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What are markets good for?

• markets allocate optimally resources 
It is not from the benevolence of the butcher, the brewer, or the baker that 
we expect our dinner, but from their regard to their own interest. 
(A. Smith)

• markets incorporate efficiently available 
information in prices 

• markets allow individuals to cope with 
uncertainty and reduce risk

(individual optimum) x N ≠ global optimum



Information efficiency



Markets are very complex but price 
behavior is very simple

The dynamics of prices (Bachelier 1900)

Brownian motion (Einstein 1905)

The random walk

toss a coin at each step

xt

t

xt+1 =
�

xt + 1 if head
xt � 1 if tail



Market information efficiency
Random walks as a result of strong interaction:

A market is information efficient wrt information 
set, if prices would not change when that 
information set is revealed

Prices are unpredictable because all causally 
meaningful information is exploited

The economy
Financial
market

(expectations)

information

investment

E.g. gulf of Mexico oil spil 
(24 Apr. 2010) and BP



But...
Prices are not random walks (Mandelbrot 1965, Mantegna & Stanley 1995, etc)

Crashes and bubbles do occur

indeed, it is one of the assumptions used in the classic Black-

Scholes option pricing formula !11,47–49".
In his pioneering analysis of cotton prices, Mandelbrot

observed that in addition to being non-Gaussian, the process

of returns shows another interesting property: ‘‘time scal-

ing’’ — that is, the distributions of returns for various

choices of #t , ranging from 1 d up to one month have simi-
lar functional forms !4". Motivated by $i% the pronounced
tails, and $ii% the stable functional form for different time

scales, Mandelbrot !4" proposed that the distribution of re-
turns is consistent with a Lévy stable distribution !2,3" —
that is, the returns can be modeled as a Lévy stable process.

Lévy stable distributions arise from the generalization of the

central limit theorem to random variables which do not have

a finite second moment $see Appendix A%.
Conclusive results on the distribution of returns are diffi-

cult to obtain, and require a large amount of data to study the

rare events that give rise to the tails. More recently, the avail-

ability of high frequency data on financial market indices,

and the advent of improved computing capabilities, has fa-

cilitated the probing of the asymptotic behavior of the distri-

bution. For these reasons, recent empirical studies of the

S&P 500 index such as Ref. !10" analyze typically 106

!107 data points, in contrast to approximately 2000 data
points analyzed in the classic work of Mandelbrot !4". Ref-
erence !10" reports that the central part of the distribution of
S&P 500 returns appears to be well fit by a Lévy distribu-

tion, but the asymptotic behavior of the distribution of re-

turns shows faster decay than predicted by a Lévy distribu-

tion. Hence Ref. !10" proposed a truncated Lévy

distribution—a Lévy distribution in the central part followed

by an approximately exponential truncation—as a model for

the distribution of returns. The exponential truncation en-

sures the existence of a finite second moment, and hence the

truncated Lévy distribution is not a stable distribution

!50,51". The truncated Lévy process with i.i.d. random vari-

ables has slow convergence to Gaussian behavior due to the

Lévy distribution in the center, which could explain the ob-

served time scaling for a considerable range of time scales

!10".
In addition to the probability distribution, a complemen-

tary aspect for the characterization of any stochastic process

is the quantification of correlations. Studies of the autocorre-

lation function of returns show exponential decay with char-

acteristic decay times &ch of only 4 min !33,52–54". As is
clear from Fig. 3$a%, for time scales beyond 20 min the cor-
relation function is at the level of noise, in agreement with

the efficient market hypothesis which states that it is not pos-

sible to predict future stock prices from their previous values

!55". If price correlations were not short range, one could
devise a way to make money from the market indefinitely.

It is important to note that lack of linear correlation does

not imply an i.i.d. process for the returns, since there may

exist higher-order correlations !Fig. 3$b%". Indeed, the ampli-
tude of the returns, referred to in economics as the volatility

!56", shows long-range time correlations that persist up to
several months !14,33,53–63", and are characterized by an
asymptotic power-law decay.

