

Random Lasers and Photonic Spin-Glasses: an introduction to theoretical and experimental challenges

Luca Leuzzi IPCF-CNR, UOS Roma, Italy

in collaboration with

Claudio Conti - Department of Physics, Sapienza University of Rome,

Neda Ghofraniha, Miguel Ibanez Berganza, Payal Tyagi - IPCF-CNR

Viola Folli, Marco Leonetti - ISC-CNR

Fabrizio Antenucci, Alessia Marruzzo - Sapienza University.

luca.leuzzi@cnr.it

Random Laser: an old idea

Laser

1958: *Infrared and Optical Masers*, by Arthur L. Schawlow, Charles H. Townes, Physical Review

Random Laser

1967: VS Letokhov - JETP Lett. (theory) Idea: Stimulated emission without a resonant cavity

1994: Lawandy

Laser action in strongly scattering media (experiments) Realization: multiple scattering medium (i.e., set of stochastic resonators), a multimode laser with disorder.

Laser output spectrum

Frequency

Random Laser

Pumping mode-locked laser (pulses of high intensity) in an optically active disordered material (powder/precipitate in light amplifying medium)

E.g., precipitate of TiO₂ particles (scatterers) in methanol solution doped by **rhodamine** (light amplifying)

Random Laser

Pumping mode-locked laser (pulses of high intensity) in an optically active disordered material (powder/precipitate in light amplifying medium)

E.g., precipitate of TiO₂ particles (scatterers) in methanol solution doped by rhodamine (light amplifying)

FAQS

Frequency band of excited modes not including pumping frequency ^{\[nm]}

Frequency band of excited modes not including pumping frequency ^{\lambda [nm]}

Different from multimode standard laser profile

This also happens decreasing temperature, D Wiersma and S Cavalieri Nature 2001

50

0

500

550

600

Inm

650

700

λ [nm]

λ [nm]

λ [nm]

Experimental uncertainty?

rhodamine sol. in methanol
Pumping Laser Nd:YAG
peak RL: $\lambda \sim 600 \text{ nm}$
pumping: $\lambda = 532 \text{ nm}$
bin: $\delta \lambda = 0.03 \text{ nm}$
l of pumping beam
~ 0.0004 [µJ/µm ²]
of RL absorbed by CCD:
611(8) x 10 ³ (countings)

Dandom Locar TirO

M. Leonetti, LL, C. Conti, unpublished

Tuesday, February 12, 2013

λ [nm]

Random laser

This is not general for all random lasers

Random laser

Porous GaP

This is not general for all random lasers

There are also random lasing materials [porous semiconducting matrix infiltrated with and embedded in laser dye] where reproducibility of spikes is claimed. El-Dardiry *et al.* Phys. Rev. A 2010

Random laser

Porous GaP

This is not general for all random lasers

There are also random lasing materials [porous semiconducting matrix infiltrated with and embedded in laser dye] where reproducibility of spikes is claimed. El-Dardiry *et al.* Phys. Rev. A 2010

cavity-less laser?

Statistical Physics Approaches Networks Across Disciplines

Tuesday, February 12, 2013

DIPARTIMENTO

Electromagnetic Cavity of refractive index profile $n(\mathbf{r})$ non linear polarization $\mathbf{P}_{NL}(\mathbf{r})$ displacement vector $\mathbf{D}(\mathbf{r}) = \epsilon_0 n^2(\mathbf{r}) \mathbf{E}(\mathbf{r}) + \mathbf{P}_{NL}(\mathbf{r})$

Maxwell equations in presence of nonlinear polarization in an electromagnetic cavity

 $egin{aligned}
abla imes \mathbf{H} &= rac{\partial \mathbf{D}}{\partial t} = \epsilon_0 n^2(\mathbf{r}) rac{\partial \mathbf{E}}{\partial t} + rac{\partial \mathbf{P}_{NL}}{\partial t} \
abla imes \mathbf{E} &= -\mu_0 \partial_t \mathbf{H} \end{aligned}$

K Sakoda, Optical Properties of Photonic Crystals, 2001 HA Haus, Waves and Fields in Optoelectonics, 1984 L Angelani et al. PRB 06

Solution to the equations is a superposition of modes:

 $\mathbf{E} = \operatorname{Re} \left[\sum_{n} a_{n}(t) \mathbf{E}_{n}(\mathbf{r}) \exp(-i\omega_{n}t)\right]$

 $\mathbf{H} = \operatorname{Re} \left[\sum_{n} a_{n}(t) \mathbf{H}_{n}(\mathbf{r}) \exp(-i\omega_{n}t)\right]$

Complex amplitudes such that total energy stored in the EM cavity (closed):

Electromagnetic Cavity of refractive index profile $n(\mathbf{r})$ non linear polarization \mathbf{P}_{NL} and displacement vector $\mathbf{D}(\mathbf{r}) = \epsilon_0 n^2(\mathbf{r}) \mathbf{E}(\mathbf{r}) + \mathbf{P}_{NL}(\mathbf{r})$

