standard laser profile 
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Pumping 
laser beam

Light Amplifying
Medium

Mode-Locking:
Short pulses (1 ns)
High intensity, with 10Hz 
greq. emission
CCD acquires for 1 ms

Random laser
Light Scatterers:
Stochastic Resonators

Experiments - Random Laser 

Profile typical for high pumping intensity, qualitatively 
different from low pumping intensity: “transition” from 
continuous wave emission to random lasing regime.

M. Leonetti, LL, C. Conti, unpublished

68(1) x 10-6 µJ/ (µm)2

370(10) x 10-6 µJ/ (µm)2

Different from multimode standard laser profile 
Frequency band of modes not including pump frequency

This also happens decreasing temperature, 
D Wiersma and S Cavalieri Nature 2001
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Pumping 
laser beam

Mode-Locking:
Short pulses (1 ns)
High intensity, with 10Hz 
greq. emission
CCD acquires for 1 ms

Random laser
Light Scatterers:
Stochastic Resonators

Light Amplifying
Medium

M. Leonetti, LL, C. Conti, unpublished

Experiments - Random Laser 

Equilibrium spectra from the same 
piece of sample (same spot) of 

random laser:  different ensembles of 
modes activated on each 

experimental measurement.
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Pumping 
laser beam

Mode-Locking:
Short pulses (1 ns)
High intensity, with 10Hz 
greq. emission
CCD acquires for 1 ms

Random laser
Light Scatterers:
Stochastic Resonators

Light Amplifying
Medium

M. Leonetti, LL, C. Conti, unpublished

Experiments - Random Laser 

Equilibrium spectra from the same 
piece of sample (same spot) of 

random laser:  different ensembles of 
modes activated on each 

experimental measurement.
Explanation: 

Chaos?
Experimental uncertainty?
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M. Leonetti, LL, C. Conti, unpublished

Experiments - Random Laser 

Explanation (proposal):
Mode competition phenomena 

(frequency locking at each measure)
Conjecture:

 Complex free energy landscape 

SA
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Pumping 
laser beam

Mode-Locking:
Short pulses (1 ns)
High intensity, with 10Hz 
greq. emission
CCD acquires for 1 ms

Random laser
Light Scatterers:
Stochastic Resonators

Light Amplifying
Medium
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M. Leonetti, LL, C. Conti, unpublished

Experiments - Random Laser 

Complex free energy landscape 
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configurational space (1D projection)
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Pumping 
laser beam

Mode-Locking:
Short pulses (1 ns)
High intensity, with 10Hz 
greq. emission
CCD acquires for 1 ms

Random laser
Light Scatterers:
Stochastic Resonators

Light Amplifying
Medium
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Experiments - Random Laser 

Pumping 
laser beam

Mode-Locking:
Short pulses (1 ns)
High intensity, with 10Hz 
greq. emission
CCD acquires for 1 ms

Random laser
Light Scatterers:
Stochastic Resonators

Light Amplifying
Medium

This is not general for all random lasers
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Experiments - Random Laser 

There are also random lasing materials [porous semiconducting 
matrix infiltrated with and embedded in laser dye] 

where reproducibility of spikes is claimed. 
El-Dardiry et al. Phys. Rev. A 2010

Porous GaP

Pumping 
laser beam

Mode-Locking:
Short pulses (1 ns)
High intensity, with 10Hz 
greq. emission
CCD acquires for 1 ms

Random laser
Light Scatterers:
Stochastic Resonators

Light Amplifying
Medium

This is not general for all random lasers
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Experiments - Random Laser 

There are also random lasing materials [porous semiconducting 
matrix infiltrated with and embedded in laser dye] 

where reproducibility of spikes is claimed. 
El-Dardiry et al. Phys. Rev. A 2010

Porous GaP

Pumping 
laser beam

Mode-Locking:
Short pulses (1 ns)
High intensity, with 10Hz 
greq. emission
CCD acquires for 1 ms