II. MOTIVATION

A recent preliminary study reported that the distributions

of 5-min returns for 1000 individual stocks and the S&P 500

FIG. 1. The S&P 500 index is the sum of the market capitalizations of 500 companies. In $a%, we display both the value of the S&P 500
index $bottom line% and the index detrended by inflation to 1994 U.S. dollars $top line%. The sharp jump seen in 1987 is the market crash of
October 19. $b% Comparison of the time evolution of the S&P 500 for the 35-year period 1962-1996 $top line% and a biased Gaussian random
walk $bottom line%. The random walk has the same bias as the S&P 500 —approximately 7% per year for the period considered.

FIG. 2. Sequence of $a% 10-min returns, from database $i%, and
$b% one-month returns, from database $iii%, for the S&P 500, nor-
malized to unit variance. $c% Sequence of i.i.d. Gaussian random
variables with unit variance, which was proposed by Bachelier as a

model for stock returns !1". For all three panels, there are 850
events —i.e., in panel $a% 850 min and in panel $b% 850 months.
Note that, in contrast to $a% and $b%, there are no ‘‘extreme’’ events
in $c%.
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index decay as a power law with an exponent !"3, well
outside the stable Lévy regime #34$. Consistent results for
the value of ! in the range 2%!%4 were reported by pre-
vious studies both on stock markets #30,35–37$ and on for-
eign exchange markets #38–42$. These results raise two im-
portant questions:

First, the distribution of returns has a finite second mo-

ment; thus we would expect it to converge to a Gaussian

because of the central limit theorem. On the other hand, pre-

liminary studies suggest the distributions of returns retain

their power-law functional form for long time scales. So we

can ask which of these two scenarios is correct? We find that

the distributions of returns retain their functional form for

time scales up to approximately 4 d, after which we find

results consistent with a slow convergence to Gaussian be-

havior #10,42,43$.
Second, power-law distributions with 2%!%4 are not

stable distributions, but the distribution of returns retains its

functional form for a range of time scales. It is then natural

to ask how can this scaling behavior possibly arise? One

possible explanation is the recently proposed exponentially

truncated Lévy distribution #10,50,51$. However, the trun-
cated Lévy process is constructed out of i.i.d. random vari-

ables, and hence is not consistent with the empirically ob-

served long persistence in the autocorrelation function of the

volatility of returns #33,54–62$. Moreover, our data support
the possibility that the asymptotic nature of the distribution is

a power law with an exponent outside the Lévy regime.

FIG. 3. &a' Semilog plot of the autocorrelation function for the S&P 500 returns G(t(t) sampled at a (t!1 min time scale, C(t())
*#+G(t(t) G(t(t")),#+G(t(t),2$/#+G(t(t)

2,#+G(t(t),2$ . The straight line corresponds to an exponential decay with a characteristic
decay time )ch!4 min. Note that after 20 min the correlations are at the noise level. &b' Log-log plot of the autocorrelation function of the
absolute returns. The solid line is a power-law regression fit over the entire range, which gives an estimate of the power-law exponent, -
!0.29$0.05. Better estimates of this exponent can be obtained from the power spectrum or from other more sophisticated methods. It has
been recently reported using such methods that the autocorrelation function of the absolute value of the returns shows two power-law

regimes with a crossover at approximately 1.5 days #58$. &c' Log-log plot of the time averaged volatility v*v((t) as a function of the time
scale (t of the returns obtained from databases &i'–&iii'. For (t%20 min, we observe a slope .!0.67$0.03, due to the exponentially
damped time correlations. For (t/20 min, we observe .!0.51$0.06, indicating the absence of significant correlations.
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the same vein, the growth of the sensitivity and the growing instability of the market

close to such a critical point might explain why attempts to unravel the proximal

origin of the crash have been so diverse. Essentially, anything would work once the

system is ripe.





Fig. 9 Seven bubbles that ended in severe crashes. The bubble examples include stock market

indices, individual companies, currencies, and for different epochs in the twentieth century. Each

bubble has been rescaled vertically and translated to end at the time of the crash on the right of

the graph. The horizontal axis covers approximately 2.5 years of data. The legend for each of the

seven bubbles indicates the name of the asset supporting the bubble and the year when the crash

occurred.

