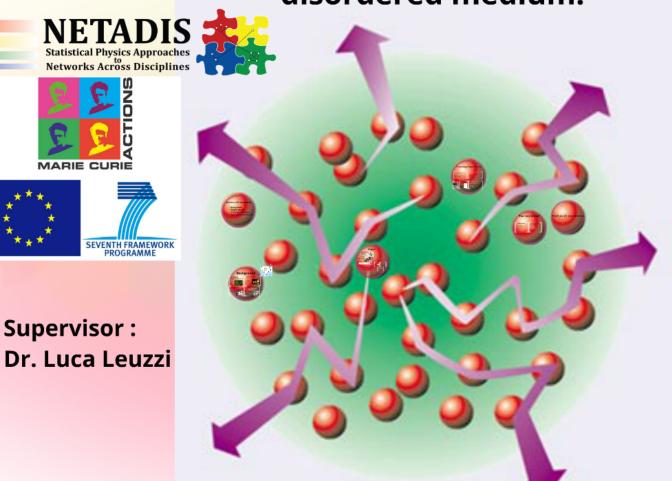

"Inference of coupling of waves in non linear disordered medium."



ESR: **Payal Tyagi**

Supervisor:

"Inference of coupling of waves in non linear disordered medium."

ESR: **Payal Tyagi**

Supervisor:

Scheme of Presentation

- Background
- Project details
- Training experience
- Applications and future

Background

BS Physics

St. Stephen's College, University of Delhi, New Delhi, India

2007-10

Early Stage Reseacher/ PhD student

IPCF-CNR/ Sapienza University, Rome

starting: Nov 2012

ARABIAN SEA

MSc Physics

Banasthali University, Rajasthan, India

2010-12

Focus : Condensed Matter Physics

Project Trainee

" Crystal- chemical comparative study between naturally occuring shpene crystals."

Bhabha Atomic Research Centre(BARC), Mumbai, India

May-June 2011

BS Physics

St. Stephen's College, University of Delhi, New Delhi, India

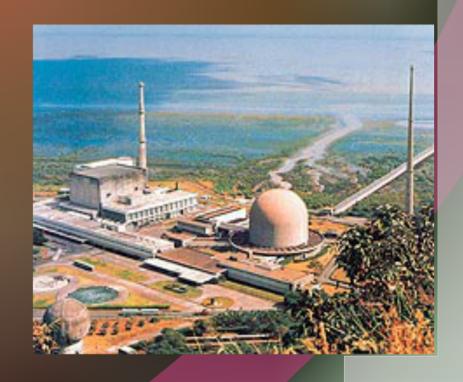
2007-10

MSc Physics
Banasthali University, Rajasthan, India

2010-12

Focus: Condensed

Matter Physics



Project Trainee

"Crystal- chemical comparative study between naturally occuring shpene crystals."

Bhabha Atomic Research Centre(BARC), Mumbai, India

May-June 2011

Early Stage Reseacher/ PhD student

IPCF-CNR/ Sapienza University, Rome

starting: Nov 2012

Background

BS Physics

St. Stephen's College, University of Delhi, New Delhi, India

2007-10

Early Stage Reseacher/ PhD student

IPCF-CNR/ Sapienza University, Rome

starting: Nov 2012

ARABIAN SEA

MSc Physics

Banasthali University, Rajasthan, India

2010-12

Focus : Condensed Matter Physics

Project Trainee

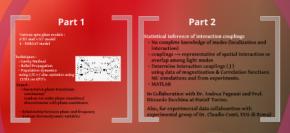
" Crystal- chemical comparative study between naturally occuring shpene crystals."

Bhabha Atomic Research Centre(BARC), Mumbai, India

May-June 2011

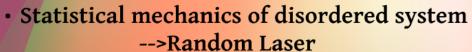
Project

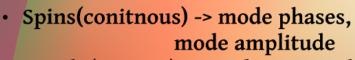
System under consideration


- Statistical mechanics of disordered system
 --->Random Laser
- Spins(conitnous) -> mode phases, mode amplitude
- Graph (various) -> modes network
- Non linear interaction -> laser medium

Generic Hamiltonian:

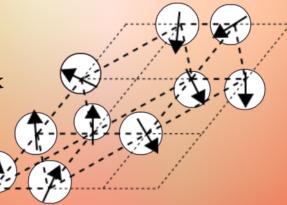
$$\mathcal{H} = -\Reigg[\sum_{j < k} G_{jk}^{(2)} a_j a_k^* + \sum_{\omega_j + \omega_k = \omega_l + \omega_m} G_{jklm}^{(4)} a_j a_k a_l^* a_m^*igg]$$


Details



various generic graphs from short to long

Data can be used for statistical inference until we have experime data.


