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Disordered systems

Many different physical systems in which disorder plays a crucial role :

spin-glasses

H = −
∑
〈ij〉

Jijσiσj with some Jij > 0, others < 0

ordering at low-temperature in a frustrated,
disordered groundstate

disordered conductors

H = −t
∑
〈ij〉

[a+
i aj + a+

j ai ] +
∑

i
εia

+
i ai

εi random, Anderson localization transition at large disorder
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Disordered systems

contact line of a fluid on a disordered substrate

[Moulinet, Guthmann, Rolley 02]

elastic energy + disordered pinning interaction

(also for vortices in supraconductors, domain walls in
ferromagnets...)

studied via functional renormalization group
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Disordered systems

structural glasses

particles freezes in a disordered, amorphous, configuration

here the disorder is self-induced
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Mean-field spin-glasses and optimization problems

Generically, mean-field theories provide a starting point for the physical
understanding of a phenomenon

For spin-glasses : H = −
∑
i<j

Jijσiσj

Jij i.i.d. Gaussians of mean 0, variance 1
N [Sherrington-Kirkpatrick, 75]

solution with the replica method [Parisi 80]

rigorous proof for the free-energy [Guerra-Toninelli, Talagrand 06]
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Mean-field spin-glasses and optimization problems

Two kind of mean-field approximations :

Fully-connected (Curie-Weiss, Sherrington-Kirpatrick) vs
finite-connectivity (Bethe lattices) models

more realistic : connectivity remains finite in the thermodynamic limit

for instance Erdös-Rényi random graphs : among the N(N − 1)/2
possible edges, keep each with probability α/N

average connectivity is α
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Mean-field spin-glasses and optimization problems

Finite-connectivity mean-field spin glass : [Viana-Bray 85]
put random couplings on the edges of a random graph

Still mean-field, technically more involved than fully-connected models

replica method [Monasson 98]

cavity method [Mézard-Parisi 01]
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Mean-field spin-glasses and optimization problems

Connection with combinatorial optimization (computer science) ?

cost function E(σ), on a discrete set of configurations
(for instance σ = (σ1, . . . , σN), N boolean variables)

search for the minima of E

call E an energy (Hamiltonian), equivalent to low temperature
statistical mechanics (variables ↔ spins)
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Mean-field spin-glasses and optimization problems

Example of the coloring problem : given a graph,

is it possible to color it with q colors without monochromatic edges ?

cost function = number of monochromatic edges = energy of a Potts
antiferromagnet

in physics terms, is there a zero-energy groundstate ?
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Mean-field spin-glasses and optimization problems

here the answer is yes for q = 3

but in general it is hard to answer (NP-complete for q ≥ 3)
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Mean-field spin-glasses and optimization problems

Very nice computational complexity theory

but the worst-case point of view might give too much importance to
very rare very hard instances

typical complexity of a problem ?

studied with random ensembles of optimization problems

for example, coloring Erdös-Rényi random graphs

equivalent to mean-field spin-glasses
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Phase transitions in random optimization problems

Random ensembles of optimization problems exhibit (several) phase
transitions

Probability that a random graph is q-colorable :

α

|S| → ∞

0

1

Proba

Sharp threshold (0/1 law) in the thermodynamic limit, at αs

First discovered numerically in the 90’s
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Phase transitions in random optimization problems

Physical insight about (spin-)glasses helped to unveil other phase
transitions for α < αs

Solutions (zero-energy groundstates) organized in clusters for α > αd:

ααd αc αs

exponentially many clusters for α ∈ [αd, αc]

[Biroli-Monasson-Weigt 00]
[Mézard-Parisi-Zecchina 02]

[Mézard-Palassini-Rivoire 05]
[Krzakala-Montanari-Ricci-Tersenghi-GS-Zdeborova 07]

obtained via the (non-rigorous) replica/cavity methods
partial rigorous results, mainly at large q [Achlioptas, Coja-Oghlan 08]

[Molloy 12]
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The cavity method

random graphs converge locally to trees

models on finite trees are simple

Simplest example : ferromagnet on a regular tree

H(σ1, . . . , σN) = −J
∑

〈i ,j〉

σiσj , Z =
∑

σ1=±1

· · ·
∑

σN=±1

e−βH(σ1,...,σN)
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The cavity method

H(σ1, . . . , σN) = −J
∑

〈i ,j〉

σiσj , Z =
∑

σ1=±1

· · ·
∑

σN=±1

e−βH(σ1,...,σN)

Zg(σ) : partition function

conditioned on the value of the root σ

in a regular tree with g generations
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The cavity method

Zg+1(σ) =
∑

σ1,...,σc̃

Zg(σ1) . . . Zg(σc̃) eβJσ(σ1+···+σc̃)

Normalized probability : ηg(σ) =
Zg(σ)

Zg(+)+Zg(−) = eβhgσ

2 cosh(βhg)

Recursion on the effective magnetic field :
hg+1 = c̃

β
atanh (tanh(βJ) tanh(βhg))

Fixed point when g → ∞ : (infinitesimal field to break the symmetry)

h = 0 at high temperature

h 6= 0 at low temperature

True magnetic field can be recovered
with c instead of c̃ neighbors on the root
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The cavity method

Generalization to any model on a finite tree :

solvable via exchange of “messages” between neighboring
variables

Generalization to models on random graphs :

only locally tree-like, effect of the loops (boundary conditions)

for α < αd, Replica Symmetric phase, fast correlation decay

for α > αd, Replica Symmetry Breaking, correlated boundary
conditions, computation of the number of clusters (pure states)

Method applicable to any model with an interaction graph converging
locally to a tree, random constraint satisfaction problems, lattice
glasses, properties of random graphs...
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