What is the origin of the maturing instability? A follow-up hypothesis underlying

this paper is that, in some regimes, there are significant behavioral effects underly-

ing price formation leading to the concept of “bubble risks.” This idea is probably

best exemplified in the context of financial bubbles, such as the recent Internet ex-

ample culminating in 2000 or the real-estate bubble in the USA culminating in 2006.

Many studies have suggested that bubbles result from the over-optimistic expecta-

tion of future earnings (see, for instance, Ref. [56]), and many works have argued

contrarily for rational explanations (for example, Ref. [24]). History provides a sig-

nificant number of examples of bubbles driven by unrealistic expectations of future

earnings followed by crashes. The same basic ingredients have been documented to

occur repeatedly [59]. According to this view, fuelled by initially well-founded eco-

nomic fundamentals, investors develop a self-fulfilling enthusiasm by an imitative

Bubbles in high-tech, real estate, 
commodities, oil, credit derivatives, 
food markets... 
(Sornette, Woodard 2010)



In order to understand why markets fail, we 
need models that explain why they work

Need to understand:

How do traders, seeking profit, make markets 
informationally efficient

How does traders’ interaction in the “space of trading 
strategies” shape market ecology (information food web)

How to deal with complexity?



A simple model of financial 
speculation

• a=+1 buy 1$
• a=-1 sell 1/p(t) shares
• demand = supply p(t+1)

• Optimal to buy (a=+1) when most sell (A<0) and 
viceversa

• Also N drivers 2 routes

9

A(t) =
NX

i=1

ai(t)
p(t+ 1)� p(t)

p(t)
=

2A(t)

N �A(t)
24 Dirk Helbing

tion from individual to mass behavior can still occur under similar conditions as
discussed above.

4 Decision Experiments for a Generalized Route Choice
Scenario

Fig. 7. Schematic illustration of the day-to-day route choice scenario (from [117]). Each
day, the drivers have to decide between two alternative routes, 1 and 2. Note that, due
to the different number of lanes, route 1 has a higher capacity than route 2. The latter
is, therefore, used by less cars.

The coordinated and efficient distribution of limited resources by individual
decisions is a fundamental and unsolved problem. When individuals compete for
road capacities, time, space, money, etc., they normally take decisions based on
aggregate rather than complete information, such as TV news or stock market
indices. The resulting volatile decision dynamics and decision distribution are of-
ten far from being optimal. By means of experiments, we have identified ways of
information presentation that can considerably improve the overall performance
of the system. We also present a stochastic behavioral description allowing us
to determine optimal strategies of decision guidance by means of user-specific
recommendations. These strategies manage to increase the adaptibility to chang-
ing returns (payoffs) and to reduce the deviation from the time-dependent user
equilibrium, thereby enhancing the average and individual outcomes. Hence,
our guidance strategies can increase the performance of all users by reducing
overreaction and stabilizing the decision dynamics. Our results are significant
for predicting decision behavior, for reaching optimal behavioral distributions
by decision support systems, and for information service providers. One of the
promising fields of application is traffic optimization.

Optimal route guidance strategies in overloaded traffic networks, for exam-
ple, require reliable traffic forecasts (see Fig. 7). These are extremely difficult
for two reasons: First of all, traffic dynamics is very complex, but after more
than 50 years of research, it is relatively well understood [1]. The second and

(form D. Helbing 2003)



Game theory: Optimal behavior

Q: will agents learn to converge to a Nash 

equilibrium?

Q: if yes, which one?

Q: what type of information should one give to 

agents to achieve optimal resource use?

ai = ±1, i = 1, . . . , NChoice 

Nash equilibria:
�
⇤

⇥

ai = +1 ⇥ k
ai = �1 ⇥ k
�i,a = 1

2 ⇥ N � 2k

#Nash = 2
⇤

k�N/2

�
N

k

⇥
� 2N

e�ciency ⇥ ⇤A2⌅ = N � 2k

ui(ai, a�i) =
N � aiA

2
, A =

N�

j=1

aj

predictability ⇡ hAi2 = 0



Learning dynamics
• Scores:

• Choice:

• Simplification: 

yi,a(t + 1) = yi,a(t) +
�
N

N � aA(t)
2

�i,a(t) =
eyi,a(t)

eyi,a(t) + eyi,�a(t)

zi(t) = yi,a=+1(t)� yi,a=�1(t)

zi(t + 1) = zi(t)�
�
N

A(t)