 $\nabla \times \mathbf{H} = \frac{\partial \mathbf{D}}{\partial t} = \epsilon_0 n^2(\mathbf{r}) \frac{\partial \mathbf{E}}{\partial t} + \frac{\partial \mathbf{P}_{NL}}{\partial t}$ $\mathbf{E} = \operatorname{Re} \left[\sum_n a_n(t) \mathbf{E}_n(\mathbf{r}) \exp(-i\omega_n t) \right]$

 $\mathbf{H} = \operatorname{Re} \left[\sum_{n} a_{n}(t) \mathbf{H}_{n}(\mathbf{r}) \exp(-i\omega_{n}t)\right]$

 $abla imes {f E} = -\mu_0 \partial_t {f H}$

$$\mathcal{E} = \sum_k \mathcal{E}_k = \sum_k |a_k|^2$$

If $P_{NL}=0$, amplitudes are constant the whole time dependence is in the oscillation and E_n , H_n are the eigenvalues of the system

$$\mathcal{LF}_{n}^{(0)} = \omega_{n} \mathcal{MF}_{n}^{(0)} \qquad \qquad \mathcal{F}_{n}^{(k)} = \begin{pmatrix} \mathbf{E}_{n}^{(k)} \\ \mathbf{H}_{n}^{(k)} \end{pmatrix}$$
$$\mathcal{L} = \begin{pmatrix} 0 & i\nabla \times \\ -i\nabla \times & 0 \end{pmatrix} \qquad \qquad \mathcal{M} = \begin{pmatrix} \epsilon_{0} n^{2}(\mathbf{r}) & 0 \\ 0 & \mu_{0} \end{pmatrix}$$

Electromagnetic Cavity of refractive index profile $n(\mathbf{r})$ non linear polarization \mathbf{P}_{NL} and displacement vector $\mathbf{D}(\mathbf{r}) = \epsilon_0 n^2(\mathbf{r}) \mathbf{E}(\mathbf{r}) + \mathbf{P}_{NL}(\mathbf{r})$

$$\nabla \times \mathbf{H} = \frac{\partial \mathbf{D}}{\partial t} = \epsilon_0 n^2 (\mathbf{r}) \frac{\partial \mathbf{E}}{\partial t} + \frac{\partial \mathbf{P}_{NL}}{\partial t}$$
$$\mathbf{E} = \operatorname{Re} \left[\sum_n a_n(t) \mathbf{E}_n(\mathbf{r}) \exp(-i\omega_n t) \right]$$
$$\mathbf{H} = \operatorname{Re} \left[\sum_n a_n(t) \mathbf{H}_n(\mathbf{r}) \exp(-i\omega_n t) \right]$$

 $abla imes {f E} = -\mu_0 \partial_t {f H}$

$$\mathcal{E} = \sum_{k} \mathcal{E}_k = \sum_{k} |a_k|^2$$

If **P**_{NL} is not zero, amplitudes depend on time and solution has the general form above To obtain the time evolution of the amplitudes we expand around weak polarization, i.e., slowly varying amplitudes: multiscale approach

$$a(t) = a(t_1, t_2, \dots, t_n)$$

$$t_n = \eta^n t \qquad \qquad t_0 = t$$

$$\partial_t = \sum_k \frac{\partial t_k}{\partial t} \partial_{t_k} = \sum_k \eta^k \partial_{t_k} \simeq \partial_{t_0} + \eta \partial_{t_1} + \dots$$

If **P**_{NL} is not zero, amplitudes depend on time and solution has the general form above To obtain the time evolution of the amplitudes we expand around weak polarization, i.e., slowly varying amplitudes: multiscale approach

$$\mathbf{E} \simeq \operatorname{Re} \left\{ \sum_{n} \left[\mathbf{E}_{n}^{(0)} + \eta \mathbf{E}_{n}^{(1)} + \dots \right] \exp(-\iota \omega_{n} t) \right\}$$
$$\mathbf{H} \simeq \operatorname{Re} \left\{ \sum_{n} \left[\mathbf{H}_{n}^{(0)} + \eta \mathbf{H}_{n}^{(1)} + \dots \right] \exp(-\iota \omega_{n} t) \right\}$$
$$\overline{t_{n} = \eta}$$

If **P**_{NL} is not zero, amplitudes depend on time and solution has the general form above To obtain the time evolution of the amplitudes we expand around weak polarization, i.e., slowly varying amplitudes: multiscale approach

$$\mathbf{E} \simeq \operatorname{Re} \left\{ \sum_{n} \left[\mathbf{E}_{n}^{(0)} + \eta \mathbf{E}_{n}^{(1)} + \dots \right] \exp(-i\omega_{n}t) \right\} \\ \mathbf{H} \simeq \operatorname{Re} \left\{ \sum_{n} \left[\mathbf{H}_{n}^{(0)} + \eta \mathbf{H}_{n}^{(1)} + \dots \right] \exp(-i\omega_{n}t) \right\} \\ \mathbf{P}_{NL} = \operatorname{Re} \left[\sum_{n} \mathbf{P}_{n}(t_{1}, t_{2}, \dots) \exp(-i\omega_{n}t) \right] \\ \simeq \operatorname{Re} \left[\sum_{n} \left(\mathbf{P}_{n}^{(0)} + \eta \mathbf{P}_{n}^{(1)} + \dots \right) \exp(-i\omega_{n}t) \right] \\ \mathbf{J} = \partial_{t} \mathbf{P}_{NL} = \operatorname{Re} \left[\sum_{n} \mathbf{J}_{n}(t_{1}, t_{2}, \dots) \exp(-i\omega_{n}t) \right] \\ \simeq \operatorname{Re} \left[\sum_{n} \left(\mathbf{J}_{n}^{(0)} + \eta \mathbf{J}_{n}^{(1)} + \dots \right) \exp(-i\omega_{n}t) \right] \\ \mathbf{J}_{n}^{(0)} = -i\omega_{n} \mathbf{P}_{n}^{(0)} \end{cases}$$