System under consideration

Graph (various) -> modes network

Non linear interaction -> laser medium

Generic Hamiltonian:

$$\mathcal{H} = -\Reigg[\sum_{j < k} G^{(2)}_{jk} a_j a_k^* + \sum_{\omega_j + \omega_k = \omega_l + \omega_m} G^{(4)}_{jklm} a_j a_k a_l^* a_m^*igg]$$

Various spin glass m 2-XY and 4-XY mode 4 - XORSAT model

Techniques:

- Belief Propagati
- Population dynam using C/C++/ also o

xpect:

 Characterize phase continuous/ random 1st order discontinuous wit

Relationship betwe

Details

Part 1

Various spin glass models:

- 2-XY and 4-XY model
- 4 XORSAT model

Techniques :

- · Cavity Method
- · Belief Propagation
- Population dynamics using C/C++/ also optimize using CUDA on GPU's

- Characterize phase transitions continuous/ random 1st order phase transition/ discontinuous with phase coexistence
- Relationship between phase and frequency
- Various thermodynamic variables

Part 2

Statistical inference of interaction couplings

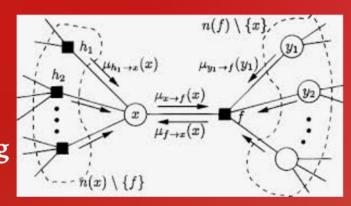
- No complete knowledge of modes (localization and interaction)
- couplings --> representative of spatial interaction or overlap among light modes
- Determine interaction couplings (J)
 using data of magnetisation & Correlation functions
 MC simulations and from experiments.
- MATLAB

In Collaboration with Dr. Andrea Pagnani and Prof. Riccardo Zecchina at HuGeF Torino.

Also, for experimental data collaboartion with experimental group of Dr. Claudio Conti, UOS di Roma)

Part 3

- · MC simulations on various generic graphs from short to long range
- Continuous variables --> CUDA programming on GPU
 --> effective implementation
- Data can be used for statistical inference until we have experimental data.


Part 1

Various spin glass models:

- 2-XY and 4-XY model
- 4 XORSAT model

Techniques:

- Cavity Method
- Belief Propagation
- Population dynamics using C/C++/ also optimize using CUDA on GPU's

Expect:

- Characterize phase transitions continuous/ random 1st order phase transition/ discontinuous with phase coexistence
- Relationship between phase and frequency
- Various thermodynamic variables

Part 2

Statistical inference of interaction couplings

- No complete knowledge of modes (localization and interaction)
- couplings --> representative of spatial interaction or overlap among light modes
- Determine interaction couplings (J)
 using data of magnetisation & Correlation functions
 MC simulations and from experiments.
- MATLAB

In Collaboration with Dr. Andrea Pagnani and Prof. Riccardo Zecchina at HuGeF Torino.

Also, for experimental data collaboartion with experimental group of Dr. Claudio Conti, UOS di Roma)

Part 3

- MC simulations on various generic graphs from short to long range
- Continuous variables --> CUDA programming on GPU
 --> effective implementation
- Data can be used for statistical inference until we have experimental data.

Details

Part 1

Various spin glass models:

- 2-XY and 4-XY model
- 4 XORSAT model

Techniques :

- · Cavity Method
- · Belief Propagation
- Population dynamics using C/C++/ also optimize using CUDA on GPU's

- Characterize phase transitions continuous/ random 1st order phase transition/ discontinuous with phase coexistence
- Relationship between phase and frequency
- Various thermodynamic variables

Part 2

Statistical inference of interaction couplings

- No complete knowledge of modes (localization and interaction)
- couplings --> representative of spatial interaction or overlap among light modes
- Determine interaction couplings (J)
 using data of magnetisation & Correlation functions
 MC simulations and from experiments.
- MATLAB

In Collaboration with Dr. Andrea Pagnani and Prof. Riccardo Zecchina at HuGeF Torino.

