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Ito stochastic differential equations

for state X; € R

dX; = f(Xp)dt + Z2(Xp) x dW;
Drift Diffusion Wiener process

Limit of discrete time process X,

AXk — Xk—l—l — Xk = f(Xk)At —|— Zl/Q(Xk>\/ At €L .

e, 1.i.d. Gaussian.
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Motion in double-well potential

dX = X (0 — X2)dt + odW.
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A sample path might look like this
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m(t) + (2 x std(t))

Optimal state prediction




Jump Processes
Assume that X; jumps between discrete states.

Short time behaviour of transition kernel defined by transition rate f:

Pipnpp(a'|z) ~ fo(ylz, t) At for o’ # x
Piynei(zlz) ~ 1= > folzlz, t)At
2Fx
for At — 0.
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Simple model of autoregulatory network

On molecular level Kkinetics is stochastic: Simple autoregulatory net-
WOrK:

2 interacting molecules: mMRNA and a Protein

Number of mMRNA and Protein molecules: Xmrna, Xprot

X = (Xmrna, Xprot)

Xprot — Xprot + 1 . with Rate ’YXrnRNA ,
Xprot — Xprot — 1 . with Rate d Xprot ,
XmrnA — Xmrna — 1 0 with Rate 5XmRNA ,
XmrnA — XmrNnaA + 1 0 with Rate Oé(]. — aC@(Xprot — Qc)) ,

where ©(z) =1 if £ > 0 and ©(z) = 0 for xz < 0.
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Simulation of process
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(Noisy) observations at discrete times.
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Inference Problems

Given noisy observations {y;}Y ; = y1,...,yy of hidden process X,
at times ¢; <7T for:=1,...,N.

e Estimate X; for 0 <t < T (smoothing).

e Estimate system parameters 6 contained in drift f and diffusion
2.
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ODbvious 7?7 questions

e Can't we treat this just as a discrete time HMM 7

Yes, but ....

e Isn’'t there some simple forward backward algorithm 7

Yes, but ....

e Can’t you just discretize in time and run an MCMC sampler ?

Yes, but ....
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What we would like to do

e State estimation:

Use Bayes rule for conditional distribution over paths Xg.r
(co dimensional objects)

PXorltut iy, 0) = 2 COTD ]y,

to compute state prediction E[X:|{y; 7/_1,9]

e Parameter estimation:

1. Maximum Likelihood: Maximise p({yz} ' 1]6) with respect to 0

2. Bayes: Use a prior p(8) to compute p(0|{y;}¥_1) o< p({y;}v_110)p(6)
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Path integral representation

of the parameter likelihood (assuming additive noise)

p({yi}iz1]0) =

_/T { : (dXt B f<Xt>)2 =2 3t —tn) mp<yn|Xt>} dt]

2
0 209 dt

/D[Xt] exp

with Onsager—Machlup type action. One needs to be a bit careful
about the correct interpretation of ’%’ and integrals.
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T he variational approximation in statistical physics
(Feynman, Peierls, Bogolubov, Kleinert...)

Let p(z) = % e~ H() and ¢(z) = Zlo e—Ho(z)

e [ he variational bound on the free energy is

—InZ < —InZg+ (H(x))o — (Ho(x))o = Flql

Flq] is the variational free energy.

e Approximation for free energies often better than the quality of Hp
suggests.
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e Choices for Hg

1. Gaussian approximations for path integrals (e.g. Polaron pro-
blem)

2. Mean field approximations (factorising distributions)

e Look for a formulation that can easily be applied to a variety of
systems without bothering too much about details of path integral
formulations.
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The variational approximation (reformulation)

e \We would like to approximate intractable distribution

p(y|w)pp'r7jor(w>

p(y)
by a ¢g(x) which belongs to a family of simpler tractable distribu-
tions (e.g. factorising = mean field, or Gaussian densities).

p(zly) =

e [ he variational free energy is

F(a) Dlgllp(-ly)] = Inp(y)
Dldlpprior] = [ a(@) Inp(yl2) de
—Inp(y)

'V

e The relative entropy (Kullback—Leibler divergence) is

q(x)

p(aly)

Digllpl = [ a(@)r
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Approximate maximum likelihood estimate

Assume model depends on parameter 6. The free energy inherits the
dependency.