Theory - Coupled Light Modes If PNL is not zero, amplitudes depend on time and solution has the general form above To obtain the time evolution of the amplitudes we expand around weak polarization, i.e., $\boldsymbol{J}_{i} \partial_t \boldsymbol{p}$ slowly varying amplitudes: multi-scale approach $\mathbf{E} \simeq \operatorname{Re} \left\{ \sum_{n} \begin{bmatrix} \mathbf{E}_{n}^{(0)} + \eta \mathbf{E}_{n}^{(1)} + \vdots \\ \mathbf{R}_{e} & \mathbf{P}_{n} \end{bmatrix} \exp(-i\omega_{n}t) \right\}$ $\mathbf{H} \simeq \operatorname{Re} \left\{ \sum_{n} \begin{bmatrix} \mathbf{H}_{n}^{(0)} + \eta \mathbf{E}_{n}^{(1)} + \vdots \\ \mathbf{R}_{e} & \mathbf{P}_{n}^{(1)} \end{bmatrix} \exp(-i\omega_{n}t) \right\}$ $\mathbf{P}_{NL} = \operatorname{Re} \begin{bmatrix} \sum_{n} \mathbf{P}_{n}(t_{1}, t_{2}, \dots) \exp(-i\omega_{n}t) \end{bmatrix} \exp(-i\omega_{n}t)$ $\mathbf{P}_{NL} = \operatorname{Re} \begin{bmatrix} \sum_{n} \mathbf{P}_{n}(t_{1}, t_{2}, \dots) \exp(-i\omega_{n}t) \end{bmatrix} \exp(-i\omega_{n}t)$ $\mathbf{P}_{n} = \operatorname{Re} \begin{bmatrix} \sum_{n} \left(\mathbf{P}_{n}^{(0)} + \eta \mathbf{P}_{n}^{(1)} + \dots \right) \exp(-i\omega_{n}t) \\ \mathbf{P}_{n} \end{bmatrix} \exp(-i\omega_{n}t)$ $\mathbf{J}_{n}^{(0)} = -i\omega_{n} \mathbf{P}_{n}^{(0)}$ $abla imes \mathbf{H} = rac{\partial \mathbf{D}}{\partial t} = \epsilon_0 n^2(\mathbf{r}) rac{\partial \mathbf{E}}{\partial t} + rac{\partial \mathbf{P}_{NL}}{\partial t}$ $abla imes {f E} = -\mu_0 \partial_t {f H}$

If **PNL** is not zero, amplitudes depend on time and solution has the general form above To obtain the time evolution of the amplitudes we expand around weak polarization, i.e., slowly varying amplitudes: multi-scale approach

$$\mathcal{LF}_{n}^{(1)} - \omega_{n} \mathcal{MF}_{n}^{(1)} = \mathcal{B}_{n}$$

$$\mathcal{L} = \begin{pmatrix} 0 & i\nabla \times \\ -i\nabla \times & 0 \end{pmatrix} \qquad \mathcal{M} = \begin{pmatrix} \epsilon_{0}n^{2}(\mathbf{r}) & 0 \\ 0 & \mu_{0} \end{pmatrix} \qquad \mathcal{F}_{n}^{(k)} = \begin{pmatrix} \mathbf{E}_{n}^{(k)} \\ \mathbf{H}_{n}^{(k)} \end{pmatrix}$$

$$\mathcal{B}_{n} = \begin{pmatrix} i\varepsilon_{0}n^{2}(\mathbf{r})\frac{da_{n}}{dt_{1}}\mathbf{E}_{n}^{(0)} + i\mathbf{J}_{s}^{(0)} \\ i\mu_{0}\frac{da_{n}}{dt_{1}}\mathbf{H}_{n}^{(0)} \end{pmatrix}$$

Fredholm theorem: orthogonality with the kernel (0) solution:

$$\mathcal{F}_{n}: \qquad (\mathcal{F}_{n}, \mathcal{B}_{n}) = \int_{V} \mathcal{F}_{n}^{*} \cdot \mathcal{B}_{n} dV = 0$$
$$\mathbf{J}_{n}^{(0)} = -i\omega_{n} \mathbf{P}_{n}^{(0)}$$
$$\mathbf{J}_{n}^{(0)} = -i\omega_{n} \mathbf{P}_{n}^{(0)}$$

yields

Spontaneous emission

What are the specific features of the modes of a Random Laser?

