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Ito stochastic differential equations

for state Xt ∈ Rd

dXt = f(Xt)︸ ︷︷ ︸
Drift

dt+ Σ1/2(Xt)︸ ︷︷ ︸
Diffusion

× dWt︸ ︷︷ ︸
Wiener process

Limit of discrete time process Xk

∆Xk ≡ Xk+1 −Xk = f(Xk)∆t+ Σ1/2(Xk)
√

∆t εk .

εk i.i.d. Gaussian.
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Overview

• Inference for stochastic dynamics

• Variational approximation in machine learning and physics

• Formulation for probabilities over paths

• Results for low dimensional models

• Hybrid models

• Nonparametric approach to drift estimation
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Motion in double-well potential

dX = X(θ −X2)dt+ σdW.
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A sample path might look like this
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Optimal state prediction
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Jump Processes

Assume that Xt jumps between discrete states.

Short time behaviour of transition kernel defined by transition rate f :

Pt+∆t,t(x
′|x) ' fθ(y|x, t)∆t for x′ 6= x

Pt+∆t,t(x|x) ' 1−
∑
z 6=x

fθ(z|x, t)∆t

for ∆t→ 0.
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Gene expression
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Simple model of autoregulatory network

On molecular level kinetics is stochastic: Simple autoregulatory net-

work:

2 interacting molecules: mRNA and a Protein

Number of mRNA and Protein molecules: XmRNA, XProt

X = (XmRNA, XProt)

XProt → XProt + 1 : with Rate γXmRNA ,
XProt → XProt − 1 : with Rate δXProt ,

XmRNA → XmRNA − 1 : with Rate βXmRNA ,
XmRNA → XmRNA + 1 : with Rate α(1− αcΘ(XProt − θc)) ,

where Θ(x) = 1 if x ≥ 0 and Θ(x) = 0 for x < 0.



Simulation of process
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(Noisy) observations at discrete times.
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Inference Problems

Given noisy observations {yi}Ni=1 ≡ y1, . . . , yN of hidden process Xti
at times ti ≤ T for i = 1, . . . , N .

• Estimate Xt for 0 ≤ t ≤ T (smoothing).

• Estimate system parameters θ contained in drift f and diffusion

Σ.
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Obvious ? questions

• Can’t we treat this just as a discrete time HMM ?

Yes, but ....

• Isn’t there some simple forward backward algorithm ?

Yes, but ....

• Can’t you just discretize in time and run an MCMC sampler ?

Yes, but ....
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What we would like to do

• State estimation:

Use Bayes rule for conditional distribution over paths X0:T

(∞ dimensional objects)

p(X0:T |{yi}Ni=1, θ) =
pprior(X0:T |θ)

p({yi}Ni=1|θ)

N∏
n=1

p(yn|Xtn)

to compute state prediction E[Xt|{yi}Ni=1, θ]

• Parameter estimation:

1. Maximum Likelihood: Maximise p({yi}Ni=1|θ) with respect to θ

2. Bayes: Use a prior p(θ) to compute p(θ|{yi}Ni=1) ∝ p({yi}Ni=1|θ)p(θ)
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Path integral representation

of the parameter likelihood (assuming additive noise)

p({yi}Ni=1|θ) =

∫
D[Xt] exp

[
−
∫ T

0

{
1

2σ2
θ

(
dXt

dt
− f(Xt)

)2
−
∑
n
δ(t− tn) ln p(yn|Xt)

}
dt

]

with Onsager–Machlup type action. One needs to be a bit careful

about the correct interpretation of ’dXtdt ’ and integrals.
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The variational approximation in statistical physics

(Feynman, Peierls, Bogolubov, Kleinert...)

Let p(x) = 1
Z e−H(x) and q(x) = 1

Z0
e−H0(x)

• The variational bound on the free energy is

− lnZ ≤ − lnZ0 + 〈H(x)〉0 − 〈H0(x)〉0 ≡ F[q]

F[q] is the variational free energy.

• Approximation for free energies often better than the quality of H0

suggests.
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• Choices for H0

1. Gaussian approximations for path integrals (e.g. Polaron pro-

blem)

2. Mean field approximations (factorising distributions)

• Look for a formulation that can easily be applied to a variety of

systems without bothering too much about details of path integral

formulations.
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The variational approximation (reformulation)

• We would like to approximate intractable distribution

p(x|y) =
p(y|x)pprior(x)

p(y)

by a q(x) which belongs to a family of simpler tractable distribu-

tions (e.g. factorising = mean field, or Gaussian densities).