Let ¢*(0) = argmin, Fy(q). Since

—Inp(y|0) < Fy(q™(6))

we can minimise Fy(q*) wrt 6 to get an approximate maximum like-
lihood estimate.
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How to choose the measure g for stochastic

differential equations ?
e Process conditioned on data is Markovian!

o It fulfils SDE

dXy = g( Xy, t)dt + Z1/2(X,) dW;

with a new time dependent drift g(X¢, t) but the same diffusion
2.
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Example

Wiener process with single, noise free observation y =xz(t =T) =0

g
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Posterior drift g(x,t) = —7= for 0 <t <T.
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KL divergence for path probabilities

Use representation of joint density in term of conditionals and the
Markov property (assuming qg(x) = po(x)) and work with time dis-
cretization tg4 1 — t, = ALt.

Dlal] = [ deorataor) n % 70T
th+1,tk(wl|x)

ptk+1,tk (xllw)

Q

K—-1
Z /dm th(x)/dx/th+1,tk(x/|$)In
k=0

K-1

— Z /deth(iv)D [th:—|—1>tk('|x)||ptk+1>tk('|w)}

k=0

in terms of transition and marginal probabilities.
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We know that short time transition probability

IS approximately Gaussian

et ans) o b [~ o o — s@ o]

as At — O,
with the squared norm ||F||? = F 'z~ 1F.

Then for small At

1
D [aty 1.6, 1) 1Pty .Gl % 2 llg (s t) = F@)I2 At
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T he relative entropy for Stochastic Differential

Equations

Let ¢ and p be measures over paths for SDEs with drifts ¢g(X,t) and
f(X,t) with same diffusion >(X). Then

Dlalp) =2 [ dt| [ dw @) lloCa, )~ fo(a)IP}

q:+(x) is the marginal density of Xi.
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Change of measure approach

d@

DIQ|IP] = EqIn =2

Girsanov’'s change of measure theorem results in the following Radon-
Nikodym derivative:

dQ T Te—1/2 1 r 2
p=ewl- [[U-aT= V2 am+ ] [ir - gl o

where B is a Wiener process with respect to Q.
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The variational problem (Diffusion)

Minimise variational free energy
1 T
Fo@ =35 [ [a@lo@.t) = fo(@)|? =36t — ) np(yile) o dt
i

with respect to the posterior drift g(x,1t).

The marginal density ¢ and the drift g(x,t) are coupled through the
Fokker - Planck equation

8qg§a:) = {— > Okgr(zx) + % > 3k3zzkz($)} qt(z)
L kl

Variation leads to forward backward PDEs.
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The Variational Gaussian Approximation for SDEs

e Approximate (Gaussian) process over paths Xg.p induced by linear
SDE:

dX; = {A@®W) X + b)Y dt + =/ 2aw
e Diffusion > must be independent of X |
e Relative entropy is of the form Fy[m, S, A, b].

e Constraints are evolution egs. for marginal mean m(t) and cova-
riance S(t)

dm

7T = A b

dt m ot

d

d—f = AS+S5A' + 3.

— nonlinear ODESs instead of PDEs !
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Example: Motion in double-well potential

dX = X (0 — X2)dt + odW.
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A trajectory
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Prediction & comparison with hybrid Monte Carlo

T =20, § =1, ¢° = 0.8 with N = 40 observations with noise ¢2 =
0.04. Fixed initial conditions.

2 ' : : : :
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1F

m(t) + (2 x std(t))
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P(6)

Posterior for 6




HMC
—I'=Inv(a, B) |

- - - 3(true)

- LP3

Posterior for o
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dxy

dzy

Lorenz 1963

o(ys — xp)dt + VZTdW?®
(pxt — Yyt — T2 )dt + )/ ZydWY
(zyr — Bz)dt + VX, dW*
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Z(t)




Prediction and comparison with hybrid HMC
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More dimensions: Mean field approximation

Approximate further by assuming that processes for different dimensi-
ons are independent.

Covariance S(t) — Diag(s1(t),...,sp(t))

D 1 T |
Fo@d) =3 5 | g G = £:(x0)?] at

D1 T((5-0 df;(X¢)
ppy! { 452 oX] ”dt

242
)

+ (07 — 5;) Eq [

— > Eg|[Inp(y;|Xt))]
j=1
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Lorenz 1998 model:

r = (z1,...,2%0) with drift

T
filz) = (5’5%_'_ —zy

o2 =5 and N = 90 observations.