Stochastic Dynamics in Random Lasers

S. Gentilini et al., Opt. Lett 34, 130 (2009).

RANDOMNESS

Stochastic Dynamics in Random Lasers

S. Gentilini et al., Opt. Lett 34, 130 (2009).

RANDOMNESS

Statistical Mechanics of waves in nonlinear disordered media

From Langevin to Hamilton $\frac{da_m(t)}{dt} = \sum_l \gamma_{lm} a_l + \sum_{[jkl]} g_{jklm} a_j^* a_k a_l + \Gamma_m(t) \longrightarrow \dot{a}_j = -\frac{\partial \mathcal{H}}{\partial a_j^*} + \Gamma_j$

From Langevin to Hamilton • $\frac{da_m(t)}{dt} = \sum_l \gamma_{lm} a_l + \sum_{[jkl]} g_{jklm} a_j^* a_k a_l + \Gamma_m(t) \longrightarrow \dot{a}_j = -\frac{\partial \mathcal{H}}{\partial a_j^*} + \Gamma_j$ From instantaneous EM energy of the non-linear (closed) cavity to Hamiltonian • $\mathcal{E} = \frac{1}{2} \int [\mathbf{D}(\mathbf{r}) \cdot \mathbf{E}(\mathbf{r}) + \mu_0 |\mathbf{H}(\mathbf{r})|^2] dV = \sum_m \mathcal{N}_m \omega_m |a_m(t)|^2 + \frac{1}{2} \int \mathbf{E}(\mathbf{r}) \cdot \mathbf{P}_{NL}(\mathbf{r}) dV$ $\longrightarrow \mathcal{H} = -\frac{1}{2} \langle \int \mathbf{E}(\mathbf{r}) \cdot \mathbf{P}_{NL}(\mathbf{r}) dV \rangle_{\text{optical cycle}}$

From Langevin to Hamilton
•
$$\frac{da_m(t)}{dt} = \sum_l \gamma_{lm} a_l + \sum_{[jkl]} g_{jklm} a_j^* a_k a_l + \Gamma_m(t) \longrightarrow \dot{a}_j = -\frac{\partial \mathcal{H}}{\partial a_j^*} + \Gamma_j$$

From instantaneous EM energy of the non-linear (closed) cavity to Hamiltonian
• $\mathcal{E} = \frac{1}{2} \int [\mathbf{D}(\mathbf{r}) \cdot \mathbf{E}(\mathbf{r}) + \mu_0 |\mathbf{H}(\mathbf{r})|^2] dV = \sum_m \mathcal{N}_m \omega_m |a_m(t)|^2 + \frac{1}{2} \int \mathbf{E}(\mathbf{r}) \cdot \mathbf{P}_{NL}(\mathbf{r}) dV$
 $\longrightarrow \mathcal{H} = -\frac{1}{2} \langle \int \mathbf{E}(\mathbf{r}) \cdot \mathbf{P}_{NL}(\mathbf{r}) dV \rangle_{\text{optical cycle}}$
Hamiltonian description:
 $\mathcal{H}[\{a_j\}] = -\text{Re} \begin{bmatrix} \sum_{jk} \gamma_{jk} a_j a_k^* + \sum_{jklm} g_{jklm} a_j a_k^* a_l a_m^* \\ \text{Localized mode} \\ \text{Interaction mediated} \\ \text{by radiating modes} \end{bmatrix}$
Non-linear localized mode-
coupling expressed by 4-body interaction between amplitudes \\\mathcal{E} = \sum_k \omega_k |a_k|^2
Mean-Field model with Gaussian distribution of couplings:
2+4 spherical spin-glass [A Cirsanti & LL, PRI 06, PRB 07, NPB 13]

Modeling random laser modes in space: the electromagnetic field of each localized light mode of frequency ω is non-zero in a given region of space **r**. <u>Modes interaction depends on their spatial overlap (4-uple)</u>.

UPARTIMENTO

Modeling random laser modes in space: the electromagnetic field of each localized light mode of frequency ω is non-zero in a given region of space **r**. <u>Modes interaction depends on their spatial overlap (4-uple)</u>.

Modeling random laser modes in space: localized modes can be coarse-grained as nodes of a graph with links to other nodes if their spatial overlap is non-zero and the mode-locking condition is satisfied.

Modeling random laser modes in space: localized modes can be coarse-grained as nodes of a graph with links to other nodes if their spatial overlap is non-zero and the mode-locking condition is satisfied.

Once all non-zero "4-modes" couplings have been selected: network of cells/nodes, each one containing M modes.

Selection "tools":

$$g_{jklm} \propto \int_{V} \chi^{(3)}_{\alpha,\beta,\gamma,\delta}(\omega_{j},\omega_{k},\omega_{l},\omega_{m}) E^{\alpha}_{m}(\mathbf{r}) E^{\beta}_{j}(\mathbf{r}) E^{\gamma}_{k}(\mathbf{r}) E^{\delta}_{l}(\mathbf{r}) d^{3}\mathbf{r}$$

Summing up and moving forward

global

Hamiltonian description:

$$\mathcal{H}[\{a_{j}\}] = -\operatorname{Re} \left[\sum_{jk} \gamma_{jk} a_{j} a_{k}^{*} + \sum_{[jklm]} g_{jklm} a_{j} a_{k}^{*} a_{l} a_{m}^{*} \right]$$
with a global energy constraint energy constraint.
Localized mode interaction mediated by radiating modes Non-linear localized mode-coupling expressed by 4-body interaction between amplitudes $\mathcal{E} = \sum_{k} |a_{k}|^{2}$