A(t) =
N�

j=1

aj(t)

1

N
A(t) ' hai(t)i = tanh[zi(t)/2], zi(t = 0) = 0



Excess volatility
• Agents do not learn to play a 

Nash equilibrium
• Stationary state depends on 

– learning rate 

– initial conditions (non ergodic behavior)

(note: initial conditions = prior beliefs)

� < �c ⇥ �2 = ⇤A2⌅ � N

� > �c ⇥ �2 = ⇤A2⌅ � N2

�2 � spread of initial conditions



Traders in financial 
markets are 
heterogeneous!

Wigner and heavy ions (1955)

Statistical mechanics of large random systems display self-averaging behavior
(aka law of large numbers)

Everything should be made as simple as possible, but not simpler (A. Einstein)

complexity Ĥ � random
matrix



The minority game: 

Information
µ=1,…,P

N agents:

The Market
A=Σi ai

action

payoff

(Challet & Zhang 1997)

• Minority rule
• Agents = set of trading strategies {ai: µ→ aiµ}  +
                  learning and adaptation
• All agents are different (different strategies) 
• Information is created by agents themselves (feedback)

t → t + 1



• Trading strategies:

• Learning:

• Choice:

2) adaptive agents: Information
µ=1,…,P

The Market
A=Σi ai

action

learning

• S active strategy (s ≠ 0): 

• 1 inactive strategy (s = 0):

reward for not trading



Very easy to run simulations:
... 
µ=P*ran()+1
do I=1,Ns
 choice(I)=0
 do σ=1,S
  if (U(I,σ).lt.U(I,choice(I))) choice(I)=σ
 end do
end do
A=Ap(µ)   ! contribution from deterministic traders
do I=1,Ns
 A=A+a(I,µ,choice(I))
end do
do I=1,N
 U(I,0)=U(I,0)+ε
 do σ=1,S
  U(I,σ)=U(I,σ)-a(I,µ, σ)*A
 end do 
end do
...



Numerical results:
• scaling α=P/N

• Global efficiency

predictable

(Savit et al PRL 1998)

Phase transition
(Challet & Marsili 1999)

Inform
ation

efficient phase
        H

=0

Inform
ation

inefficient phase
         H

>0

• Predictability



Z =

Z
d{m} e��H{m}

min

{m}
H{m} = lim

�!1
� 1

�
hlogZi

hlogZi = lim

n!0

hZni � 1

n
, Zn

=

Z
d{m1} · · · d{mn} e��[H{m1}+...+H{mn}

The stationary state is the solution of 

      replica method

… full pdf

indeed



Phase transition

H= Hmin =0 H=Hmin>0

αc

Density plot of H in the space {mi}

αDependence on
initial conditions!



Why should agents trade?
Market information ecology (Challet et al. 2001)

Ns Liquidity providers: play only if E[gain] > ℇ

Np Liquidity takers (1 strategy)
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Close to where H~0:
(Challet, Marsili Zhang Physica A 2001)

Ns=501, Np=1000, P=32
α = 3 law

Price dynamics: log p(t+1) = log p(t) + λ A(t)

Large fluctuations when market aggregates efficiently information



Non trivial issues

• Dependence on initial conditions
• Irrelevance of the origin of information
• Independence on "temperature"
• Noise ~ 1/fluctuations (cfr <v2>=KT)
• Market ecology
• Market crashes
• Instability with finite memory
• Tobin tax reduces volatility
• Market impact of transactions
• ...

Information
µ=1,…,P

The Market
A=Σi ai

action

learning

R520 Topical Review
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Figure 24. Average gains of producers and speculators as a funcion of the (reduced) number
N/P of adaptive agents (speculators). The plot refers to a system with Np = P passive agents
(producers). The gain of speculators is positive only when they are few and it decreases when
new speculators join the market. Producers losses are reduced by speculators. The predictability
H is also plotted. Inset: phase diagram in the space of the reduced numbers of speculators and
producers. The shaded region to the right of the solid line is the symmetric phase where H = 0.
The gain of speculators vanishes on dashed line and it is positive in the region to the left.

number of speculators increases beyond a critical value, which depends on the relative number
Np/P of producers, the market enters the symmetric phase where H = 0 and the outcome
A(t) becomes unpredictable from µ. This shows that the relation between these two species
is more similar to symbiosis than to competition: producers feed speculators by injecting
information in the market and benefit, in their turn, of the liquidity provided by speculators.

