Approximate inference

for continuous time Markov processes

Manfred Opper

TU Berlin, Dept of Computer Science
Collaborators:

- Andreas Ruttor \& Florian Stimberg (TU Berlin)
- Cédric Archambeau \& John Shawe-Taylor (UCL)
- Dan Cornford, Yuan Shen \& Michail Vrettas (Aston)
- Guido Sanguinetti \& Andrea Ocone (Edinburgh)

Ito stochastic differential equations

for state $X_{t} \in R^{d}$

$$
d X_{t}=\underbrace{f\left(X_{t}\right)}_{\text {Drift }} d t+\underbrace{\Sigma^{1 / 2}\left(X_{t}\right)}_{\text {Diffusion }} \times \underbrace{d W_{t}}_{\text {Wiener process }}
$$

Limit of discrete time process X_{k}

$$
\Delta X_{k} \equiv X_{k+1}-X_{k}=f\left(X_{k}\right) \Delta t+\Sigma^{1 / 2}\left(X_{k}\right) \sqrt{\Delta t} \epsilon_{k} .
$$

ϵ_{k} i.i.d. Gaussian.

Overview

- Inference for stochastic dynamics
- Variational approximation in machine learning and physics
- Formulation for probabilities over paths
- Results for low dimensional models
- Hybrid models
- Nonparametric approach to drift estimation

Motion in double-well potential

$$
d X=X\left(\theta-X^{2}\right) d t+\sigma d W
$$

A sample path might look like this

Optimal state prediction

Jump Processes

Assume that X_{t} jumps between discrete states.

Short time behaviour of transition kernel defined by transition rate f :

$$
\begin{aligned}
P_{t+\Delta t, t}\left(x^{\prime} \mid x\right) & \simeq f_{\theta}(y \mid x, t) \Delta t \text { for } x^{\prime} \neq x \\
P_{t+\Delta t, t}(x \mid x) & \simeq 1-\sum_{z \neq x} f_{\theta}(z \mid x, t) \Delta t
\end{aligned}
$$

for $\Delta t \rightarrow 0$.

Gene expression

Simple model of autoregulatory network

On molecular level kinetics is stochastic: Simple autoregulatory network:

2 interacting molecules: mRNA and a Protein

Number of mRNA and Protein molecules: $X_{\text {mRNA }}, X_{\text {Prot }}$
$\mathrm{X}=\left(X_{\mathrm{mRNA}}, X_{\text {Prot }}\right)$

$$
\begin{aligned}
& X_{\text {Prot }} \rightarrow X_{\text {Prot }}+1 \quad: \text { with Rate } \gamma X_{\text {mRNA }}, \\
& X_{\text {Prot }} \rightarrow X_{\text {Prot }}-1 \quad: \text { with Rate } \delta X_{\text {Prot }}, \\
& X_{\text {mRNA }} \rightarrow X_{\text {mRNA }}-1: \text { with Rate } \beta X_{\text {mRNA }} \text {, } \\
& X_{\text {mRNA }} \rightarrow X_{\text {mRNA }}+1: \text { with Rate } \alpha\left(1-\alpha_{c} \Theta\left(X_{\text {Prot }}-\theta_{c}\right)\right) \text {, }
\end{aligned}
$$

where $\Theta(x)=1$ if $x \geq 0$ and $\Theta(x)=0$ for $x<0$.

Simulation of process

(Noisy) observations at discrete times.

Inference Problems

Given noisy observations $\left\{y_{i}\right\}_{i=1}^{N} \equiv y_{1}, \ldots, y_{N}$ of hidden process $X_{t_{i}}$ at times $t_{i} \leq T$ for $i=1, \ldots, N$.

- Estimate X_{t} for $0 \leq t \leq T$ (smoothing).
- Estimate system parameters θ contained in drift f and diffusion Σ.

Obvious ? questions

- Can't we treat this just as a discrete time HMM ?

Yes, but

- Isn't there some simple forward backward algorithm ?