Statistical Mechanics allows to model different kinds of random lasers characterized by:

- degree of disorder (ranging from almost standard lasers with an irreducible noise to completely random lasers),
- extension of modes localization,
- geometry and dimension, interaction range
- pumping intensity and mode-locked pulse length,
- role of **radiating modes** in modulating localized modes linear/'two-body' interaction (assumption of pure self-interaction),
- characteristic *times of magnitude and phase* of complex mode amplitudes (assumption of quenched amplitudes)

Statistical Mechanics allows to model different kinds of random lasers characterized by:

• degree of disorder — COUPLING DISTRIBUTION PARAMETER VALUES (mean, variance)

- extension of modes localization,
- geometry and dim., interaction range
- *pumping* intensity
- role of radiating modes in modulating localized modes 'two-body' interaction
- characteristic *times of magnitude and phase* of complex mode amplitudes

NETWORK/GRAPH STRUCTURE

TEMPERATURE

$$\sum_{jk} \gamma_{jk} a_j a_k^st \simeq \sum_j \gamma_j |a_j|^2
onumber \ a_j = oldsymbol{A}_j \ e^{\imath \phi_j}$$

SLOW / FAST

$$\mathcal{H}[\{a_j\}] = -\operatorname{Re} \begin{bmatrix} \sum_{jk} \gamma_{jk} a_j a_k^* + \sum_{[jklm]} g_{jklm} a_j a_k^* a_l a_m^* \end{bmatrix} \quad \mathcal{E} = \sum_k |a_k|^2$$
$$\mathcal{H}[\{A_j; \phi_j\}] \simeq -\sum_j \gamma_j A_i^2 - \sum_{[jklm]} A_j A_k A_l A_m \operatorname{Re} \left[g_{jklm} e^{i(\phi_i - \phi_k + \phi_l - \phi_m)}\right]$$

Quenched approximation for amplitudes

$$\mathcal{H}[\{\phi_j\}] \simeq -\sum_{[j,k,l,m]} J_{jklm} \cos\left(\phi_j - \phi_k + \phi_l - \phi_m\right)$$
$$J_{jklm} \propto A_j A_k A_l A_m g_{jklm}$$

$$\mathcal{H}[\{a_{j}\}] = -\operatorname{Re}\left[\sum_{jk} \gamma_{jk} a_{j} a_{k}^{*} + \sum_{[jklm]} g_{jklm} a_{j} a_{k}^{*} a_{l} a_{m}^{*}\right] \qquad \mathcal{E} = \sum_{k} |a_{k}|^{2}$$

$$\mathcal{H}[\{A_{j}; \phi_{j}\}] \simeq -\sum_{j} \gamma_{j} A_{i}^{2} - \sum_{[jklm]} A_{j} A_{k} A_{l} A_{m} \operatorname{Re}\left[g_{jklm} e^{i(\phi_{i} - \phi_{k} + \phi_{l} - \phi_{m})}\right]$$

$$\mathcal{H}[\{\phi_{j}\}] \simeq -\sum_{j} J_{jklm} \cos\left(\phi_{j} - \phi_{k} + \phi_{l} - \phi_{m}\right)$$

$$J_{jklm} \propto A_{j} A_{k} A_{l} A_{m} g_{jklm}$$

Inferring g's yields information about *light modes localization*

 $g_{jklm} \propto \int_{V} \chi^{(3)}_{\alpha,\beta,\gamma,\delta}(\omega_j,\omega_k,\omega_l,\omega_m) E^{\alpha}_m(\mathbf{r}) E^{\beta}_j(\mathbf{r}) E^{\gamma}_k(\mathbf{r}) E^{\delta}_l(\mathbf{r}) d^3 \mathbf{r}$

$$\mathcal{H}[\{a_{j}\}] = -\operatorname{Re}\left[\sum_{jk} \gamma_{jk} a_{j} a_{k}^{*} + \sum_{[jklm]} g_{jklm} a_{j} a_{k}^{*} a_{l} a_{m}^{*}\right] \qquad \mathcal{E} = \sum_{k} |a_{k}|^{2}$$
$$\mathcal{H}[\{\phi_{j}\}] \simeq -\sum_{[j,k,l,m]} J_{jklm} \cos(\phi_{j} - \phi_{k} + \phi_{l} - \phi_{m})$$
$$\omega_{j} - \omega_{k} = \omega_{m} - \omega_{l}$$

 $g_{jklm} \propto \int_{V} \chi^{(3)}_{\alpha,\beta,\gamma,\delta}(\omega_j,\omega_k,\omega_l,\omega_m) E^{\alpha}_m(\mathbf{r}) E^{\beta}_j(\mathbf{r}) E^{\gamma}_k(\mathbf{r}) E^{\delta}_l(\mathbf{r}) d^3 \mathbf{r}$