Random laser
Light Scatterers:
Stochastic Resonators

Light Amplifying
Medium

This is not general for all random lasers

cavity-less laser?
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Modeling random laser modes in space:
the electromagnetic field of each localized light mode of 
frequency      is non-zero in a given region of space r.ω
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Modeling random laser modes in space:
the electromagnetic field of each localized light mode of 
frequency      is non-zero in a given region of space r.ω

A bit less 
pictorial...?
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E = Re [
∑

n
an(t)En(r) exp(−iωnt)]

H = Re [
∑

n
an(t)Hn(r) exp(−iωnt)]

E =

∑

k

Ek =

∑

k

|ak|
2

Theory - Coupled Light Modes

Maxwell equations in presence of nonlinear polarization in an electromagnetic cavity 

Solution to the equations is a superposition of modes: 

Complex amplitudes such that total 
energy stored in the EM cavity (closed):

K Sakoda, Optical Properties of Photonic Crystals, 2001
HA Haus, Waves and Fields in Optoelectonics, 1984
L Angelani et al. PRB 06

Electromagnetic Cavity of refractive index profile
	 	              non linear polarization   PNL(r)
	 	              displacement vector
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E = Re [
∑

n
an(t)En(r) exp(−iωnt)]

H = Re [
∑

n
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|ak|
2

L =

(
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(0)
n

F
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(

E
(k)
n

H
(k)
n
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Theory - Coupled Light Modes
Electromagnetic Cavity of refractive index profile
non linear polarization PNL and displacement vector

If PNL=0, amplitudes are constant the whole time dependence is in the oscillation and 
En, Hn are the eigenvalues of the system
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E = Re [
∑

n
an(t)En(r) exp(−iωnt)]

H = Re [
∑

n
an(t)Hn(r) exp(−iωnt)]

E =

∑

k

Ek =

∑

k

|ak|
2

a(t) = a(t1, t2, . . . , tn)

tn = ηnt

∂t =
∑

k

∂tk
∂t

∂tk =

∑

k

ηk∂tk ! ∂t0 + η∂t1 + . . .

t0 = t

Theory - Coupled Light Modes
Electromagnetic Cavity of refractive index profile
non linear polarization PNL and displacement vector

If PNL is not zero, amplitudes depend on time and solution has the general form above 
To obtain the time evolution of the amplitudes we expand around weak polarization, i.e.,

slowly varying amplitudes: multiscale approach
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Theory - Coupled Light Modes

If PNL is not zero, amplitudes depend on time and solution has the general form above 
To obtain the time evolution of the amplitudes we expand around weak polarization, i.e.,

slowly varying amplitudes: multiscale approach

tn = ηnt
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Theory - Coupled Light Modes

If PNL is not zero, amplitudes depend on time and solution has the general form above 
To obtain the time evolution of the amplitudes we expand around weak polarization, i.e.,

slowly varying amplitudes: multiscale approach

tn = ηnt
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Theory - Coupled Light Modes
If PNL is not zero, amplitudes depend on time and solution has the general form above 
To obtain the time evolution of the amplitudes we expand around weak polarization, i.e.,

slowly varying amplitudes: multi-scale approach

tn = ηnt
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Theory - Coupled Light Modes
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If PNL is not zero, amplitudes depend on time and solution has the general form above 
To obtain the time evolution of the amplitudes we expand around weak polarization, i.e.,

slowly varying amplitudes: multi-scale approach

Tuesday, February 12, 2013



LF
(1)
n

− ωnMF
(1)
n

= Bn

L =

(

0 i∇×

−i∇× 0

)

M =

(

ε0n
2(r) 0
0 µ0

)