Yes, but

- Can't you just discretize in time and run an MCMC sampler ? Yes, but

What we would like to do

- State estimation:

Use Bayes rule for conditional distribution over paths $X_{0: T}$ (∞ dimensional objects)

$$
p\left(X_{0: T} \mid\left\{y_{i}\right\}_{i=1}^{N}, \theta\right)=\frac{p_{\text {prior }}\left(X_{0: T} \mid \theta\right)}{p\left(\left\{y_{i}\right\}_{i=1}^{N} \mid \theta\right)} \prod_{n=1}^{N} p\left(y_{n} \mid X_{t_{n}}\right)
$$

to compute state prediction $E\left[X_{t} \mid\left\{y_{i}\right\}_{i=1}^{N}, \theta\right]$

- Parameter estimation:

1. Maximum Likelihood: Maximise $p\left(\left\{y_{i}\right\}_{i=1}^{N} \mid \theta\right)$ with respect to θ
2. Bayes: Use a prior $p(\theta)$ to compute $p\left(\theta \mid\left\{y_{i}\right\}_{i=1}^{N}\right) \propto p\left(\left\{y_{i}\right\}_{i=1}^{N} \mid \theta\right) p(\theta)$

Path integral representation

of the parameter likelinood (assuming additive noise)

$$
p\left(\left\{y_{i}\right\}_{i=1}^{N} \mid \theta\right)=
$$

$$
\int \mathcal{D}\left[X_{t}\right] \exp \left[-\int_{0}^{T}\left\{\frac{1}{2 \sigma_{\theta}^{2}}\left(\frac{d X_{t}}{d t}-f\left(X_{t}\right)\right)^{2}-\sum_{n} \delta\left(t-t_{n}\right) \ln p\left(y_{n} \mid X_{t}\right)\right\} d t\right]
$$

with Onsager-Machlup type action. One needs to be a bit careful about the correct interpretation of $\frac{d X_{t}}{d t}$ ' and integrals.

The variational approximation in statistical physics

(Feynman, Peierls, Bogolubov, Kleinert...)
Let $p(x)=\frac{1}{Z} e^{-H(x)}$ and $q(x)=\frac{1}{Z_{0}} e^{-H_{0}(x)}$

- The variational bound on the free energy is

$$
-\ln Z \leq-\ln Z_{0}+\langle H(x)\rangle_{0}-\left\langle H_{0}(x)\right\rangle_{0} \equiv \mathcal{F}[q]
$$

$\mathcal{F}[q]$ is the variational free energy.

- Approximation for free energies often better than the quality of H_{0} suggests.
- Choices for H_{0}

1. Gaussian approximations for path integrals (e.g. Polaron problem)
2. Mean field approximations (factorising distributions)

- Look for a formulation that can easily be applied to a variety of systems without bothering too much about details of path integral formulations.

The variational approximation (reformulation)

- We would like to approximate intractable distribution

$$
p(x \mid y)=\frac{p(y \mid x) p_{\text {prior }}(x)}{p(y)}
$$

by a $q(x)$ which belongs to a family of simpler tractable distributions (e.g. factorising $=$ mean field, or Gaussian densities).

- The variational free energy is

$$
\begin{aligned}
\mathcal{F}(q) & =D[q \| p(\cdot \mid y)]-\ln p(y) \\
& =D\left[q \| p_{\text {prior }}\right]-\int q(x) \ln p(y \mid x) d x \\
& \geq-\ln p(y)
\end{aligned}
$$

- The relative entropy (Kullback-Leibler divergence) is

$$
D[q \| p]=\int q(x) \ln \frac{q(x)}{p(x \mid y)} d x
$$

Approximate maximum likelihood estimate

Assume model depends on parameter θ. The free energy inherits the dependency.

Let $q^{*}(\theta)=\operatorname{argmin}_{q} \mathcal{F}_{\theta}(q)$. Since

$$
-\ln p(y \mid \theta) \leq \mathcal{F}_{\theta}\left(q^{*}(\theta)\right)
$$

we can minimise $\mathcal{F}_{\theta}\left(q^{*}\right)$ wrt θ to get an approximate maximum likelihood estimate.

How to choose the measure q for stochastic differential equations ?

- Process conditioned on data is Markovian!
- It fulfils SDE

$$
d X_{t}=g\left(X_{t}, t\right) d t+\Sigma^{1 / 2}\left(X_{t}\right) d W_{t}
$$

with a new time dependent drift $g\left(X_{t}, t\right)$ but the same diffusion Σ.

Example

Wiener process with single, noise free observation $y=x(t=T)=0$

Posterior drift $g(x, t)=-\frac{x}{T-t}$ for $0<t<T$.