Inferring g's yields information about light modes localization

$$C_{jklm}^{(4)} = \left\langle \cos(\phi_j - \phi_k + \phi_l - \phi_m) \right\rangle \qquad \qquad j \begin{cases} \omega_j \\ \mathbf{r}_j \end{cases}$$

$$C_{jklm}^{(4)} = \langle \operatorname{Re} \left[a_j a_k^* a_l \, a_m^* \right] \rangle \qquad C_{jklm}^{(2)} = \langle \operatorname{Re} \left[a_j a_k^* \right] \rangle$$

$g_{jklm} \propto \int_{V} \chi^{(3)}_{lpha,eta,\gamma,\delta}(\omega_j,\omega_k,\omega_l,\omega_m) E^{lpha}_m(\mathbf{r}) E^{eta}_j(\mathbf{r}) E^{eta}_l(\mathbf{r}) E^{\delta}_l(\mathbf{r}) d^3\mathbf{r}$

Inferring g's yields information about light modes localization

Fitting graphical problem techniques can be applied/generalized, though:

Theory

- variables are continuous: XY (phases) or spherical (amplitudes) "spins";

- quenched disorder is there;

- four point correlations have to be considered, besides two point.

$$C_{jklm}^{(4)} = \langle \cos(\phi_j - \phi_k + \phi_l - \phi_m) \rangle$$
$$C_{jklm}^{(4)} = \langle \operatorname{Re} \left[a_j a_k^* a_l \, a_m^* \right] \rangle \qquad C_{jklm}^{(2)} = \langle \operatorname{Re} \left[a_j a_k^* \right] \rangle$$

Experiments

Intensities (mode magnitudes) are available versus frequency.
How many modes? From 10 to 10^5, though refinement is finite in spectra (e.g., .3 nm) -> 100:1000 distinct frequencies can be usually appreciated;

- phases (vs. frequency) have not been measured yet: set up is ready, probing standard lasers and seeking high intensity random lasers (rhodamine+TiO₂ is not "energetic" enough).

Inverse problem in waves

$g_{jklm} \propto \int_{V} \chi^{(3)}_{\alpha,\beta,\gamma,\delta}(\omega_j,\omega_k,\omega_l,\omega_m) E^{\alpha}_m(\mathbf{r}) E^{\beta}_j(\mathbf{r}) E^{\gamma}_k(\mathbf{r}) E^{\delta}_l(\mathbf{r}) d^3 \mathbf{r}$

Inferring g's yields information about light modes localization

Fitting graphical problem techniques can be applied, though:

 variables are continuous: XY (phases) or spherical (amplitudes) "spins";

- quenched disorder is there;

- four point correlations have to be considered, besides two point.

 $C_{jklm}^{(4)} = \left\langle \cos(\phi_j - \phi_k + \phi_l - \phi_m) \right\rangle$

 $C_{jklm}^{(4)} = \langle \operatorname{Re} \left[a_j a_k^* a_l \, a_m^* \right] \rangle \qquad C_{jklm}^{(2)} = \langle \operatorname{Re} \left[a_j a_k^* \right] \rangle$

Intensities (mode magnitudes) are available versus frequency.
How many modes? From 10 to 10^5, though refinement is finite in spectra (e.g., .3 nm) -> 100:1000 distinct frequencies can be usually appreciated;

- phases (vs. frequency) have not been measured yet: set up is ready, probing standard lasers and seeking high intensity random lasers (rhodamine+TiO₂ is not "energetic" enough).

"Warm up" with:

- ordered multimode mode-locking laser;
- linearly interacting waves (not lasers): $C_{jklm}^{(2)} = \langle \operatorname{Re} [a_j a_k^*] \rangle$

In some systems modes can be localized

but non-zero almost everywhere in the optically active medium

 $\mathcal{H}[\{A_j;\phi_j\}] \simeq -\sum_j \gamma_j A_i^2 - \sum_{[jklm]} A_j A_k A_l A_m \operatorname{Re}\left[g_{jklm} e^{i(\phi_i - \phi_k + \phi_l - \phi_m)}\right]$

In some systems modes can be localized

but non-zero almost everywhere in the optically active medium

Mode-locking condition

$$\omega_j - \omega_k = \omega_m - \omega_l$$

implies dilution:

~ Erdos-Renyi random graph [Tyagi]

Phase model

$$\mathcal{H}[\{A_j;\phi_j\}] \simeq -\sum_j \gamma_j A_i^2 - \sum_{[jklm]} A_j A_k A_l A_m \operatorname{Re} \left[g_{jklm} e^{i(\phi_i - \phi_k + \phi_l - \phi_m)} \right]$$
$$\mathcal{H}[\{A_j;\phi_j\}] \simeq -\mathcal{P}^2 \sum_{[jklm]} \operatorname{Re} \left[J_{jklm} e^{i(\phi_j - \phi_k + \phi_l - \phi_m)} \right]; \quad \begin{array}{c} \mathcal{P} \propto \left\langle A^2 \right\rangle \\ J_{jklm} \equiv g_{jklm} A_j A_k A_l A_m / \mathcal{P}^2 \end{array}$$