Bn =









ıε0n
2(r)

dan
dt1

E
(0)
n

+ ıJ(0)
s

ıµ0
dan
dt1

H
(0)
n









Fn : (Fn,Bn) =

∫
V

F
∗

n · BndV = 0

dan(t)

dt
= ı

ωn

4

∫
V

E
∗

n(r) ·Pn(r) dV

Theory - Coupled Light Modes
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Fredholm theorem: orthogonality with the kernel (0) solution: 

yields

If PNL is not zero, amplitudes depend on time and solution has the general form above 
To obtain the time evolution of the amplitudes we expand around weak polarization, i.e.,

slowly varying amplitudes: multi-scale approach

J
(0)
n

= −iωnP
(0)
n
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Master equation

Dynamics of Coupled Light Modes

Optical response

Tuesday, February 12, 2013



Master equation

Dynamics of Coupled Light Modes

Langevin equationOptical response

Spontaneous emission
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ωj − ωk − ωl + ωm < δω

Master equation

Dynamics of Coupled Light Modes

Langevin equationOptical response

Spontaneous emission

ωj − ωk = ωl − ωm

Mode-locking condition

spectral line width
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Master equation

Dynamics of Coupled Light Modes

Langevin equationOptical response

Multimode mode-locking laser
- Once cavity is known, fields localization is known. 
- Optical susceptibility can be computed in gas lasers 
(classical em field approx.) with two and three levels (and 
more..). 
- To derive the optical susceptibility in solid state lasers is 
more complicated: em field must be quantizied. No known 
(by myself!)  results for multimode lasing.

GAIN MEDIUM SATURABLE
ABSORBER

ROUNDTRIP TIME: TR

GAIN MEDIUM

ROUNDTRIP TIME: TR
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Master equation

Dynamics of Coupled Light Modes

Langevin equation

This generically holds for light modes interacting in a non-linearly polarized medium
What are the specific features of the modes of a Random Laser?

Optical response

Spontaneous 
emission
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RANDOMNESS
Cavity-less light amplification: modes are amplified by 
scattering through randomly placed dielectric particles. 
This implies random spatial distribution of modes, 

and induces random susceptibility.

Mode spatial overlaps modulated by non-linear 
susceptibility yield quenched interactions

with (so far) unknown probability distributions

DISORDERED
DISTRIBUTED
INTERACTION
COEFFICIENT

Stochastic Dynamics in Random Lasers
LOCALIZED MODES

NONLINEAR  RANDOM 
SUSCEPTIBILITY

α COMPONENT OF  EM 
FIELD IN MODE m 

NON-LINEARITY + RANDOMNESS

S. Gentilini et al.,  Opt. Lett 34, 130 (2009).
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RANDOMNESS
Cavity-less light amplification: modes are amplified by 
scattering through randomly placed dielectric particles. 
This implies random spatial distribution of modes, 

and induces random susceptibility.

Mode spatial overlaps modulated by non-linear 
susceptibility yield quenched interactions

with (so far) unknown probability distributions

DISORDERED
DISTRIBUTED
INTERACTION
COEFFICIENT

Stochastic Dynamics in Random Lasers
LOCALIZED MODES

NONLINEAR  RANDOM 
SUSCEPTIBILITY

α COMPONENT OF  EM 
FIELD IN MODE m 

NON-LINEARITY + RANDOMNESS

Physical meaning of coefficients in master equation?

S. Gentilini et al.,  Opt. Lett 34, 130 (2009).
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Standard Mode-Locking Lasers

In absence of disorder the Master equation is the 
one of mode-locking lasers

HA Haus, Waves and Fields in Optoelectonics, 1984
γ>0
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Standard Mode-Locking Lasers

In absence of disorder the Master equation is the 
one of mode-locking lasers

HA Haus, Waves and Fields in Optoelectonics, 1984
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γ ∼ Re [g]

Standard Mode-Locking Lasers

In absence of disorder the Master equation is the 
one of mode-locking lasers

HA Haus, Waves and Fields in Optoelectonics, 1984
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Statistical Mechanics of waves in 
nonlinear disordered media