KL divergence for path probabilities

Use representation of joint density in term of conditionals and the Markov property (assuming $q_{0}(x)=p_{0}(x)$) and work with time discretization $t_{k+1}-t_{k}=\Delta t$.

$$
\begin{aligned}
D[q \| p] & =\int d x_{0: T} q\left(x_{0: T}\right) \ln \frac{q\left(x_{0: T}\right)}{p\left(x_{0: T}\right)} \\
& \approx \sum_{k=0}^{K-1} \int d x q_{t_{k}}(x) \int d x^{\prime} q_{t_{k+1}, t_{k}}\left(x^{\prime} \mid x\right) \ln \frac{q_{t_{k+1}, t_{k}}\left(x^{\prime} \mid x\right)}{p_{t_{k+1}, t_{k}}\left(x^{\prime} \mid x\right)} \\
& =\sum_{k=0}^{K-1} \int d x q_{t_{k}}(x) D\left[q_{t_{k+1}, t_{k}}(\cdot \mid x) \| p_{t_{k+1}, t_{k}}(\cdot \mid x)\right]
\end{aligned}
$$

in terms of transition and marginal probabilities.

We know that short time transition probability

is approximately Gaussian

$$
p_{t+\Delta t, t}\left(x^{\prime} \mid x\right) \propto \exp \left[-\frac{1}{2 \Delta t}\left\|x^{\prime}-x-f(x) \Delta t\right\|^{2}\right]
$$

as $\Delta t \rightarrow 0$,
with the squared norm $\|F\|^{2}=F^{\top} \Sigma^{-1} F$.
Then for small Δt

$$
D\left[q_{t_{k+1}, t_{k}}(\cdot \mid x) \| p_{t_{k+1}, t_{k}}(\cdot \mid x)\right] \approx \frac{1}{2}\|g(x, t)-f(x)\|^{2} \Delta t
$$

The relative entropy for Stochastic Differential Equations

Let q and p be measures over paths for SDEs with drifts $g(X, t)$ and $f(X, t)$ with same diffusion $\Sigma(X)$. Then

$$
D[q \| p]=\frac{1}{2} \int_{0}^{T} d t\left\{\int d x q_{t}(x)\left\|g(x, t)-f_{\theta}(x)\right\|^{2}\right\}
$$

$q_{t}(x)$ is the marginal density of X_{t}.

Change of measure approach

$$
D[Q \| P]=E_{Q} \ln \frac{d Q}{d P}
$$

Girsanov's change of measure theorem results in the following RadonNikodym derivative:

$$
\frac{d Q}{d P}=\exp \left\{-\int_{0}^{T}(f-g)^{\top} \Sigma^{-1 / 2} d B_{t}+\frac{1}{2} \int_{0}^{T}\|f-g\|_{\Sigma}^{2} d t\right\}
$$

where B is a Wiener process with respect to Q.

The variational problem (Diffusion)

Minimise variational free energy

$$
\mathcal{F}_{\theta}(q)=\frac{1}{2} \int_{0}^{T} \int q_{t}(x)\left\{\left\|g(x, t)-f_{\theta}(x)\right\|^{2}-\sum_{i} \delta\left(t-t_{i}\right) \ln p\left(y_{i} \mid x\right)\right\} d x d t
$$

with respect to the posterior drift $g(x, t)$.
The marginal density q_{t} and the drift $g(x, t)$ are coupled through the Fokker - Planck equation

$$
\frac{\partial q_{t}(x)}{\partial t}=\left\{-\sum_{k} \partial_{k} g_{k}(x)+\frac{1}{2} \sum_{k l} \partial_{k} \partial_{l} \Sigma_{k l}(x)\right\} q_{t}(x)
$$

Variation leads to forward backward PDEs.

The Variational Gaussian Approximation for SDEs

- Approximate (Gaussian) process over paths $X_{0: T}$ induced by linear SDE:

$$
d X_{t}=\left\{A(t) X_{t}+b(t)\right\} d t+\Sigma^{1 / 2} d W
$$

- Diffusion Σ must be independent of X !
- Relative entropy is of the form $\mathcal{F}_{\theta}[m, S, A, b]$.
- Constraints are evolution eqs. for marginal mean $m(t)$ and covariance $S(t)$

$$
\begin{aligned}
& \frac{d m}{d t}=A m+b \\
& \frac{d S}{d t}=A S+S A^{\top}+\Sigma
\end{aligned}
$$

\rightarrow nonlinear ODEs instead of PDEs!