• The variational free energy is

F(q) = D[q‖p(·|y)]− ln p(y)

= D[q‖pprior]−
∫
q(x) ln p(y|x) dx

≥ − ln p(y)

• The relative entropy (Kullback–Leibler divergence) is

D[q‖p] =
∫
q(x) ln

q(x)

p(x|y)
dx
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Approximate maximum likelihood estimate

Assume model depends on parameter θ. The free energy inherits the

dependency.

Let q∗(θ) = argminq Fθ(q). Since

− ln p(y|θ) ≤ Fθ(q∗(θ))

we can minimise Fθ(q∗) wrt θ to get an approximate maximum like-

lihood estimate.
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How to choose the measure q for stochastic

differential equations ?

• Process conditioned on data is Markovian!

• It fulfils SDE

dXt = g(Xt, t)dt+ Σ1/2(Xt) dWt

with a new time dependent drift g(Xt, t) but the same diffusion

Σ.
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Example

Wiener process with single, noise free observation y = x(t = T ) = 0

Posterior drift g(x, t) = − x
T−t for 0 < t < T .
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KL divergence for path probabilities

Use representation of joint density in term of conditionals and the

Markov property (assuming q0(x) = p0(x)) and work with time dis-

cretization tk+1 − tk = ∆t.

D [q‖p] =
∫
dx0:T q(x0:T ) ln

q(x0:T )

p(x0:T )

≈
K−1∑
k=0

∫
dx qtk(x)

∫
dx′ qtk+1,tk(x

′|x) ln
qtk+1,tk(x

′|x)

ptk+1,tk(x
′|x)

=
K−1∑
k=0

∫
dx qtk(x)D

[
qtk+1,tk(·|x)‖ptk+1,tk(·|x)

]

in terms of transition and marginal probabilities.

21



We know that short time transition probability

is approximately Gaussian

pt+∆t,t(x
′|x) ∝ exp

[
−

1

2∆t

∥∥∥x′ − x− f(x)∆t
∥∥∥2
]

as ∆t→ 0,

with the squared norm ‖F‖2 = F>Σ−1F .

Then for small ∆t

D
[
qtk+1,tk(·|x)‖ptk+1,tk(·|x)

]
≈

1

2
‖g(x, t)− f(x)‖2 ∆t
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The relative entropy for Stochastic Differential

Equations

Let q and p be measures over paths for SDEs with drifts g(X, t) and

f(X, t) with same diffusion Σ(X). Then

D [q‖p] =
1

2

∫ T
0
dt

{∫
dx qt(x) ‖g(x, t)− fθ(x)‖2

}

qt(x) is the marginal density of Xt.
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Change of measure approach

D[Q‖P ] = EQ ln
dQ

dP

Girsanov’s change of measure theorem results in the following Radon-

Nikodym derivative:

dQ

dP
= exp

{
−
∫ T

0
(f − g)>Σ−1/2 dBt +

1

2

∫ T
0
‖f − g‖2Σ dt

}

where B is a Wiener process with respect to Q.
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The variational problem (Diffusion)

Minimise variational free energy

Fθ(q) =
1

2

∫ T
0

∫
qt(x){‖g(x, t)− fθ(x)‖2 −

∑
i

δ(t− ti) ln p(yi|x)}dx dt

with respect to the posterior drift g(x, t).

The marginal density qt and the drift g(x, t) are coupled through the

Fokker - Planck equation

∂qt(x)

∂t
=

−∑
k

∂kgk(x) +
1

2

∑
kl

∂k∂lΣkl(x)

 qt(x)

Variation leads to forward backward PDEs.
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The Variational Gaussian Approximation for SDEs

• Approximate (Gaussian) process over paths X0:T induced by linear

SDE:

dXt = {A(t)Xt + b(t)} dt+ Σ1/2dW

• Diffusion Σ must be independent of X !

• Relative entropy is of the form Fθ[m,S,A, b].

• Constraints are evolution eqs. for marginal mean m(t) and cova-

riance S(t)

dm

dt
= Am+ b

dS

dt
= AS + SA>+ Σ.

→ nonlinear ODEs instead of PDEs !
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Example: Motion in double-well potential

dX = X(θ −X2)dt+ σdW.
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A trajectory
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Prediction & comparison with hybrid Monte Carlo

T = 20, θ = 1, σ2 = 0.8 with N = 40 observations with noise σ2
o =

0.04. Fixed initial conditions.
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Posterior for θ



Posterior for σ



Lorenz 1963

dxt = σ(yt − xt)dt+
√

ΣxdWx

dyt = (ρxt − yt − xtzt)dt+
√

ΣydW
y

dzt = (xtyt − βzt)dt+
√

ΣzdW
z
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Prediction and comparison with hybrid HMC
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More dimensions: Mean field approximation

Approximate further by assuming that processes for different dimensi-

ons are independent.