From Langevin to Hamilton
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Statistical Mechanics of Random Lasers
From Langevin to Hamilton

From instantaneous EM energy of the non-linear (closed) cavity to Hamiltonian
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E =

∑

k

ωk|ak|
2Non-linear localized mode-

coupling expressed by  4-body 
interaction between amplitudes

Localized mode 
interaction mediated 
by radiating modes 

with a global 
energy constraint

Statistical Mechanics of Random Lasers
From Langevin to Hamilton

Mean-Field model with Gaussian distribution of couplings: 
2+4 spherical spin-glass [A Crisanti & LL, PRL 04, PRB 06, PRB 07, NPB 13] 

Hamiltonian description:

From instantaneous EM energy of the non-linear (closed) cavity to Hamiltonian
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E =

∑

k

ωk|ak|
2

with a global 
energy constraint

Statistical Mechanics of Random Lasers

Hamiltonian description:

Topology? Light modes Network?
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Modeling random laser modes in space:
the electromagnetic field of each localized light mode of 
frequency      is non-zero in a given region of space r.
Modes interaction depends on their spatial overlap (4-uple).

ω
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Modeling random laser modes in space:
the electromagnetic field of each localized light mode of 
frequency      is non-zero in a given region of space r.
Modes interaction depends on their spatial overlap (4-uple).

ω

ωj − ωk = ωl − ωm
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Modeling random laser modes in space:
localized modes can be coarse-grained as nodes of a 
graph with links to other nodes if their spatial overlap is 
non-zero and the mode-locking condition is satisfied. 

gjklm ∝

∫
V

χ
(3)
α,β.γ,δ(ωj ,ωk,ωl,ωm)Eα

m(r)Eβ
j (r)E

γ
k (r)E

δ
l (r)d

3
r

ωj − ωk = ωl − ωm
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Modeling random laser modes in space:
localized modes can be coarse-grained as nodes of a 
graph with links to other nodes if their spatial overlap is 
non-zero and the mode-locking condition is satisfied. 

M modes 
in each 

cell
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gjklm ∝

∫
V

χ
(3)
α,β.γ,δ(ωj ,ωk,ωl,ωm)Eα

m(r)Eβ
j (r)E

γ
k (r)E

δ
l (r)d

3
r

Modeling random laser modes in space:
localized modes can be coarse-grained as nodes of a 
graph with links to other nodes if their spatial overlap is 
non-zero and the mode-locking condition is satisfied. 

M modes in each 
cell.

A cell is a node in a 
network.

Once all non-zero “4-modes” couplings have been selected:
network of cells/nodes, each one containing M modes.

ωj − ωk = ωl − ωm

4-mode but 2-node 
interaction

~(M,p) model
[Caltagirone et al. PRB10]

Selection “tools”:
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E =

∑

k

|ak|
2Non-linear localized mode-

coupling expressed by  4-body 
interaction between amplitudes

Localized mode 
interaction mediated 
by radiating modes 

with a global 
energy constraint

Summing up and moving forward

Statistical Mechanics allows to model different kinds of random lasers characterized by:

• degree of disorder (ranging from almost standard lasers with an irreducible noise to 
completely random lasers),  

• extension of modes localization,
• geometry and dimension, interaction range

• pumping intensity and mode-locked pulse length,

• role of radiating modes in modulating localized modes linear/’two-body’ interaction 
(assumption of pure self-interaction),

• characteristic times of magnitude and phase of  complex mode amplitudes 
(assumption of quenched amplitudes)

Hamiltonian description:
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Non-linear localized mode-
coupling expressed by  4-body 
interaction between amplitudes

Localized mode 
interaction mediated 
by radiating modes 

with a global 
energy constraint

Statistical Mechanics of Random Lasers

Statistical Mechanics allows to model different kinds of random lasers characterized by:

• degree of disorder 

• extension of modes localization,
• geometry and dim., interaction range

• pumping intensity 

• role of radiating modes in modulating 
localized modes ’two-body’ interaction

• characteristic times of magnitude and 
phase of  complex mode amplitudes

Hamiltonian description:

COUPLING DISTRIBUTION 
PARAMETER VALUES (mean, variance)

NETWORK/GRAPH 
STRUCTURE 

TEMPERATURE

SLOW / FAST

E =

∑

k

|ak|
2
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Random laser Hamiltonian zoology

Negligible non-local  interaction between 
localized modes via radiation  modes 
(closed cavity)

Decoupled  amplitude 
magnitude and phase

E =

∑

k

|ak|
2
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H[{φj}] ! −
∑

[j,k,l,m]

Jjklm cos (φj − φk + φl − φm)

Jjklm ∝ AjAkAlAmgjklm

Random laser Hamiltonian zoology II
E =

∑

k

|ak|
2

Quenched approximation for amplitudes
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H[{φj}] ! −
∑

[j,k,l,m]

Jjklm cos (φj − φk + φl − φm)
Jjklm ∝ AjAkAlAmgjklm

Couplings and Localization
E =

∑

k

|ak|
2

Quenched approximation for amplitudes

gjklm ∝

∫
V

χ
(3)
α,β.γ,δ(ωj ,ωk,ωl,ωm)Eα

m(r)Eβ
j (r)E

γ
k (r)E

δ
l (r)d

3
r

mode coupling
in position (nodes) 
and frequency

j

{

ωj

rj

Can we 
measure g’s?

Inferring g’s yields information about light modes localization
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H[{φj}] ! −
∑

[j,k,l,m]

Jjklm cos (φj − φk + φl − φm)

j

{

ωj

rj
C

(4)
jklm = 〈cos(φj − φk + φl − φm)〉

C
(4)
jklm = 〈Re [aja

∗

kal a
∗

m]〉 C
(2)
jklm = 〈Re [aja

∗

k]〉

Inverse problem in waves

Inferring g’s yields information about light modes localization

E =

∑

k

|ak|
2

gjklm ∝

∫
V

χ
(3)
α,β.γ,δ(ωj ,ωk,ωl,ωm)Eα

m(r)Eβ
j (r)E

γ
k (r)E

δ
l (r)d

3
r
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Inferring g’s yields information about light modes localization

gjklm ∝

∫
V

χ
(3)
α,β.γ,δ(ωj ,ωk,ωl,ωm)Eα

m(r)Eβ
j (r)E

γ
k (r)E

δ
l (r)d

3
r

Fitting graphical problem techniques can be applied/generalized, though:

- variables are continuous: XY (phases) 
or spherical (amplitudes) “spins”;

- quenched disorder is there;

- four point correlations have to be 
considered, besides two point. 

- Intensities (mode magnitudes) are 
available versus frequency. 
How many modes?  From 10 to 10^5, 
though refinement is finite in spectra 
(e.g., .3 nm) -> 100:1000 distinct 
frequencies can be usually appreciated;

- phases (vs. frequency) have not been 
measured yet: set up is ready, probing 
standard lasers and seeking high 
intensity random lasers (rhodamine+TiO2 
is not “energetic” enough).

C
(4)
jklm = 〈cos(φj − φk + φl − φm)〉

C
(4)
jklm = 〈Re [aja

∗

kal a
∗

m]〉 C
(2)
jklm = 〈Re [aja

∗

k]〉

Theory Experiments

Inverse problem in waves
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Inferring g’s yields information about light modes localization

gjklm ∝

∫
V

χ
(3)
α,β.γ,δ(ωj ,ωk,ωl,ωm)Eα

m(r)Eβ
j (r)E

γ
k (r)E

δ
l (r)d

3
r

“Warm up” with:
- ordered multimode mode-locking laser;
- linearly interacting waves (not lasers): 

Fitting graphical problem techniques can be applied, though:

C
(4)
jklm = 〈cos(φj − φk + φl − φm)〉

C
(4)
jklm = 〈Re [aja

∗

kal a
∗

m]〉 C
(2)
jklm = 〈Re [aja

∗

k]〉

- variables are continuous: XY (phases) 
or spherical (amplitudes) “spins”;

- quenched disorder is there;

- four point correlations have to be 
considered, besides two point. 