Example: Motion in double-well potential

$$
d X=X\left(\theta-X^{2}\right) d t+\sigma d W
$$

A trajectory

Prediction \& comparison with hybrid Monte Carlo

$T=20, \theta=1, \sigma^{2}=0.8$ with $N=40$ observations with noise $\sigma_{o}^{2}=$ 0.04. Fixed initial conditions.

Posterior for θ

Posterior for σ

Lorenz 1963

$$
\begin{aligned}
d x_{t} & =\sigma\left(y_{t}-x_{t}\right) d t+\sqrt{\Sigma^{x}} d W^{x} \\
d y_{t} & =\left(\rho x_{t}-y_{t}-x_{t} z_{t}\right) d t+\sqrt{\Sigma_{y}} d W^{y} \\
d z_{t} & =\left(x_{t} y_{t}-\beta z_{t}\right) d t+\sqrt{\Sigma_{z}} d W^{z}
\end{aligned}
$$

Prediction and comparison with hybrid HMC

More dimensions: Mean field approximation

Approximate further by assuming that processes for different dimensions are independent.

Covariance $S(t) \rightarrow \operatorname{Diag}\left(s_{1}(t), \ldots, s_{D}(t)\right)$

$$
\begin{array}{r}
\mathcal{F}_{\theta}(q)=\sum_{i=1}^{D} \frac{1}{2 \sigma_{i}^{2}} \int_{0}^{T} E_{q}\left[\left(\dot{m}_{i}-f_{i}\left(X_{t}\right)\right)^{2}\right] d t \\
+\sum_{i=1}^{D} \frac{1}{2 \sigma_{i}^{2}} \int_{0}^{T}\left\{\frac{\left(\dot{s}_{i}-\sigma_{i}^{2}\right)^{2}}{4 s_{i}^{2}}+\left(\sigma_{i}^{2}-\dot{s}_{i}\right) E_{q}\left[\frac{\partial f_{i}\left(X_{t}\right)}{\partial X_{t}^{i}}\right]\right\} d t \\
-\sum_{j=1}^{n} E_{q}\left[\ln p\left(y_{j} \mid X_{t_{j}}\right)\right]
\end{array}
$$

Lorenz 1998 model:
$x=\left(x^{1}, \ldots, x^{40}\right)$ with drift

$$
f_{i}\left(x_{t}\right)=\left(x_{t}^{i+1}-x_{t}^{i-2}\right) x_{t}^{i-1}-x_{t}^{i}+\theta
$$

$\sigma^{2}=5$ and $N=90$ observations.

Likelihoods

The relative entropy for Markov jump processes

Assume transition rates $g\left(x^{\prime} \mid x, t\right)$ and $f\left(x^{\prime} \mid x, t\right)$

$$
\begin{gathered}
K L[q|\mid p]= \\
\int_{0}^{T} d t \sum_{x} q_{t}(x) \sum_{x^{\prime}: x^{\prime} \neq x}\left\{g\left(x^{\prime} \mid x, t\right) \ln \frac{g\left(x^{\prime} \mid x, t\right)}{f\left(x^{\prime} \mid x, t\right)}+f\left(x^{\prime} \mid x, t\right)-g\left(x^{\prime} \mid x, t\right)\right\}
\end{gathered}
$$

Mean field approximation

Multivariate states $X(t)=\left(X_{1}(t), \ldots, X_{d}(t)\right)$

Exact inference: Linear ODEs in S^{d} variables

Variational approximation: Optimise in family of factorising measures, i.e. of the type
$q(X[0: T])=\prod_{i=1}^{d} q_{i}\left(X_{i}[0: T]\right)$

Linear ODEs in $S d$ variables.
(Sanguinetti \& Opper, 2008, Cohn, El-Hay, Friedman \& Kupferman, 2010)

Lotka Volterra

Comparison with MCMC

Figure 1: Posterior (mean and 90% confidence intervals) over predator paths (observations (circles) only until 1500).

Figure 2: Posterior (mean and 90% confidence intervals) over prey paths (observations (circles) only until 1500).
from (V Rao \& Y W Teh, 2011)

Hybrid models: Inference of transcriptional regulation

 mRNA

- Transcription factors regulate genes by binding to specific sites.
- Hard to measure transcription factor activity directly. Inference must be based on measurement of mRNA concentration of target genes.
- Big networks: Clustering of expression profiles or Factor analysis

Small subnetworks:

- More detailed dynamical model (Barenco et al)

$$
\frac{d x_{i}}{d t}=-\lambda_{i} x_{i}(t)+b_{i}+A_{i} \mu(t)
$$

which takes sensitivity and degradation into account.

