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Why is so interesting to study dynamics on networks?

Simulation for this disordered Ising modelDynamic Cavity method

Equilibrium state on networks has been 
studied for decades

By using a thermodynamic description
(Statistical Mechanics of equilibrium states)

Dynamics description 

Some characteristic are not caught by the thermodynamic description 
(dynamical phase transitions, aging, trapping in metastable states, ....) 

We are interested in the dynamic behavior of some relevant observables 
(magnetization, correlations, density of some physical variable, ...)

- - Many interesting aspects emerge only during dynamics and not at equilibrium - -
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application on a one-dimensional Ising model

factor graph F , and the computational properties of an auxiliary Gibbs measure can be
discussed in how terms in how F aux relate to F . The concept is explained in Fig. 2.
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Figure 2: A factor graph F describing an energy function governing a dynamics. This graph relates to

the more general formulation in Fig. (1) in that two nodes in G will be (symmetrically) connected if they

are at distance two in F , separated by an energy term which depends on both variables. Neighborhoods

O1, O2 and O3 are defined analogously to Fig. (1).

A theory containing only terms in O1 is one where the spins are assumed independent,
and this factorized probability distribution is used to compute the expectation values in (3).
This can be contrasted to dynamical mean-field theory which starts from the equivalent
of (3) and the expectation value computed with respect to the full probability distribu-
tion, which is then expanded in a perturbation series in interaction strength [28, 29, 30].
In dynamic mean field theory there is the notion that one seeks the factorized probabil-
ity distribution which has smallest Kullback-Leibler divergence from the full distribution,
without assuming that the factorized probability distribution and the full distribution are
actually close. In the approach developed here we on the other hand assume that P is
always close to Paux, which for a theory containing terms only in O1 means a factorized
probability distribution, and use (4) and (5) to enforce this condition at each time step.

Theories containing only terms in O2 fall naturally into two categories. In the first
we restrict the allowed interactions in F aux to be as in F and O1(s) (meaning external
fields, in the case these are not included in F ). F aux will then have the same topology as
F and for Ising pair-wise interactions (including the example studied below) this means a
theory depending on magnetizations (one-spin marginals) and energies (two-spin marginals,
where the two spins are at distance two in F ). Such a theory, while still not trivial, has
the advantage that marginal probabilities can be computed in the same manner for F aux

as for F , typically by the cavity method. For the example of a relaxing Ising spin chain we
develop the theory on this level of approximation in Section 4. We note that if we would
have interactions in F among three and more spins then we can have many more terms in
the auxiliary Gibbs measure than magnetization and energy, on this level of approximation.
One example would be to include in the description of a 3-spin interacting system both the
physical energy on three spins (say sisjsk), and also other terms depending on the same
spins but in a different manner (say sisj + sjsk + sksi). This category of computationally
comparatively simple theories in O2 is therefore in general larger than theories based only
on magnetization and energy.

The second category of theories containing only terms in O2 are the rest, where the
factor graph F aux does not have the same topology as F , and typically is not locally tree-
like. If the rate wj depends on a set of local energy terms ✏a(s

a
) where j and a are linked

5

Construction of a large deviation theory for  
off-equilibrium processes
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probability distribution is then described as a Gibbs measure with an auxiliary (non-
physical) energy function, as discussed in Appendix A of [18]. The expectation values
of the terms in this auxiliary energy function and their conjugate quantities satisfy a
closed set system of equations, potentially, as we will discuss, a considerable reduction
of dimensionality of the dynamics. This fact was, to our knowledge, and using different
arguments, first used as a computational scheme in (fully-connected) mean field models of
spin glasses [19, 20] later extended to diluted systems on random graphs [21, 22, 23]. Here
we consider this approach from the viewpoint of large deviations with a focus on how the
accuracy of the approximation can be assessed internally without resorting to simulations
of the full dynamics.

The paper is organized as follows: in Section 2 we introduce the general approach, and
in Section 3 we show how it can in principle be used to set up a perturbation theory. In
Sections 4 and 5 we analyze the model problem of a relaxing Ising chain, first on the level
of approximation of a “two-parameter theory”, and then on the level of the “joint spin-field
theory” a higher-order approximation developed in [19, 20, 21, 22, 23]. We here show that
the accuracy of each level of approximation can be assessed internally, where the largest
inaccuracies of the “two-parameter theory” are taken care of in the “joint spin-field theory”,
but where higher-order inaccuracies would need a higher-order approximation. In Section 6
we summarize and discuss our results. Four appendices contain additional material: in
Appendix A we give the details of our derivation of the joint spin-field theory by a graph
inflation procedure combined with ordinary Belief Propagation, while in Appendix B we
do the same using the approach developed in [19, 20, 21, 22, 23]. The resulting equations
are in both cases rather complicated, and we therefore show separately in Appendix C that
they indeed lead to the same computational scheme. In the last Appendix D we show that
our approach can be given a geometric interpretation as a projection on an e-flat hierarchy
of probability distributions, as defined in [24], at each time step of the dynamics. We also
show that the internal test for accuracy which we develop has the counter-party in the
dual concept of projection on m-flat hierarchies.

2 Large deviations and the dimensional reduction of dynam-

ics

For definiteness we will consider a continuous-time Markov process on N Boolean variables
(spins) described by a master equation

@tP (s) =

N
X

j=1

wj(Fjs)P (Fjs) � wj(s)P (s) (1)

where wj(s) is the flip rate of spin sj and Fj is the flip operator i.e. Fjs = Fj(s1, . . . , sj , . . . , sN ) =

(s1, . . . , �sj , . . . , sN ). We will assume that the probability distribution takes a large de-
viation form P (s) / exp (�NV (s)) and that the large deviation function V depends on
L intrinsic quantities (homogeneous local functions) V = V (o1(s), . . . , oL(s)). When the
variations are (relatively) small the large deviation function can be linearized such that
V = Const. + �1o1(s) + . . . + �LoL(s) where now O1(s) = No1(s), . . . , OL(s) = NoL(s)
are auxiliary (non-physical) energy terms, �1, . . . �L the corresponding conjugate quantities
(generalized temperatures), and the (non-equilibrium) probability distribution is approxi-
mated by an auxiliary Gibbs measure

P aux
(s) = exp (��1O1(s) . . . � �LOL(s) � F ) (2)

2
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A theory containing only terms in O1 is one where the spins are assumed independent,
and this factorized probability distribution is used to compute the expectation values in (3).
This can be contrasted to dynamical mean-field theory which starts from the equivalent
of (3) and the expectation value computed with respect to the full probability distribu-
tion, which is then expanded in a perturbation series in interaction strength [28, 29, 30].
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spin glasses [19, 20] later extended to diluted systems on random graphs [21, 22, 23]. Here
we consider this approach from the viewpoint of large deviations with a focus on how the
accuracy of the approximation can be assessed internally without resorting to simulations
of the full dynamics.
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theory” a higher-order approximation developed in [19, 20, 21, 22, 23]. We here show that
the accuracy of each level of approximation can be assessed internally, where the largest
inaccuracies of the “two-parameter theory” are taken care of in the “joint spin-field theory”,
but where higher-order inaccuracies would need a higher-order approximation. In Section 6
we summarize and discuss our results. Four appendices contain additional material: in
Appendix A we give the details of our derivation of the joint spin-field theory by a graph
inflation procedure combined with ordinary Belief Propagation, while in Appendix B we
do the same using the approach developed in [19, 20, 21, 22, 23]. The resulting equations
are in both cases rather complicated, and we therefore show separately in Appendix C that
they indeed lead to the same computational scheme. In the last Appendix D we show that
our approach can be given a geometric interpretation as a projection on an e-flat hierarchy
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show that the internal test for accuracy which we develop has the counter-party in the
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V = Const. + �1o1(s) + . . . + �LoL(s) where now O1(s) = No1(s), . . . , OL(s) = NoL(s)
are auxiliary (non-physical) energy terms, �1, . . . �L the corresponding conjugate quantities
(generalized temperatures), and the (non-equilibrium) probability distribution is approxi-
mated by an auxiliary Gibbs measure

P aux
(s) = exp (��1O1(s) . . . � �LOL(s) � F ) (2)

2

Large deviation function for the probability distribution

where

factor graph F , and the computational properties of an auxiliary Gibbs measure can be
discussed in how terms in how F aux relate to F . The concept is explained in Fig. 2.
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Figure 2: A factor graph F describing an energy function governing a dynamics. This graph relates to

the more general formulation in Fig. (1) in that two nodes in G will be (symmetrically) connected if they

are at distance two in F , separated by an energy term which depends on both variables. Neighborhoods

O1, O2 and O3 are defined analogously to Fig. (1).

A theory containing only terms in O1 is one where the spins are assumed independent,
and this factorized probability distribution is used to compute the expectation values in (3).
This can be contrasted to dynamical mean-field theory which starts from the equivalent
of (3) and the expectation value computed with respect to the full probability distribu-
tion, which is then expanded in a perturbation series in interaction strength [28, 29, 30].
In dynamic mean field theory there is the notion that one seeks the factorized probabil-
ity distribution which has smallest Kullback-Leibler divergence from the full distribution,
without assuming that the factorized probability distribution and the full distribution are
actually close. In the approach developed here we on the other hand assume that P is
always close to Paux, which for a theory containing terms only in O1 means a factorized
probability distribution, and use (4) and (5) to enforce this condition at each time step.

Theories containing only terms in O2 fall naturally into two categories. In the first
we restrict the allowed interactions in F aux to be as in F and O1(s) (meaning external
fields, in the case these are not included in F ). F aux will then have the same topology as
F and for Ising pair-wise interactions (including the example studied below) this means a
theory depending on magnetizations (one-spin marginals) and energies (two-spin marginals,
where the two spins are at distance two in F ). Such a theory, while still not trivial, has
the advantage that marginal probabilities can be computed in the same manner for F aux

as for F , typically by the cavity method. For the example of a relaxing Ising spin chain we
develop the theory on this level of approximation in Section 4. We note that if we would
have interactions in F among three and more spins then we can have many more terms in
the auxiliary Gibbs measure than magnetization and energy, on this level of approximation.
One example would be to include in the description of a 3-spin interacting system both the
physical energy on three spins (say sisjsk), and also other terms depending on the same
spins but in a different manner (say sisj + sjsk + sksi). This category of computationally
comparatively simple theories in O2 is therefore in general larger than theories based only
on magnetization and energy.

The second category of theories containing only terms in O2 are the rest, where the
factor graph F aux does not have the same topology as F , and typically is not locally tree-
like. If the rate wj depends on a set of local energy terms ✏a(s

a
) where j and a are linked

5

in the factor graph F then the set O2(s) contains, in general, all interactions depending
on sj and on any of the other spins in the sets sa, but not on any other spins. This set
is larger than the interactions included in F (the first category) because terms depending
on a spin sj and spins in at least two different energy terms a and b, both linked to j, are
included. Theories in this category are necessarily more complicated since the marginal
probabilities cannot be computed in the same way for F aux as for F . We will below in
Section 5 develop one such approximation for the relaxing Ising spin chain which we refer
to as the “joint spin-field theory”, following the earlier literature [20, 21, 22, 23]. We will
show how the abundance of short loops can then be handled by a graph inflation technique
such that the expectation values can be computed by ordinary BP on an auxiliary locally
tree-like graph (the expanded graph). Details are and comparisons to the approach taken
in [20, 21, 22, 23] are given in Appendices A-C.

Theories containing only terms in O3 (and higher orders) will not be considered in detail
in this paper. It is however clear that they pose similar problems as the category of general
theories containing only terms in O2, i.e. that the auxiliary factor graph F aux typically
will not have the same topology as F . It is also clear that the marginal probabilities with
respect to F aux can nevertheless (in principle) be computed by methods analogous to those
developed in Section 5 and Appendices A-C, or by generalized Belief Propagation [26, 31,
32], necessarily however at the cost of increased computational complexity.

4 A two-parameter theory of 1D Ising chain dynamics

The one-dimensional Ising chain is a convenient model since it can be solved explicitly for
magnetizations and the pair-wise correlation functions [33]. For recent developments on
this model, for which more exact results than equal-time pair-wise correlation functions
are available, see [34]. The flip rates are wi(s) =

1
2 [1 � si tanh[�hi(s)]] where hi(s) =

J(si�1 + si+1) is the local field. We will be interested in the relaxation from an initial
state towards equilibrium at inverse temperature �. Periodic boundary conditions will be
assumed throughout i.e. the chain is closed.

The explicit solution for the magnetization is obtained from the exact equation dm
dt =

�m+ < tanh �Jh >P and noting that for any homogenous probability distribution on
two spins (si�1 and si+1) it reduces to dm

dt = �m(1 � tanh 2�J). It follows that for the
relaxing Ising chain any large deviation approximation of the type considered here will be
exact for the magnetization because equation (3) is always, for the magnetization, of the
type of �m+ < tanh �Jh >. We note that in contrast a dynamical mean field theory
gives on the “naive mean field” level dm

dt = �m + tanh (2�Jm) and on the “TAP level”
dm
dt = �m + tanh

⇥

(2�J)(m � (m +

dm
dt )J(1 � m2

))

⇤

, neither of which is exact [30].
Proceeding now to theories in O2, an auxiliary Gibbs distribution based on magneti-

zation and energy takes the form

P Ising-2(s) = exp (��MM(s) � �EE(s) � F ) (7)

where �M and �E are the generalized temperatures at this level of approximation and total
magnetization M is

P

i si and total energy E is
P

i sisi+1. The final state will eventually
be a Boltzmann distribution at inverse temperature �, P / exp (��E), and the problem
is hence to find out (on this level of approximation) how (�M , �E) approach (0, �), or,
equivalently, how (< m >, < e >) approach (0, eeq) where eeq is the equilibrium energy
density at temperature 1/�. The time derivatives in (3) are

dm

dt
= �m +

⌦

tanh �h
↵ de

dt
= �2e �

⌦

h tanh �h
↵

(8)
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probability distribution is then described as a Gibbs measure with an auxiliary (non-
physical) energy function, as discussed in Appendix A of [18]. The expectation values
of the terms in this auxiliary energy function and their conjugate quantities satisfy a
closed set system of equations, potentially, as we will discuss, a considerable reduction
of dimensionality of the dynamics. This fact was, to our knowledge, and using different
arguments, first used as a computational scheme in (fully-connected) mean field models of
spin glasses [19, 20] later extended to diluted systems on random graphs [21, 22, 23]. Here
we consider this approach from the viewpoint of large deviations with a focus on how the
accuracy of the approximation can be assessed internally without resorting to simulations
of the full dynamics.

The paper is organized as follows: in Section 2 we introduce the general approach, and
in Section 3 we show how it can in principle be used to set up a perturbation theory. In
Sections 4 and 5 we analyze the model problem of a relaxing Ising chain, first on the level
of approximation of a “two-parameter theory”, and then on the level of the “joint spin-field
theory” a higher-order approximation developed in [19, 20, 21, 22, 23]. We here show that
the accuracy of each level of approximation can be assessed internally, where the largest
inaccuracies of the “two-parameter theory” are taken care of in the “joint spin-field theory”,
but where higher-order inaccuracies would need a higher-order approximation. In Section 6
we summarize and discuss our results. Four appendices contain additional material: in
Appendix A we give the details of our derivation of the joint spin-field theory by a graph
inflation procedure combined with ordinary Belief Propagation, while in Appendix B we
do the same using the approach developed in [19, 20, 21, 22, 23]. The resulting equations
are in both cases rather complicated, and we therefore show separately in Appendix C that
they indeed lead to the same computational scheme. In the last Appendix D we show that
our approach can be given a geometric interpretation as a projection on an e-flat hierarchy
of probability distributions, as defined in [24], at each time step of the dynamics. We also
show that the internal test for accuracy which we develop has the counter-party in the
dual concept of projection on m-flat hierarchies.

2 Large deviations and the dimensional reduction of dynam-

ics

For definiteness we will consider a continuous-time Markov process on N Boolean variables
(spins) described by a master equation

@tP (s) =

N
X

j=1

wj(Fjs)P (Fjs) � wj(s)P (s) (1)

where wj(s) is the flip rate of spin sj and Fj is the flip operator i.e. Fjs = Fj(s1, . . . , sj , . . . , sN ) =

(s1, . . . , �sj , . . . , sN ). We will assume that the probability distribution takes a large de-
viation form P (s) / exp (�NV (s)) and that the large deviation function V depends on
L intrinsic quantities (homogeneous local functions) V = V (o1(s), . . . , oL(s)). When the
variations are (relatively) small the large deviation function can be linearized such that
V = Const. + �1o1(s) + . . . + �LoL(s) where now O1(s) = No1(s), . . . , OL(s) = NoL(s)
are auxiliary (non-physical) energy terms, �1, . . . �L the corresponding conjugate quantities
(generalized temperatures), and the (non-equilibrium) probability distribution is approxi-
mated by an auxiliary Gibbs measure

P aux
(s) = exp (��1O1(s) . . . � �LOL(s) � F ) (2)

2
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viation form P (s) / exp (�NV (s)) and that the large deviation function V depends on
L intrinsic quantities (homogeneous local functions) V = V (o1(s), . . . , oL(s)). When the
variations are (relatively) small the large deviation function can be linearized such that
V = Const. + �1o1(s) + . . . + �LoL(s) where now O1(s) = No1(s), . . . , OL(s) = NoL(s)
are auxiliary (non-physical) energy terms, �1, . . . �L the corresponding conjugate quantities
(generalized temperatures), and the (non-equilibrium) probability distribution is approxi-
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factor graph F , and the computational properties of an auxiliary Gibbs measure can be
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O1, O2 and O3 are defined analogously to Fig. (1).

A theory containing only terms in O1 is one where the spins are assumed independent,
and this factorized probability distribution is used to compute the expectation values in (3).
This can be contrasted to dynamical mean-field theory which starts from the equivalent
of (3) and the expectation value computed with respect to the full probability distribu-
tion, which is then expanded in a perturbation series in interaction strength [28, 29, 30].
In dynamic mean field theory there is the notion that one seeks the factorized probabil-
ity distribution which has smallest Kullback-Leibler divergence from the full distribution,
without assuming that the factorized probability distribution and the full distribution are
actually close. In the approach developed here we on the other hand assume that P is
always close to Paux, which for a theory containing terms only in O1 means a factorized
probability distribution, and use (4) and (5) to enforce this condition at each time step.

Theories containing only terms in O2 fall naturally into two categories. In the first
we restrict the allowed interactions in F aux to be as in F and O1(s) (meaning external
fields, in the case these are not included in F ). F aux will then have the same topology as
F and for Ising pair-wise interactions (including the example studied below) this means a
theory depending on magnetizations (one-spin marginals) and energies (two-spin marginals,
where the two spins are at distance two in F ). Such a theory, while still not trivial, has
the advantage that marginal probabilities can be computed in the same manner for F aux

as for F , typically by the cavity method. For the example of a relaxing Ising spin chain we
develop the theory on this level of approximation in Section 4. We note that if we would
have interactions in F among three and more spins then we can have many more terms in
the auxiliary Gibbs measure than magnetization and energy, on this level of approximation.
One example would be to include in the description of a 3-spin interacting system both the
physical energy on three spins (say sisjsk), and also other terms depending on the same
spins but in a different manner (say sisj + sjsk + sksi). This category of computationally
comparatively simple theories in O2 is therefore in general larger than theories based only
on magnetization and energy.

The second category of theories containing only terms in O2 are the rest, where the
factor graph F aux does not have the same topology as F , and typically is not locally tree-
like. If the rate wj depends on a set of local energy terms ✏a(s

a
) where j and a are linked
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in the factor graph F then the set O2(s) contains, in general, all interactions depending
on sj and on any of the other spins in the sets sa, but not on any other spins. This set
is larger than the interactions included in F (the first category) because terms depending
on a spin sj and spins in at least two different energy terms a and b, both linked to j, are
included. Theories in this category are necessarily more complicated since the marginal
probabilities cannot be computed in the same way for F aux as for F . We will below in
Section 5 develop one such approximation for the relaxing Ising spin chain which we refer
to as the “joint spin-field theory”, following the earlier literature [20, 21, 22, 23]. We will
show how the abundance of short loops can then be handled by a graph inflation technique
such that the expectation values can be computed by ordinary BP on an auxiliary locally
tree-like graph (the expanded graph). Details are and comparisons to the approach taken
in [20, 21, 22, 23] are given in Appendices A-C.

Theories containing only terms in O3 (and higher orders) will not be considered in detail
in this paper. It is however clear that they pose similar problems as the category of general
theories containing only terms in O2, i.e. that the auxiliary factor graph F aux typically
will not have the same topology as F . It is also clear that the marginal probabilities with
respect to F aux can nevertheless (in principle) be computed by methods analogous to those
developed in Section 5 and Appendices A-C, or by generalized Belief Propagation [26, 31,
32], necessarily however at the cost of increased computational complexity.

4 A two-parameter theory of 1D Ising chain dynamics

The one-dimensional Ising chain is a convenient model since it can be solved explicitly for
magnetizations and the pair-wise correlation functions [33]. For recent developments on
this model, for which more exact results than equal-time pair-wise correlation functions
are available, see [34]. The flip rates are wi(s) =

1
2 [1 � si tanh[�hi(s)]] where hi(s) =

J(si�1 + si+1) is the local field. We will be interested in the relaxation from an initial
state towards equilibrium at inverse temperature �. Periodic boundary conditions will be
assumed throughout i.e. the chain is closed.

The explicit solution for the magnetization is obtained from the exact equation dm
dt =

�m+ < tanh �Jh >P and noting that for any homogenous probability distribution on
two spins (si�1 and si+1) it reduces to dm

dt = �m(1 � tanh 2�J). It follows that for the
relaxing Ising chain any large deviation approximation of the type considered here will be
exact for the magnetization because equation (3) is always, for the magnetization, of the
type of �m+ < tanh �Jh >. We note that in contrast a dynamical mean field theory
gives on the “naive mean field” level dm

dt = �m + tanh (2�Jm) and on the “TAP level”
dm
dt = �m + tanh

⇥

(2�J)(m � (m +

dm
dt )J(1 � m2

))

⇤

, neither of which is exact [30].
Proceeding now to theories in O2, an auxiliary Gibbs distribution based on magneti-

zation and energy takes the form

P Ising-2(s) = exp (��MM(s) � �EE(s) � F ) (7)

where �M and �E are the generalized temperatures at this level of approximation and total
magnetization M is

P

i si and total energy E is
P

i sisi+1. The final state will eventually
be a Boltzmann distribution at inverse temperature �, P / exp (��E), and the problem
is hence to find out (on this level of approximation) how (�M , �E) approach (0, �), or,
equivalently, how (< m >, < e >) approach (0, eeq) where eeq is the equilibrium energy
density at temperature 1/�. The time derivatives in (3) are

dm

dt
= �m +

⌦

tanh �h
↵ de

dt
= �2e �

⌦

h tanh �h
↵

(8)
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distribution is at all time taken to be (7). We then have for one term

d(T )hsiski
dtt

=

@

@t

X

s

P (s) sisk =

X

s

@

@t
P (s) sisk (16)

=

X

s

N
X

j=1

{wj(Fjs)P (Fjs) � wj(s)P (s)}sisk = �2

X

s

P (s) {wi(s) + wk(s)}

and for the other

d(M)hsiski
dt

=

˙�M

�

hM(sisk)i � hMihsiski
�

+

˙�E

�

hE(sisk)i � hEihsiski
�

(17)

As shown in Figure 5 the time change of the correlation function hsisi+1i (the energy),
which is included in the two-parameter theory, is reproduced exactly, while those of hsisi+2i
and hsisi+3i are not. This then shows, internal to the theory and without solving the full
dynamical equations, that the model does not catch effective interactions which develop
between non-neighboring spins at intermediate times, which is also where we find the
largest discrepancies between the energy computed exactly (by Glauber’s equation) and in
the model, compare Fig. (4).
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Figure 5: The difference

d(T )

dt hsiski� d(M)

dt hsiski, taken from (16) and (17), is shown for the index k taking

the values k = {i + 1, i + 2, i + 3}. The time derivative of the correlation function hsisi+1i is perfectly

recovered with the presented approach (red line), while the time derivative of the correlation hsisi+2i and

hsisi+3i (green and blue line respectively), correlation functions which are not included in the model, are

not well reconstructed at intermediate times. The latter difference (blue line) appears to be smaller simply

because correlations between spins at longer distance are weaker.

5 A joint spin-field theory of 1D Ising chain dynamics

We start this section by noting generally that if the master equation describes a process
obeying local balance then the flip rate wj is determined (and only determined) by the
value of sj and the total local field acting on spin j, hj(s) =

P

l(Ol(Fjs) � Ol(s))/(2sj).
For the example of a relaxing Ising spin chain hj(s) = J (sj�1 + sj+1). At least for systems
obeying detailed balance it is therefore reasonable to assume that a description in terms of
spins and total local fields acting on these spins could be accurate. Laughton et al in [20]
were the first to investigate this possibility, and in the terminology used here can be said
to have proposed to use

PLCS
= exp

0

@

X

s,h,i

d(s, h)1si,s1hi,h � F

1

A (18)
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probability distribution is then described as a Gibbs measure with an auxiliary (non-
physical) energy function, as discussed in Appendix A of [18]. The expectation values
of the terms in this auxiliary energy function and their conjugate quantities satisfy a
closed set system of equations, potentially, as we will discuss, a considerable reduction
of dimensionality of the dynamics. This fact was, to our knowledge, and using different
arguments, first used as a computational scheme in (fully-connected) mean field models of
spin glasses [19, 20] later extended to diluted systems on random graphs [21, 22, 23]. Here
we consider this approach from the viewpoint of large deviations with a focus on how the
accuracy of the approximation can be assessed internally without resorting to simulations
of the full dynamics.

The paper is organized as follows: in Section 2 we introduce the general approach, and
in Section 3 we show how it can in principle be used to set up a perturbation theory. In
Sections 4 and 5 we analyze the model problem of a relaxing Ising chain, first on the level
of approximation of a “two-parameter theory”, and then on the level of the “joint spin-field
theory” a higher-order approximation developed in [19, 20, 21, 22, 23]. We here show that
the accuracy of each level of approximation can be assessed internally, where the largest
inaccuracies of the “two-parameter theory” are taken care of in the “joint spin-field theory”,
but where higher-order inaccuracies would need a higher-order approximation. In Section 6
we summarize and discuss our results. Four appendices contain additional material: in
Appendix A we give the details of our derivation of the joint spin-field theory by a graph
inflation procedure combined with ordinary Belief Propagation, while in Appendix B we
do the same using the approach developed in [19, 20, 21, 22, 23]. The resulting equations
are in both cases rather complicated, and we therefore show separately in Appendix C that
they indeed lead to the same computational scheme. In the last Appendix D we show that
our approach can be given a geometric interpretation as a projection on an e-flat hierarchy
of probability distributions, as defined in [24], at each time step of the dynamics. We also
show that the internal test for accuracy which we develop has the counter-party in the
dual concept of projection on m-flat hierarchies.

2 Large deviations and the dimensional reduction of dynam-

ics

For definiteness we will consider a continuous-time Markov process on N Boolean variables
(spins) described by a master equation

@tP (s) =

N
X

j=1

wj(Fjs)P (Fjs) � wj(s)P (s) (1)

where wj(s) is the flip rate of spin sj and Fj is the flip operator i.e. Fjs = Fj(s1, . . . , sj , . . . , sN ) =

(s1, . . . , �sj , . . . , sN ). We will assume that the probability distribution takes a large de-
viation form P (s) / exp (�NV (s)) and that the large deviation function V depends on
L intrinsic quantities (homogeneous local functions) V = V (o1(s), . . . , oL(s)). When the
variations are (relatively) small the large deviation function can be linearized such that
V = Const. + �1o1(s) + . . . + �LoL(s) where now O1(s) = No1(s), . . . , OL(s) = NoL(s)
are auxiliary (non-physical) energy terms, �1, . . . �L the corresponding conjugate quantities
(generalized temperatures), and the (non-equilibrium) probability distribution is approxi-
mated by an auxiliary Gibbs measure

P aux
(s) = exp (��1O1(s) . . . � �LOL(s) � F ) (2)

2
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of the full dynamics.
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in Section 3 we show how it can in principle be used to set up a perturbation theory. In
Sections 4 and 5 we analyze the model problem of a relaxing Ising chain, first on the level
of approximation of a “two-parameter theory”, and then on the level of the “joint spin-field
theory” a higher-order approximation developed in [19, 20, 21, 22, 23]. We here show that
the accuracy of each level of approximation can be assessed internally, where the largest
inaccuracies of the “two-parameter theory” are taken care of in the “joint spin-field theory”,
but where higher-order inaccuracies would need a higher-order approximation. In Section 6
we summarize and discuss our results. Four appendices contain additional material: in
Appendix A we give the details of our derivation of the joint spin-field theory by a graph
inflation procedure combined with ordinary Belief Propagation, while in Appendix B we
do the same using the approach developed in [19, 20, 21, 22, 23]. The resulting equations
are in both cases rather complicated, and we therefore show separately in Appendix C that
they indeed lead to the same computational scheme. In the last Appendix D we show that
our approach can be given a geometric interpretation as a projection on an e-flat hierarchy
of probability distributions, as defined in [24], at each time step of the dynamics. We also
show that the internal test for accuracy which we develop has the counter-party in the
dual concept of projection on m-flat hierarchies.

2 Large deviations and the dimensional reduction of dynam-

ics

For definiteness we will consider a continuous-time Markov process on N Boolean variables
(spins) described by a master equation

@tP (s) =

N
X

j=1

wj(Fjs)P (Fjs) � wj(s)P (s) (1)

where wj(s) is the flip rate of spin sj and Fj is the flip operator i.e. Fjs = Fj(s1, . . . , sj , . . . , sN ) =

(s1, . . . , �sj , . . . , sN ). We will assume that the probability distribution takes a large de-
viation form P (s) / exp (�NV (s)) and that the large deviation function V depends on
L intrinsic quantities (homogeneous local functions) V = V (o1(s), . . . , oL(s)). When the
variations are (relatively) small the large deviation function can be linearized such that
V = Const. + �1o1(s) + . . . + �LoL(s) where now O1(s) = No1(s), . . . , OL(s) = NoL(s)
are auxiliary (non-physical) energy terms, �1, . . . �L the corresponding conjugate quantities
(generalized temperatures), and the (non-equilibrium) probability distribution is approxi-
mated by an auxiliary Gibbs measure

P aux
(s) = exp (��1O1(s) . . . � �LOL(s) � F ) (2)

2

Large deviation function for the probability distribution

where

factor graph F , and the computational properties of an auxiliary Gibbs measure can be
discussed in how terms in how F aux relate to F . The concept is explained in Fig. 2.

O1 O2 O3 (1)

1

O1 O2 O3 (1)

1

O1 O2 O3 (1)

1

Monday, December 16, 13

Figure 2: A factor graph F describing an energy function governing a dynamics. This graph relates to

the more general formulation in Fig. (1) in that two nodes in G will be (symmetrically) connected if they

are at distance two in F , separated by an energy term which depends on both variables. Neighborhoods

O1, O2 and O3 are defined analogously to Fig. (1).

A theory containing only terms in O1 is one where the spins are assumed independent,
and this factorized probability distribution is used to compute the expectation values in (3).
This can be contrasted to dynamical mean-field theory which starts from the equivalent
of (3) and the expectation value computed with respect to the full probability distribu-
tion, which is then expanded in a perturbation series in interaction strength [28, 29, 30].
In dynamic mean field theory there is the notion that one seeks the factorized probabil-
ity distribution which has smallest Kullback-Leibler divergence from the full distribution,
without assuming that the factorized probability distribution and the full distribution are
actually close. In the approach developed here we on the other hand assume that P is
always close to Paux, which for a theory containing terms only in O1 means a factorized
probability distribution, and use (4) and (5) to enforce this condition at each time step.

Theories containing only terms in O2 fall naturally into two categories. In the first
we restrict the allowed interactions in F aux to be as in F and O1(s) (meaning external
fields, in the case these are not included in F ). F aux will then have the same topology as
F and for Ising pair-wise interactions (including the example studied below) this means a
theory depending on magnetizations (one-spin marginals) and energies (two-spin marginals,
where the two spins are at distance two in F ). Such a theory, while still not trivial, has
the advantage that marginal probabilities can be computed in the same manner for F aux

as for F , typically by the cavity method. For the example of a relaxing Ising spin chain we
develop the theory on this level of approximation in Section 4. We note that if we would
have interactions in F among three and more spins then we can have many more terms in
the auxiliary Gibbs measure than magnetization and energy, on this level of approximation.
One example would be to include in the description of a 3-spin interacting system both the
physical energy on three spins (say sisjsk), and also other terms depending on the same
spins but in a different manner (say sisj + sjsk + sksi). This category of computationally
comparatively simple theories in O2 is therefore in general larger than theories based only
on magnetization and energy.

The second category of theories containing only terms in O2 are the rest, where the
factor graph F aux does not have the same topology as F , and typically is not locally tree-
like. If the rate wj depends on a set of local energy terms ✏a(s

a
) where j and a are linked

5

in the factor graph F then the set O2(s) contains, in general, all interactions depending
on sj and on any of the other spins in the sets sa, but not on any other spins. This set
is larger than the interactions included in F (the first category) because terms depending
on a spin sj and spins in at least two different energy terms a and b, both linked to j, are
included. Theories in this category are necessarily more complicated since the marginal
probabilities cannot be computed in the same way for F aux as for F . We will below in
Section 5 develop one such approximation for the relaxing Ising spin chain which we refer
to as the “joint spin-field theory”, following the earlier literature [20, 21, 22, 23]. We will
show how the abundance of short loops can then be handled by a graph inflation technique
such that the expectation values can be computed by ordinary BP on an auxiliary locally
tree-like graph (the expanded graph). Details are and comparisons to the approach taken
in [20, 21, 22, 23] are given in Appendices A-C.

Theories containing only terms in O3 (and higher orders) will not be considered in detail
in this paper. It is however clear that they pose similar problems as the category of general
theories containing only terms in O2, i.e. that the auxiliary factor graph F aux typically
will not have the same topology as F . It is also clear that the marginal probabilities with
respect to F aux can nevertheless (in principle) be computed by methods analogous to those
developed in Section 5 and Appendices A-C, or by generalized Belief Propagation [26, 31,
32], necessarily however at the cost of increased computational complexity.

4 A two-parameter theory of 1D Ising chain dynamics

The one-dimensional Ising chain is a convenient model since it can be solved explicitly for
magnetizations and the pair-wise correlation functions [33]. For recent developments on
this model, for which more exact results than equal-time pair-wise correlation functions
are available, see [34]. The flip rates are wi(s) =

1
2 [1 � si tanh[�hi(s)]] where hi(s) =

J(si�1 + si+1) is the local field. We will be interested in the relaxation from an initial
state towards equilibrium at inverse temperature �. Periodic boundary conditions will be
assumed throughout i.e. the chain is closed.

The explicit solution for the magnetization is obtained from the exact equation dm
dt =

�m+ < tanh �Jh >P and noting that for any homogenous probability distribution on
two spins (si�1 and si+1) it reduces to dm

dt = �m(1 � tanh 2�J). It follows that for the
relaxing Ising chain any large deviation approximation of the type considered here will be
exact for the magnetization because equation (3) is always, for the magnetization, of the
type of �m+ < tanh �Jh >. We note that in contrast a dynamical mean field theory
gives on the “naive mean field” level dm

dt = �m + tanh (2�Jm) and on the “TAP level”
dm
dt = �m + tanh

⇥

(2�J)(m � (m +

dm
dt )J(1 � m2

))

⇤

, neither of which is exact [30].
Proceeding now to theories in O2, an auxiliary Gibbs distribution based on magneti-

zation and energy takes the form

P Ising-2(s) = exp (��MM(s) � �EE(s) � F ) (7)

where �M and �E are the generalized temperatures at this level of approximation and total
magnetization M is

P

i si and total energy E is
P

i sisi+1. The final state will eventually
be a Boltzmann distribution at inverse temperature �, P / exp (��E), and the problem
is hence to find out (on this level of approximation) how (�M , �E) approach (0, �), or,
equivalently, how (< m >, < e >) approach (0, eeq) where eeq is the equilibrium energy
density at temperature 1/�. The time derivatives in (3) are

dm

dt
= �m +

⌦

tanh �h
↵ de

dt
= �2e �

⌦

h tanh �h
↵

(8)
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distribution is at all time taken to be (7). We then have for one term

d(T )hsiski
dtt

=

@

@t

X

s

P (s) sisk =

X

s

@

@t
P (s) sisk (16)

=

X

s

N
X

j=1

{wj(Fjs)P (Fjs) � wj(s)P (s)}sisk = �2

X

s

P (s) {wi(s) + wk(s)}

and for the other

d(M)hsiski
dt

=

˙�M

�

hM(sisk)i � hMihsiski
�

+

˙�E

�

hE(sisk)i � hEihsiski
�

(17)

As shown in Figure 5 the time change of the correlation function hsisi+1i (the energy),
which is included in the two-parameter theory, is reproduced exactly, while those of hsisi+2i
and hsisi+3i are not. This then shows, internal to the theory and without solving the full
dynamical equations, that the model does not catch effective interactions which develop
between non-neighboring spins at intermediate times, which is also where we find the
largest discrepancies between the energy computed exactly (by Glauber’s equation) and in
the model, compare Fig. (4).
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Figure 5: The difference

d(T )

dt hsiski� d(M)

dt hsiski, taken from (16) and (17), is shown for the index k taking

the values k = {i + 1, i + 2, i + 3}. The time derivative of the correlation function hsisi+1i is perfectly

recovered with the presented approach (red line), while the time derivative of the correlation hsisi+2i and

hsisi+3i (green and blue line respectively), correlation functions which are not included in the model, are

not well reconstructed at intermediate times. The latter difference (blue line) appears to be smaller simply

because correlations between spins at longer distance are weaker.

5 A joint spin-field theory of 1D Ising chain dynamics

We start this section by noting generally that if the master equation describes a process
obeying local balance then the flip rate wj is determined (and only determined) by the
value of sj and the total local field acting on spin j, hj(s) =

P

l(Ol(Fjs) � Ol(s))/(2sj).
For the example of a relaxing Ising spin chain hj(s) = J (sj�1 + sj+1). At least for systems
obeying detailed balance it is therefore reasonable to assume that a description in terms of
spins and total local fields acting on these spins could be accurate. Laughton et al in [20]
were the first to investigate this possibility, and in the terminology used here can be said
to have proposed to use

PLCS
= exp

0

@

X

s,h,i

d(s, h)1si,s1hi,h � F

1

A (18)
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Figure 6: Upper panel: Magnetization vs time for different value of the initial conditions (initial mag-

netization of the system) obtained by using the joint spin-field distribution dynamics (22). Lower Panel:

Energy vs time for different initial conditions obtained with the same method. In both plots the tempera-

ture T = 2.Magnetization and energy reach their equilibrium values i.e. meq = 0 and eeq = �J tanh(� J).
Qualitatively the curves are similar energy vs time curve is closer to the Glauber theory than in the

two-parameter theory of Section 4, see Fig. 3.
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Figure 7: Difference between the energy computed by the Glauber theory (integrating eq (15) with a

number of spins N = 105) and by the joint spin-field theory. Different curves refer to different values of

the initial conditions, temperature is T = 2. The results agree to one order of magnitude better than the

ones obtained in Section 4, see Fig. 4.

6 Discussion

In this paper we have pointed out that if the probability distribution of a non-equilibrium
system obeys a large deviation then this can be combined with methods to efficiently
compute marginals of Gibbs distributions developed in disordered systems theory [25]
together entailing a very considerable dimensional reduction of a spin system dynamics
described by a master equation. We have also pointed out that the accuracy of such a
dimensional reduction can be assessed self-consistently without reverting to a simulation
of the full system. These tests of self-consistency amount to computing the time change of
correlation functions which are not in the assumed large deviation principle in two different
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compute marginals of Gibbs distributions developed in disordered systems theory [25]
together entailing a very considerable dimensional reduction of a spin system dynamics
described by a master equation. We have also pointed out that the accuracy of such a
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together entailing a very considerable dimensional reduction of a spin system dynamics
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