C
(2)
jklm = 〈Re [aja

∗

k]〉

- Intensities (mode magnitudes) are 
available versus frequency. 
How many modes?  From 10 to 10^5, 
though refinement is finite in spectra 
(e.g., .3 nm) -> 100:1000 distinct 
frequencies can be usually appreciated;

- phases (vs. frequency) have not been 
measured yet: set up is ready, probing 
standard lasers and seeking high 
intensity random lasers (rhodamine+TiO2 
is not “energetic” enough).

Inverse problem in waves

Tuesday, February 12, 2013



Mean-field model for slow amplitudes
In some systems modes can be localized 

but non-zero almost everywhere in the optically active medium
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Mean-field model for slow amplitudes
In some systems modes can be localized 

but non-zero almost everywhere in the optically active medium
Mode-locking condition

implies dilution: 
~ Erdos-Renyi random graph [Tyagi]

Phase model

Tuesday, February 12, 2013
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Mean-field model for slow amplitudes

Fully connected Mean-field approximation

In some systems modes can be localized 
but non-zero almost everywhere in the optically active medium

Mode-locking always satisfied

Mode-locking condition

implies dilution: Erdos-Renyi/
Bethe lattice [Tyagi]
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Mean-field model for slow amplitudes

Gaussian independent  identically 
distributed interaction couplings

Mean-field approximation:
- all 4-plets of phases interact with each other with small couplings 
(vanishing in the thermodynamic limit N→∞) - GEOMETRY
- bandwidth narrows and the spectral distribution of angular frequencies is 
peaked around a value: ωj~ ω0 for all modes j=1,…,N - MODE LOCKING           
condition ωj - ωk = ωl - ωm is always satisfied

PARTITION FUNCTION:

Statistical mechanical properties, thermodynamic phases, order parameters,.....
Tuesday, February 12, 2013



Mean-field replica theory

the role of inverse temperature
 is played by the square of the 

average stored energy per mode: 
“pumping rate”

Gaussian independent  identically 
distributed interaction couplings

Mean-field approximation

?

In mean-field replica calculation sites interaction is eliminated and replicas 
interaction is introduced through the overlap order parameters

plus standard o.p.’s (“magnetizations”)

Replica trick

Tuesday, February 12, 2013



〈Z〉 #

∫
Dφ

∫ ∏
jklm

dJjklme−J2

jklmeH[φ] #

∫
Dφ

∫ ∏
jklm

dJjklme−J2

jklmeJjklm cos(...φ...)

〈Zn〉 #
∏n

a=1

[

∫

Dφ(a)
∫
∏

jklm dJjklme−J2
jklmeH[φ(a)]

]

#
∫
∏n

a=1 Dφ(a)
∫
∏

jklm dJjklme−J2
jklme

Jjklm

∑

n

a=1
cos(...φ(a)...)

Mean-field replica theory

All replicas enter in the same way: symmetry 

Solving the thermodynamics replica symmetry is
spontaneously broken: RSB theory
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Statistical Mechanics of Random Lasers
Mean-field approximation

“REPLICATED” FREE ENERGY

Replica trick

76541 32

8 9 10 11 12 13

It is “correct”, e.g., thermodynamically stable / self-consistent                   
in the “one-step Replica Symmetry Breaking” scheme of computation

G.Parisi, 1979, 1980
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Statistical Mechanics of Random Lasers