In some systems modes can be localized

but non-zero almost everywhere in the optically active medium

Mode-locking condition

$$\omega_j - \omega_k = \omega_m - \omega_l$$

implies dilution: Erdos-Renyi/ Bethe lattice [Tyagi]

$$\mathcal{H}[\{A_j;\phi_j\}] \simeq -\sum_j \gamma_j A_i^2 - \sum_{[jklm]} A_j A_k A_l A_m \operatorname{Re}\left[g_{jklm} e^{i(\phi_i - \phi_k + \phi_l - \phi_m)}
ight]$$

 $\mathcal{H}[\{A_j;\phi_j\}] \simeq -\mathcal{P}^2 \sum_{[jklm]} \operatorname{Re}\left[J_{jklm} e^{i(\phi_j - \phi_k + \phi_l - \phi_m)}
ight]; \quad \begin{array}{c} \mathcal{P} \propto \langle A^2
angle \\ J_{jklm} \equiv g_{jklm} A_j A_k A_l A_m / \mathcal{P}^2 \end{array}$

Fully connected Mean-field approximation

$$\mathcal{H}[\{\phi_j\}] \simeq -\mathcal{P}^2 \sum_{\substack{j < k; l < m; k < l}} J_{jklm} \cos\left(\phi_j - \phi_k + \phi_l - \phi_m\right)$$

Mean-field approximation:

- all 4-plets of phases interact with each other with small couplings (vanishing in the thermodynamic limit $N \rightarrow \infty$) - GEOMETRY - bandwidth narrows and the spectral distribution of angular frequencies is peaked around a value: $\omega_j \sim \omega_0$ for all modes j=1,...,N - MODE LOCKING condition $\omega_j - \omega_k = \omega_l - \omega_m$ is always satisfied

Gaussian independent identically distributed interaction couplings

$$\langle J_{jklm}
angle = J_0/N^3$$

 $\langle (J_{jklm} - \langle J_{jklm}
angle)^2
angle = \sigma_J/N^3$

$${\cal P}^2 = J_0 rac{\langle A^2
angle^2}{k_B T_{
m bath}}$$

PARTITION FUNCTION:

$$Z_J = \int \prod_{j=1}^N d\phi_j \,\, e^{-eta \mathcal{P}^2 \mathcal{H}[\{\phi_k\}]} = \int \prod_{j=1}^N d\phi_j \,\, e^{- ilde{eta} \mathcal{H}[\{\phi_k\}]}; \qquad ilde{eta} = \mathcal{P}^2 eta$$

Statistical mechanical properties, thermodynamic phases, order parameters,.....

 $\langle J_{jklm} \rangle = J_0 / N^3$

Mean-field replica theory

Gaussian independent identically

distributed interaction couplings

 $\mathcal{H}[\{\phi_j\}] \simeq - \sum J_{jklm} \cos(\phi_i - \phi_k + \phi_l - \phi_m)$

i < j: l < m: i < l

 $\langle \left(J_{jklm} - \langle J_{jklm}
ight
angle
ight)^2
angle = \sigma_J / N^3$

Mean-field approximation

the role of inverse temperature is played by the square of the average stored energy per mode: "pumping rate"

> $\hat{\beta} = \mathcal{P}^2 / k_B T$ $R_J \equiv \sigma_J/J_0$

 $Z_J = \int \prod_{i=1}^N d\phi_j \, e^{-eta \mathcal{P}^2 \mathcal{H}[\{\phi_k\}]} = \int \prod_{i=1}^N d\phi_j \, e^{- ilde{eta} \mathcal{H}[\{\phi_k\}]}; \qquad ilde{eta} = \mathcal{P}^2 eta igg| \qquad rac{\mathcal{P} \propto \langle \mathcal{E}
angle = \langle |a_j|^2
angle}{B_J = \sigma_J / J_0}$ $eta \Phi = -rac{1}{N} \langle \log Z_J
angle_J = -rac{1}{N} \lim_{n o 0} rac{\langle Z_J^n
angle - 1}{n}$ **Replica trick**

In mean-field replica calculation sites interaction is eliminated and replicas interaction is introduced through the **overlap** order parameters

$$q_{ab} = \langle e^{i(\phi_a - \phi_b)} \rangle$$
 $r_{ab} = \langle e^{i(\phi_a + \phi_b)} \rangle$
plus standard o.p.'s ("magnetizations")

$$m_a = \langle e^{\imath \phi_a}$$

$$\tilde{r}_a = \langle e^{2\imath\phi_a} \rangle$$

Mean-field replica theory

$$\beta \Phi = -\frac{1}{N} \left\langle \log Z_J \right\rangle_J = -\frac{1}{N} \lim_{n \to 0} \frac{\langle Z_J^n \rangle - 1}{n}$$
$$\langle Z \rangle \simeq \int \mathcal{D}\phi \int \prod_{jklm} dJ_{jklm} e^{-J_{jklm}^2} e^{\mathcal{H}[\phi]} \simeq \int \mathcal{D}\phi \int \prod_{jklm} dJ_{jklm} e^{-J_{jklm}^2} e^{J_{jklm} \cos(\dots\phi\dots)}$$

$$\langle Z^n \rangle \simeq \prod_{a=1}^n \left[\int \mathcal{D}\phi^{(a)} \int \prod_{jklm} dJ_{jklm} e^{-J_{jklm}^2} e^{\mathcal{H}[\phi^{(a)}]} \right]$$
$$\simeq \int \prod_{a=1}^n \mathcal{D}\phi^{(a)} \int \prod_{jklm} dJ_{jklm} e^{-J_{jklm}^2} e^{J_{jklm}} \sum_{a=1}^n \cos(\dots\phi^{(a)}\dots)$$

All replicas enter in the same way: symmetry

Solving the thermodynamics replica symmetry is spontaneously broken: RSB theory

It is "correct", e.g., thermodynamically stable / self-consistent in the "**one-step Replica Symmetry Breaking**" scheme of computation

$$P(X)=m \; \delta(X-X_0)+(1-m)\delta(X-X_1)$$

G.Parisi, 1979, 1980

$$\begin{split} \bar{\beta}\Phi &= -\frac{\bar{\beta}R_J}{8} |\tilde{m}|^4 - \frac{\bar{\beta}^2}{32} \begin{bmatrix} 1 - (1 - \frac{2}{m}) \left(|q_1|^4 + |r_1|^4 \right) - m \left(|q_0|^4 + |r_0|^4 \right) + |r_d|^2 \end{bmatrix} \\ &- \operatorname{Re} \left[\frac{1 - m}{2} \left(\bar{\lambda}_1^8 q_1 + \bar{\mu}_1^9 r_1 \right) + \frac{m}{2} \left(\bar{\lambda}_0^{10} q_0 + \bar{\mu}_0^{11} r_0 \right) - \bar{\mu}_d r_d - \bar{\nu} \tilde{m} \end{bmatrix} \\ &+ \frac{\lambda_1^R}{2} - \frac{1}{m} \int \mathcal{D}[\mathbf{0}] \log \int \mathcal{D}[\mathbf{1}] \left[\int_{\mathbf{0}}^{2\pi} \mathbf{d}\phi \, \exp \mathcal{L}(\phi; \mathbf{0}, \mathbf{1}) \right]^{\mathbf{m}} \end{split}$$

So far....

* Experimental spectral evidence compatible with the conjecture that **random laser** thermodynamics/dynamics is ruled by **complex free energy landscape**.

* **Physical replicas** realization: in experiments the quenched disorder can be kept constant for different measurements.

* RL behavior can be modeled by **Hamiltonian models with quenched disorder** and effects of tuning disorder strength can be predicted. [control of disorder is fundamental in the physics and engineering of **nano-structured lasers** (and "cavity-less" lasers)].

So far....

* Experimental spectral evidence compatible with the conjecture that **random laser** thermodynamics/dynamics is ruled by **complex free energy landscape**.

* **Physical replicas** realization: in experiments the quenched disorder can be kept constant for different measurements.

* RL behavior can be modeled by **Hamiltonian models with quenched disorder** and effects of tuning disorder strength can be predicted.

[control of disorder is fundamental in the physics and engineering of **nano-structured lasers** (and "cavity-less" lasers)].

In progress....

* "photonic spin-glasses" can model and reproduce: (i) fluorescence/random laser transition [Angelani et al. PRL06], (ii) ordered/random laser transition [LL et al PRL09, Conti & LL PRB11] (e.g., granulars [Folli et al. PRL12], nano crystal lasers,..) (iii) random laser spectra.

* Inference of non-linear couplings yield information about modes localization and optical response in random (and non-random) lasers. Graphical problems techniques.

* Construction of **quantitative models** (real distribution of disorder, total energy profile with pumping, diluted interactions, finite dimensional structure, ...).

* Applications to other wave problems in nonlinear random media (BEC in temperature, optical propagation at T=0) [Conti & LL PRB11].

So far....

* Experimental spectral evidence compatible with the conjecture that **random laser** thermodynamics/dynamics is ruled by **complex free energy landscape**.

* Physical replicas realization: in experiments the quenched disorder can be kept constant for different measurements [Leonetti].

* RL behavior can be modeled by **Hamiltonian models with quenched disorder** and effects of tuning disorder strength can be predicted [LL et al PRL09].

[control of disorder is fundamental in the physics and engineering of nano-structured lasers (and "cavity-less" lasers)].

In progress....

* "photonic spin-glasses" can model and reproduce: (i) **fluorescence/random laser transition**, (ii) **ordered/random laser transition** [LL et al PRL09, Conti & LL PRB11] (e.g., in granulars Folli et al. PRL12) (iii) **random laser spectra** [Antenucci, Tyagi]. * Inference of non-linear couplings yield information about **modes localization** and optical response in random (and non-random) lasers. Graphical problems techniques [Tyagi].

* Non-linear susceptibility computation for multimode gas and solid state lasers, small disorder effects [Marruzzo].

* Construction of **quantitative models** (real distribution of disorder, total energy profile with pumping, diluted interactions, finite dimensional structure, ...) [Antenucci, Ibanez, Tyagi].

* Applications to other wave problems in nonlinear random media (BEC in temperature, optical propagation at T=0) [Conti & LL PRB11].

Experimentally...

* Experiments to measure **phases** rather than intensities [Ghofraniha] and directly access the dynamic variables would allow for correlation measure and theory test and inference.

* Experiments in which the **degree of disorder is tuned changing the compactness of granular stochastic resonators** in random lasing materials [Folli et al. PRL12].