Covariance S(t)→ Diag(s1(t), . . . , sD(t))

Fθ(q) =
D∑
i=1

1

2σ2
i

∫ T
0
Eq

[
(ṁi − fi(Xt))2

]
dt

+
D∑
i=1

1

2σ2
i

∫ T
0

{
(ṡi − σ2

i )2

4s2
i

+ (σ2
i − ṡi)Eq

[
∂fi(Xt)

∂Xi
t

]}
dt

−
n∑

j=1

Eq
[
ln p(yj|Xtj)

]
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Lorenz 1998 model:

x = (x1, . . . , x40) with drift

fi(xt) =
(
xi+1
t − xi−2

t

)
xi−1
t − xit + θ

σ2 = 5 and N = 90 observations.
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Likelihoods



The relative entropy for Markov jump processes

Assume transition rates g(x′|x, t) and f(x′|x, t)

KL [q||p] =

∫ T
0
dt

∑
x
qt(x)

∑
x′:x′ 6=x

{
g(x′|x, t) ln

g(x′|x, t)
f(x′|x, t)

+ f(x′|x, t)− g(x′|x, t)
}
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Mean field approximation

Multivariate states X(t) = (X1(t), . . . , Xd(t))

Exact inference: Linear ODEs in Sd variables

Variational approximation: Optimise in family of factorising

measures, i.e. of the type

q(X[0 : T ]) =
∏d
i=1 qi(Xi[0 : T ])

Linear ODEs in Sd variables.

(Sanguinetti & Opper, 2008, Cohn, El–Hay, Friedman & Kupferman,

2010)
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Lotka Volterra

Comparison with MCMC

from (V Rao & Y W Teh, 2011)
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Hybrid models: Inference of transcriptional regulation

• Transcription factors regulate genes by binding to specific sites.

• Hard to measure transcription factor activity directly. Inference

must be based on measurement of mRNA concentration of tar-

get genes.

• Big networks: Clustering of expression profiles or Factor analysis
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Small subnetworks:

• More detailed dynamical model (Barenco et al)

dxi
dt

= −λixi(t) + bi +Aiµ(t)

which takes sensitivity and degradation into account.

• Try predictions on TF activity µ(t) and learn parameters using

measurements of mRNA concentration of target genes:

yik = xi(tk) + noise

.

• Assume switching process µ(t) ∈ {0,1} and µ→ 1−µ with rates f±
modeled by telegraph process (Sanguinetti, Ruttor, Archambeau,

Opper 2009)
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Multiple (2) transcription factors (toy model)

dxi
dt

= −λixi(t) +Ai1µ1(t) +Ai2µ2(t) +Ai12µ1(t)µ2(t) + bi
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Parameter inference for A2
1 , A2

2 and A2
12.

1 2 3
!1

0

1

2

3

4

5
x 10!3



Ai1, Ai2 and Ai12 for 5 target genes.
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Prediction of activity of transcription factors FHL1 and RAP1 (Mi-
croarray data from yeast metabolic cycle). Comparison to MCMC
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(blue: MCMC, green: Variational upper, red: Var lower bound)
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Feed–forward–loop

(A Ocone & G Sanginetti, 2011)
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Nonparametric estimation of drift function
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Assume that data are generated from dXt = f(Xt)dt+ σdWt.

Could we directly predict f(x) ?
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Yes, if we use a Gaussian Process prior

distribution p(f) over functions f(·).
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• If we have ’continuous time’ samples → posterior process is Gaus-

sian (Papaspiliopulis et al, 2011).

p(f |X0:T ) ∝ p(f)L(X0:T |f)

with the path ’likelihood’

L(X0:T |f) = exp

− 1

2σ2

∑
t

f2(Xt)∆t+
1

σ2

∑
t

f(Xt)
(
Xt+∆t −Xt

)

• For sparse samples use EM algorithm which cycles between ap-

proximate estimations of latent path X0:T between observations

and recomputing f(·).
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Present & Future work

• Large systems: Simpler classes of approximations, eg. parametric

forms for large covariance matrices (projections, low rank represen-

tations ?)

• Perturbative corrections (estimate for error)

• State dependent noise.

• Nonparametric estimation of drift f(x) for models with detailed

balance

• Combination with optimal stochastic control
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