Gaussian independent  identically 
distributed interaction couplings

Mean-field approximation

SELF-CONSISTENCY EQUATIONS

“REPLICATED” FREE ENERGY

LL et al PRL 09
C Conti and LL, PRB 11

N.B.: 
RSB parameter 

m still 
undetermined

Tuesday, February 12, 2013



Photonic phase diagram
Mean-field approximation

Photonics: pumping vs disorder
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Phase diagram
Mean-field approximation

Photonics: pumping vs disorder
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Mean-field approximation

Discontinuous order parameters

Across transitions
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Outlook and Perspectives
So far....
* Experimental spectral evidence compatible with the conjecture that  random laser 
thermodynamics/dynamics is ruled by complex free energy landscape.

* Physical replicas realization: in experiments the quenched disorder can be kept 
constant for different measurements. 

* RL behavior can be modeled by Hamiltonian models with quenched disorder and 
effects of tuning disorder strength can be predicted.
[control of disorder is fundamental in the physics and engineering of nano-structured 
lasers (and “cavity-less” lasers)].
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Outlook and Perspectives
So far....
* Experimental spectral evidence compatible with the conjecture that  random laser thermodynamics/dynamics 
is ruled by complex free energy landscape.
* Physical replicas realization: in experiments the quenched disorder can be kept constant for different 
measurements. 
* RL behavior can be modeled by Hamiltonian models with quenched disorder and effects of tuning disorder 
strength can be predicted.
[control of disorder is fundamental in the physics and engineering of nano-structured lasers (and “cavity-less” 
lasers)].

In progress....
* “photonic spin-glasses” can model and reproduce: (i) fluorescence/random laser 
transition [Angelani et al. PRL06], (ii) ordered/random laser transition [LL et al PRL09, Conti & LL 

PRB11] (e.g., granulars [Folli et al. PRL12], nano crystal lasers,..) (iii) random laser spectra.

* Inference of non-linear couplings yield information about modes localization and 
optical response in random (and non-random) lasers. Graphical problems techniques.

* Construction of quantitative models (real distribution of disorder, total energy profile 
with pumping, diluted interactions, finite dimensional structure, …).

* Applications to other wave problems in nonlinear random media (BEC in temperature, 
optical propagation at T=0) [Conti & LL PRB11].
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So far....
* Experimental spectral evidence compatible with the conjecture that  random laser thermodynamics/dynamics is ruled by 
complex free energy landscape.
* Physical replicas realization: in experiments the quenched disorder can be kept constant for different measurements [Leonetti]. 
* RL behavior can be modeled by Hamiltonian models with quenched disorder and effects of tuning disorder strength can be 
predicted [LL et al PRL09].
[control of disorder is fundamental in the physics and engineering of nano-structured lasers (and “cavity-less” lasers)].

In progress....
* “photonic spin-glasses” can model and reproduce: (i) fluorescence/random laser transition , (ii) ordered/random laser 
transition [LL et al PRL09, Conti & LL PRB11] (e.g., in granulars Folli et al. PRL12) (iii) random laser spectra [Antenucci, Tyagi].
* Inference of non-linear couplings yield information about modes localization and optical response in random (and non-random) 
lasers. Graphical problems techniques [Tyagi].
* Non-linear susceptibility computation for multimode gas and solid state lasers, small disorder effects [Marruzzo].
* Construction of quantitative models (real distribution of disorder, total energy profile with pumping, diluted interactions, finite 
dimensional structure, …) [Antenucci, Ibanez, Tyagi].
* Applications to other wave problems in nonlinear random media (BEC in temperature, optical propagation at T=0) [Conti & LL 
PRB11].

Experimentally...
* Experiments to measure phases rather than intensities [Ghofraniha] and directly 
access the dynamic variables would allow for correlation measure and theory test and 
inference.
* Experiments in which the degree of disorder is tuned changing the compactness 
of granular stochastic resonators in random lasing materials [Folli et al. PRL12].

Outlook and Perspectives
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