5.3. Multi-asset Minority Games

5.3.1. Definitions and results. Minority Games with many assets have been introduced in
order to investigate how speculative trading affects the different assets in a market [61, 62].
A tractable version of these models has been considered in [63], with the aim of studying
how agents modify the composition of their portfolios depending on the ‘complexities’ or
information contents of the different assets.

The model consists essentially of two coupled MGs with one strategy each. Let us
consider the case of a market with two assets γ ∈ {−1, 1} and N agents. At each time
step ", agents receive two information patterns µγ ∈ {1, . . . , Pγ }, chosen at random and
independently with uniform probability. As always, Pγ is taken to scale linearly with N, and
their ratio is denoted by αγ = Pγ /N . Every agent i disposes of one trading strategy per asset,
aiγ =

{
a

µγ

iγ

}
, that prescribe an action a

µγ

iγ ∈ {−1, 1} (buy/sell) for each possible information
pattern of asset γ . Each component a

µγ

iγ is selected randomly and independently with uniform
probability and is kept fixed throughout the game. Traders keep tracks of their performance in
the different markets through a score function Uiγ ("). The behaviour of agents is summarized
by the following rules:

si(t) = sign[yi(t)]

Aγ (t) =
N∑

j=1

a
µγ (t)

jγ δsj (t),γ

Uiγ (t + 1) − Uiγ (t) = −a
µγ (t)

iγ Aγ (t)/
√

N

(154)
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Market crashes occur precisely when 
there are too many types of traders

Ui

t
Speculators outside the market 
do not “see” each other!



Market impact of 
meta-orders



Meta-orders
Markets operate in a regime of vanishing revealed liquidity, but 
large latent liquidity. 

The market is not liquid enough for the execution of large orders,

In order to limit execution costs liquidity takers need to split large 
order into many child orders that are executed sequentially 

In order not to reveal their strategies meta-orders need to be 
executed over a long period of time, injecting predictable patterns 
that are exploited by liquidity providers

Strategic interaction between liquidity providers and liquidity 
takers
- Representative agent models (e.g. Kyle ’85)
- Phenomenological models (e.g. Bouchaud et al. ’08, ...)



Properties of Meta-orders
BME
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Moro et al., Phys. Rev. E 80, 066102 (2009)

�(Q) = Y �

r
Q

V

Q = metaorder size

� = relative price change = R(1)

V = daily volume

� = daily volatility Y ⇡ 1Tóth et al. Phys Rev. X, 2011, 1 021006 (2011) 



Grand-Canonical Minority Game

�i(t) =

(
1 if Ui(t) > 0

0 if Ui(t) < 0

and decide if playing or not accordingly:

The excess demand measures the unbalance between buy and sell orders:

A(t) =

NpX

i=1

a(P )
i,µ(t) +

NsX

i=1

a(S)
i,µ(t)�i(t)

Liquidity providers update their score:

Price is given by:
log p(t+ 1)� log p(t) =

1

P
A(t)

Ui(t+ 1)� Ui(t) = �a(S)
i,µ(t)A(t)� ✏i

benchmark



Meta-orders in Minority Games

h(t)

h

t0 T

Modeling a uniform meta-order of size Q=hT starting at t = 0 and ending 
at t = T by adding a fixed buyer:

�(t) =
1

P

X

0s<t

D
Ah(s)�Ah=0(s)

E
With the assumed market clearing condition market impact is:

The most efficient way of taking care of the Ah=0(s) contribution is by 
simulating virtual markets.

) A(t) = Ah=0(t) ! Ah(t)



GCMG and Market Impact

permanent impact

average execution cost

normalized execution cost

�⇤ ⌘ lim
t!1

�(t)

p(0)� =
p(0)

T

TX

t=0

�(t)

The meaningful quantities are:

�(t) ' t↵ ) �̄

�(T )
' 1

1 + ↵