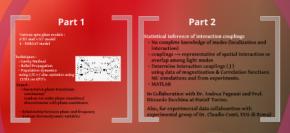
Also, for experimental data collaboartion with experimental group of Dr. Claudio Conti, UOS di Roma)

Part 3

- · MC simulations on various generic graphs from short to long range
- Continuous variables --> CUDA programming on GPU
 --> effective implementation
- Data can be used for statistical inference until we have experimental data.

Project

System under consideration


- Statistical mechanics of disordered system
 --->Random Laser
- Spins(conitnous) -> mode phases, mode amplitude
- Graph (various) -> modes network
- Non linear interaction -> laser medium

Generic Hamiltonian:

$$\mathcal{H} = -\Reigg[\sum_{j < k} G_{jk}^{(2)} a_j a_k^* + \sum_{\omega_j + \omega_k = \omega_l + \omega_m} G_{jklm}^{(4)} a_j a_k a_l^* a_m^*igg]$$

Details

various generic graphs from short to long

Data can be used for statistical inference until we have experime data.

Training Experience

Courses at Sapienza University, Roma

January 2013 - July 2013

- · Theory and phenomenology of Structural Glass
- · Random Graphs
- · Spin Glass Theory
- · Introduction to Information, physics and computation

Passed the required examinations and granted promotion to 2nd year of PhD physics at the university.

Communication skills

- Presentations, seminars and workshops
- · Report writing
- · Article writing
- Poster presentation

Secondments

- 1) HuGeF Torino, 18 November 20 December 2013
- Dr. Andrea Pagnani, Prof. Riccardo Zecchina
- "Statistical inference on XY model"
- 2) TU Berlin 2014

Courses at Sapienza University, Roma

January 2013 - July 2013

- Theory and phenomenology of Structural Glass
- Random Graphs
- Spin Glass Theory
- Introduction to Information, physics and computation

Passed the required examinations and granted promotion to 2nd year of PhD physics at the university.

Advanced schools and training workshops

- Spring College on physics of complex systems, 20 May - 14 June 2013, ICTP, Trieste, Italy
- · Advanced Workshop on Nonlinear Photonics, Disorder and Wave Turbulence, 15-19 July 2013, ICTP, Trieste, Italy

Introduction to GPGPU and CUDA programming, 9-10 May 2013, CINECA, Bologna

NETADIS summer school, 8 - 22 September 2013, Hillerod, Denmark

- Spring College on physics of complex systems, 20 May - 14 June 2013, ICTP, Trieste, Italy
- Advanced Workshop on Nonlinear Photonics,
 Disorder and Wave Turbulence,
 15-19 July 2013,
 ICTP, Trieste, Italy

Introduction to GPGPU and CUDA programming,

9 -10 May 2013, CINECA, Bologna

NETADIS summer school, 8 - 22 September 2013, Hillerod, Denmark

Investigating random laser through study of disordered systems.

Payal Tyagi and Luca Leuzzi

IPCF-CNR, Dep. of Physics, Sapienza University of Rome, Plazzale A. Moro 2, I-00185, Rome, Italy

Startics from the Hous master equation for mode looking

Hence, the Hamiltonian with 2 body and 4 body terms to-petitor reads:

 $H = -B(\sum_{i \in \mathcal{I}^*} l_{ij}^{(1)} | a_i a_j^* + \sum_{i \in I + a_i = a_i + a_i} l_{ijkl}^{(k)} a_i a_j a_k^* a_i^* |$ where coupling has in built quenched amplitude and modes are required to satisfy the following mode focking condi-tion.