JE:

1—1
t

—zt 40
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T he relative entropy for Markov jump processes

Assume transition rates g(z'|z,t) and f(2'|z,t)

KL [q|lp] =

f o Sa@ > {awlennSE0D 4 1@l - oo |

0 o f(@'|z,t)
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Mean field approximation
Multivariate states X (t) = (X1(t),..., X4 (t))
Exact inference: Linear ODEs in S¢ variables

Variational approximation: Optimise in family of factorising
measures, i.e. of the type

q(X[0:T]) = T1%q ¢:(X;[0 : T])
Linear ODEs in Sd variables.

(Sanguinetti & Opper, 2008, Cohn, El-Hay, Friedman & Kupferman,
2010)
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Lotka Volterra

Comparison with MCMC

30 T T T
m— True path s =~
=1 =1 Mean-field approx.| ~ N
25| = = = MCMC approx. LT TN S

20F
15¢

10p

0 500 1000 1500 2000 2500 3000

Figure 1: Posterior (mean and 90% confidence intervals)
over predator paths (observations (circles) only until 1500).

from (V Rao & Y W Teh, 2011)
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Figure 2: Posterior (mean and 90% confidence intervals)
over prey paths (observations (circles) only until 1500).
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Hybrid models: Inference of transcriptional regulation

mRNA
transcription factor — . — .
(TF) / protein
[ |
promoter gene

e Transcription factors regulate genes by binding to specific sites.

e Hard to measure transcription factor activity directly. Inference

must be based on measurement of mMRNA concentration of tar-
get genes.

e Big networks: Clustering of expression profiles or Factor analysis
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Small subnetworks:

e More detailed dynamical model (Barenco et al)

dx;
d—fi = =Nz (t) + b; + Aju(t)

which takes sensitivity and degradation into account.

e Try predictions on TF activity u(¢t) and learn parameters using
measurements of MRNA concentration of target genes:

y;.. = x;(tr) + noise

e Assume switching process u(t) € {0,1} and u — 1 — p with rates fi
modeled by telegraph process (Sanguinetti, Ruttor, Archambeau,
Opper 2009)
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Multiple (2) transcription factors (toy model)

dCUi

0= Aiwi(t) + ALpa (1) + Adpp () + Alops (Dp2(t) + b
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Parameter inference for A3 , A3 and A%,.
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L, AL and A%, for 5 target genes.

3.5

3.

2.5F

2F

1.5F

1F

0.5F

{

I
|

1

4

|

RPL17B

RPS16B RPL13A RPLOA

RPL30

20



Prediction of activity of transcription factors FHL1 and RAP1 (Mi-
croarray data from yeast metabolic cycle). Comparison to MCMC
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Feed—forward—loop

(A Ocone & G Sanginetti, 2011)

WIS

po
7
multi-output FFL

Fig. 3. p33 network architecture. E2F1 is the master TF, p53 is the target
TF and both regulate target genes DDB2, p2i, BIK, PUMA, SIVA, DRAM.
Target genes of the only E2F1 (MCM5, MCM7, LIG1) have been included.
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Nonparametric estimation of drift function

15
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Assume that data are generated from dX; = f(X;)dt + odW4.
Could we directly predict f(x) 7
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Yes, if we use a Gaussian Process prior

distribution p(f) over functions f(-).
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e If we have 'continuous time' samples — posterior process is Gaus-
sian (Papaspiliopulis et al, 2011).

p(f| Xo:7) o< p(f) L(Xq-7|f)
with the path ’'likelihood’

1 1
L(Xo:r|f) = exp | =5 3 XAt + 5 37 F(X0) (Xeq e — Xi)
t t

e For sparse samples use EM algorithm which cycles between ap-
proximate estimations of latent path Xjy.7 between observations
and recomputing f(-).



(X))





















True path

0z

1000

800

15 20

10

t_0 + 0cit_no * step

=1



Present & Future work

Large systems: Simpler classes of approximations, eg. parametric
forms for large covariance matrices (projections, low rank represen-
tations 7)

Perturbative corrections (estimate for error)

State dependent noise.

Nonparametric estimation of drift f(x) for models with detailed
balance

Combination with optimal stochastic control
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