- Try predictions on TF activity $\mu(t)$ and learn parameters using measurements of mRNA concentration of target genes:

$$
y_{i k}=x_{i}\left(t_{k}\right)+\text { noise }
$$

- Assume switching process $\mu(t) \in\{0,1\}$ and $\mu \rightarrow 1-\mu$ with rates $f_{ \pm}$ modeled by telegraph process (Sanguinetti, Ruttor, Archambeau, Opper 2009)

Multiple (2) transcription factors (toy model)

$$
\frac{d x_{i}}{d t}=-\lambda_{i} x_{i}(t)+A_{1}^{i} \mu_{1}(t)+A_{2}^{i} \mu_{2}(t)+A_{12}^{i} \mu_{1}(t) \mu_{2}(t)+b_{i}
$$

Parameter inference for A_{1}^{2}, A_{2}^{2} and A_{12}^{2}.

A_{1}^{i}, A_{2}^{i} and A_{12}^{i} for 5 target genes.

Prediction of activity of transcription factors FHL1 and RAP1 (Microarray data from yeast metabolic cycle). Comparison to MCMC

(blue: MCMC, green: Variational upper, red: Var lower bound)

Feed-forward-loop

(A Ocone \& G Sanginetti, 2011)

Fig. 3. p53 network architecture. E2F1 is the master TF, p53 is the target TF and both regulate target genes DDB2, p21, BIK, PUMA, SIVA, DRAM. Target genes of the only E2F1 (MCM5, MCM7, LIG1) have been included.

Nonparametric estimation of drift function

Assume that data are generated from $d X_{t}=f\left(X_{t}\right) d t+\sigma d W_{t}$.
Could we directly predict $f(x)$?

Yes, if we use a Gaussian Process prior

distribution $p(\mathbf{f})$ over functions $f(\cdot)$.

- If we have 'continuous time' samples \rightarrow posterior process is Gaussian (Papaspiliopulis et al, 2011).

$$
p\left(\mathbf{f} \mid X_{0: T}\right) \propto p(\mathbf{f}) L\left(X_{0: T} \mid \mathbf{f}\right)
$$

with the path 'likelihood'

$$
L\left(X_{0: T} \mid \mathbf{f}\right)=\exp \left[-\frac{1}{2 \sigma^{2}} \sum_{t} f^{2}\left(X_{t}\right) \Delta t+\frac{1}{\sigma^{2}} \sum_{t} f\left(X_{t}\right)\left(X_{t+\Delta t}-X_{t}\right)\right]
$$

- For sparse samples use EM algorithm which cycles between approximate estimations of latent path $X_{0: T}$ between observations and recomputing $f(\cdot)$.

True path

Present \& Future work

- Large systems: Simpler classes of approximations, eg. parametric forms for large covariance matrices (projections, low rank representations ?)
- Perturbative corrections (estimate for error)
- State dependent noise.
- Nonparametric estimation of drift $f(x)$ for models with detailed balance
- Combination with optimal stochastic control

Publications

Gaussian Process Approximations of Stochastic Differential Equations, Cédric Archambeau, Dan Cornford, Manfred Opper and John Shawe Taylor, Journal of Machine Learning Research: Workshop and Conference, Proceedings, 1:1-16. (2007).

Variational Inference for Diffusion Processes, Cedric Archambeau, Manfred Opper, Yuan Shen, Dan Cornford and John Shawe-Taylor, Advances in Neural Information Processing Systems 20 (2008).

Variational inference for Markov jump processes, Manfred Opper and Guido Sanguinetti, Advances in Neural Information Processing Systems 20, 1105-1112 (2008).

A comparison of variational and Markov Chain Monte Carlo methods for inference in partially observed stochastic dynamic systems, Yuan Shen, Cédric Archambeau, Dan Cornford, Manfred Opper, John Shawe-Taylor and Remi Barillec. Journal of Signal Processing Systems (2009).

Switching Regulatory Models of Cellular Stress Response, Guido Sanguinetti, Andreas Ruttor, Manfred Opper and Cédric Archambeau, Bioinformatics, doi: 10.1093/bioinformatics/btp138 (2009).