ω_s being the width of the peak in amplitude spectrum

 $H = -\sum_{i,j} \lambda_i \sigma_i \sigma_j$

 $F = -k \sum_{i} F_{i}^{(1)} + \sum_{r \in G_{i}} F_{r \in C_{i}}^{(2)}$

The system can be salved by savity method using popular

2009-SAT is a constraint satisfaction patition to solve a system of inner equation which involves finding a vector 2 of backers varieties and subject to 2 of backers varieties scalingly the flower equation , $AP = \mathbb{R}_{N} \cdot \text{sol}(1)$. When mapped into spin glass problem than $a_1 = (-1)^n$ and $b_1 = (-1)^n$ and $a_2 = (-1)^n$ and $a_3 = (-1)^n$ and the laterilaterial which tables as about the number of violated constraints.

 $H(\sigma) = \sum_{ij} \frac{M}{2} \chi^{\frac{i(j-j)}{2} \prod_{i \neq j} \sigma_{i,j}}$

Hittle connectivity is more restistic than fully connected and same argument applies for vector spins over fairg spins. Pinitely commoded connected spins was investigated upon. Vactor spins five on a sphere $|a_{2}, b_{2-1}|$ with random matrix interactions.

all where V_{ij} are unitary matrices representing rotations in \mathbb{R}^d which are drawn randomly and independently from section matrix ensemble P(V) and P(V) = P(V) (and $V(v_i)$ is the omitis potential.

 $Z_i^{(I)}(z_i) = \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} \prod_{k \in \mathbb{N}_i} dz_k |exp(i) \int \sum_{k \in \mathbb{N}_i} z_k \Gamma_{ik} z_k$

 $W[P] = \sum_{i=0}^{\infty} e^{i \frac{i}{2} t^i} f[\prod_{i=1}^{n} e^{i t_i} W[W[P])] W[\Phi(t_i)]$

 $\times \delta_{|f|} |P(\sigma) - \frac{e^{\frac{2(\gamma+1)}{3}} \prod_{i \neq j \text{ deg}} \frac{1}{1 + i f \text{ deg}^{(1+i)} + 0.0}}{\int d\sigma e^{-2(\gamma+1)} \prod_{i \neq j} \frac{1}{1 + i f \text{ deg}^{(2+i)} + 0.00}},$ Order parameter is a functional and thereo functional re-ment separation is required to find phose transitions. Pop-ulation dynamics in this case requires lineating functional which is numerically challenging to perform. Also, numer-cal simulations requires to generate suitable random modi-cal simulations requires to generate suitable random modi-

Fig. 4: July vis phin/intensity

 $H(\{\sigma\}) = \sum_{i=1}^{M} \frac{(1 - \sum_{i \in h_i = i_i \in h_i} J_{i,j}^{(i)})(\prod_{i \in \sigma} \sigma_i J_{i,j}^{(i)})}{2}$

where quadruple coupling $\mathcal{L}_{gal}^{(s)}$ is given warne as in the first

[2] C. Conti and L. Louzzi, Phys. Rev. B 83, 134204(2011); [3] M. Meuzard and G. Parisi, Bur. Phys. J. B 25, 217-233 (2001);

[4] AGG Goden et al., J. Phys. A: Math. Gen. 38 (2005) 6289-6317:

Advanced schools and training workshops

- Spring College on physics of complex systems, 20 May - 14 June 2013, ICTP, Trieste, Italy
- · Advanced Workshop on Nonlinear Photonics, Disorder and Wave Turbulence, 15-19 July 2013, ICTP, Trieste, Italy

Introduction to GPGPU and CUDA programming, 9-10 May 2013, CINECA, Bologna

NETADIS summer school, 8 - 22 September 2013, Hillerod, Denmark

Secondments

1) HuGeF Torino, 18 November - 20 December 2013

Dr. Andrea Pagnani, Prof. Riccardo Zecchina

"Statistical inference on XY model"

2) TU Berlin - 2014

Communication skills

- Presentations, seminars and workshops
- Report writing
- Article writing
- Poster presentation

Training Experience

Courses at Sapienza University, Roma

January 2013 - July 2013

- · Theory and phenomenology of Structural Glass
- · Random Graphs
- · Spin Glass Theory
- · Introduction to Information, physics and computation

Passed the required examinations and granted promotion to 2nd year of PhD physics at the university.

Communication skills

- Presentations, seminars and workshops
- · Report writing
- · Article writing
- Poster presentation

Secondments

- 1) HuGeF Torino, 18 November 20 December 2013
- Dr. Andrea Pagnani, Prof. Riccardo Zecchina
- "Statistical inference on XY model"
- 2) TU Berlin 2014

The road ahead!

Applications of RL

- speckle free imaging
- cryptography
- medical diagnostic
- biomedical imaging
- laser paints

Future possibile fields

- GPU computing
- Photonics
- Experimental laser
- Neuroscience
- Biophysics

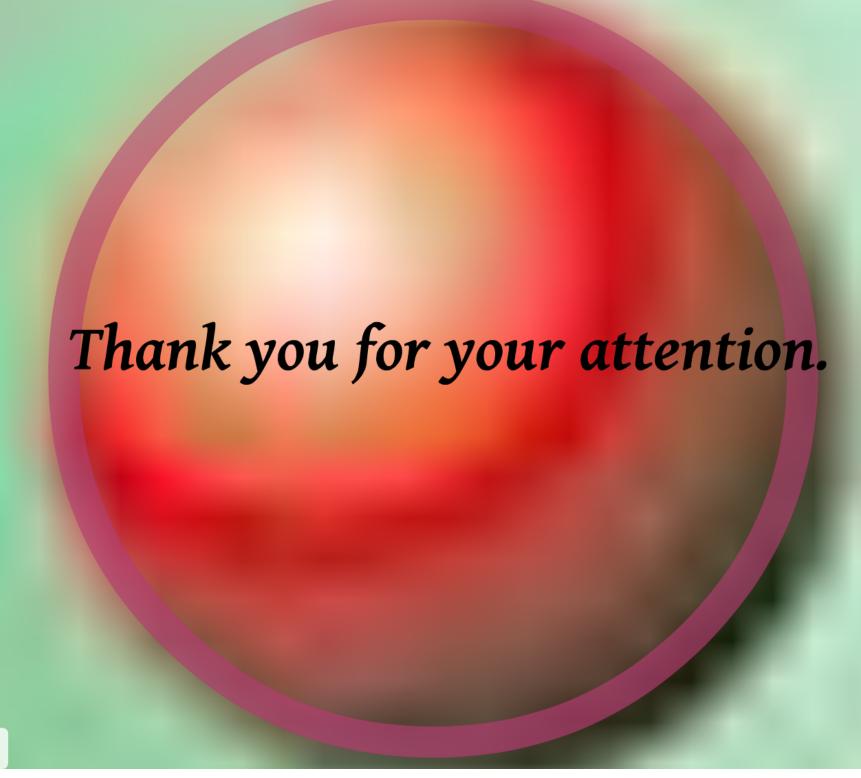
Applications of RL

- speckle free imaging
- cryptography
- medical diagnostic
- biomedical imaging
- laser paints

Future possibile fields

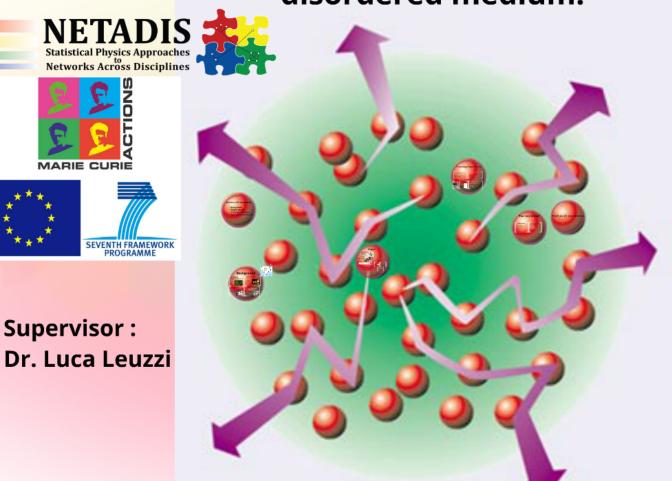
- GPU computing
- Photonics
- Experimental laser
- Neuroscience
- Biophysics

The road ahead!


Applications of RL

- speckle free imaging
- cryptography
- medical diagnostic
- biomedical imaging
- laser paints

Future possibile fields


- GPU computing
- Photonics
- Experimental laser
- Neuroscience
- Biophysics

"Inference of coupling of waves in non linear disordered medium."

ESR: **Payal Tyagi**

Supervisor: