

GINO DEL FERRARO

From Italy - (Rome)

KTH Royal Institute of Technology
- Department of Computational Biology Stockholm

Supervisor Prof. ERIK AURELL

Education

Universitary studies:

Università degli studi di Roma "La Sapienza

Rome, Italy

PhD studies:

KTH Royal Institute of Technology

Stockholm, Sweden

Educational Background:

Academic Studies: Università degli studi di Roma "La Sapienza"

Educational Background:

Academic Studies: Università degli studi di Roma "La Sapienza"

Supervisor: Angelo Vulpiani

Educational Background:

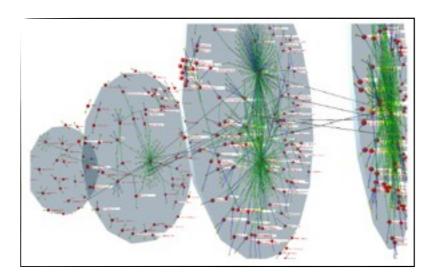
Academic Studies:

Università degli studi di Roma "La Sapienza"

Supervisor: Angelo Vulpiani

Supervisors:

Francesco Guerra


Adriano Barra

NETADIS PhD Project outlines:

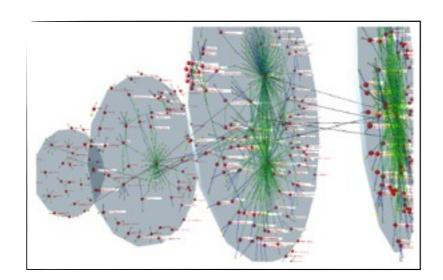
Dynamics on Networks

Dynamics of Complex Systems

NETADIS PhD Project outlines:

Dynamics on Networks

Dynamics of Complex Systems

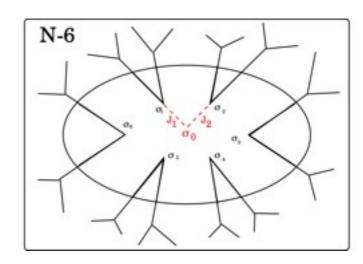

Supervisor: Erik Aurell

NETADIS PhD Project outlines:

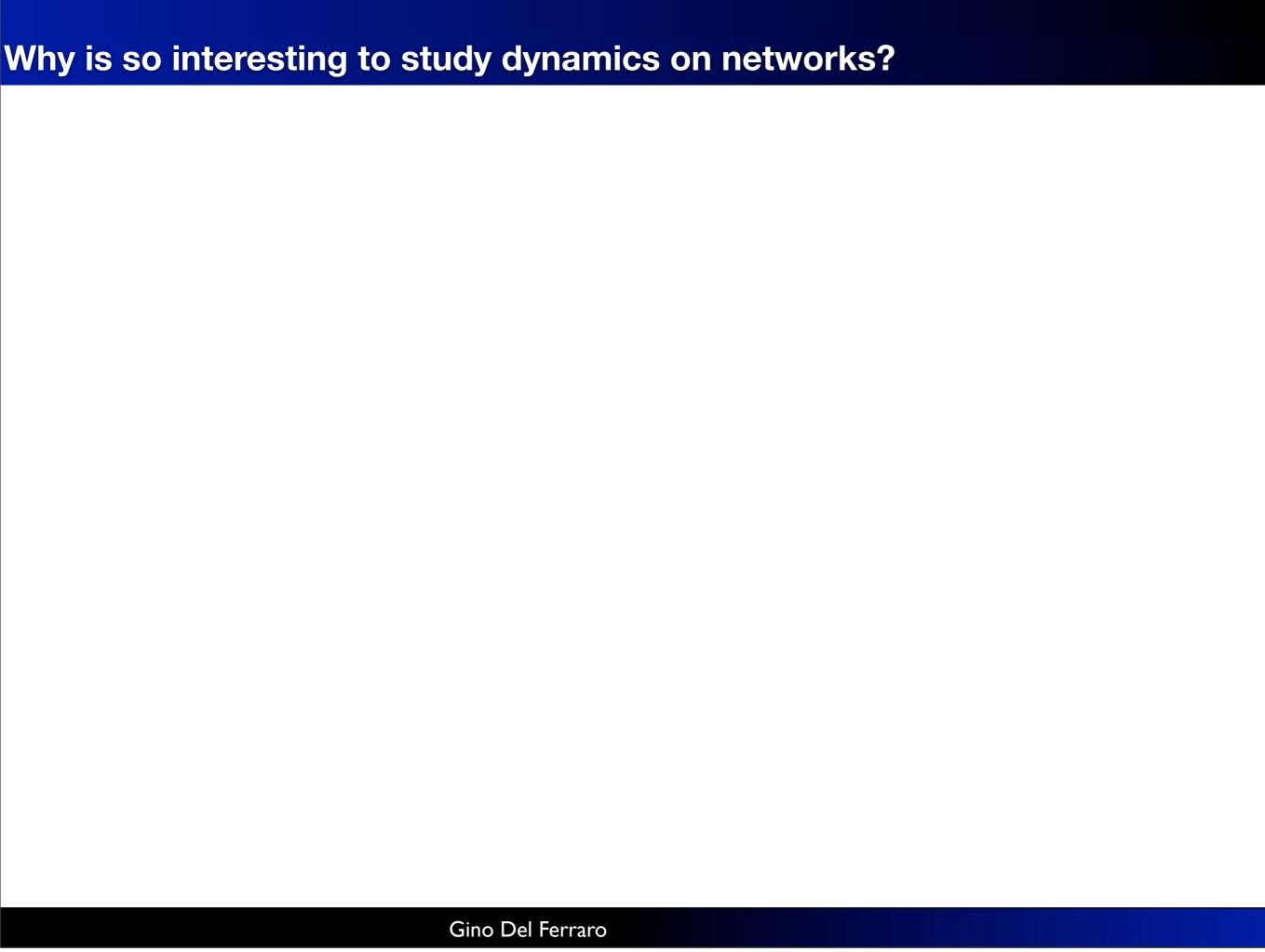
Dynamics on Networks

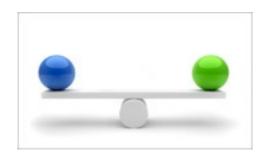
Dynamics of Complex Systems

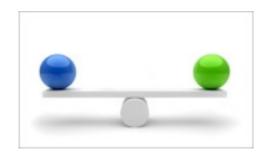
"Cavity Method for non-equilibrium states"



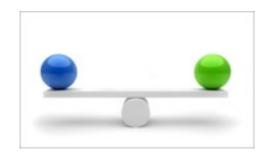
Develop dynamic BP (Belief Propagation) methods to give a description of non-equilibrium states




Supervisor: Erik Aurell

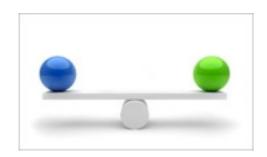


Compare the results with **naive mean field** and **dynamic TAP methods**


Equilibrium state on networks has been studied for decades

Equilibrium state on networks has been studied for decades

By using a thermodynamic description (Statistical Mechanics of equilibrium states)


Equilibrium state on networks has been studied for decades

By using a thermodynamic description (Statistical Mechanics of equilibrium states)

Dynamics description

Equilibrium state on networks has been studied for decades

By using a thermodynamic description (Statistical Mechanics of equilibrium states)

Dynamics description

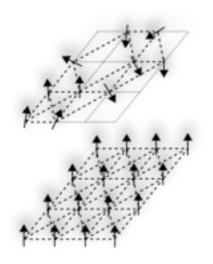
Some characteristic are not caught by the thermodynamic description (dynamical phase transitions, aging, trapping in metastable states,)

We are interested in the dynamic behavior of some relevant observables (magnetization, correlations, density of some physical variable, ...)

- - Many interesting aspects emerge only during dynamics and not at equilibrium - -

Possible Applications:

Metastability in the brain Neurodynamics



Social networks

Spreading diseases

Dynamics of spin glasses

Communicate systems

Other formative experiences so far:

Trieste - ICTP, SISSA

the end of October - the end of December, 2013

School and courses in ICTP and SISSA

Matteo Marsili

Other formative experiences so far:

Trieste - ICTP, SISSA

the end of October - the end of December, 2013

Matteo Marsili

School and courses in ICTP and SISSA

Paris - Université Paris-Sud, Lptms

the middle of January - the middle of March, 2014

Silvio Franz

Static and Dynamics of spin glasses

breaking ergodicity in p spin model

Other formative experiences so far:

Trieste - ICTP, SISSA

the end of October - the end of December, 2013

Matteo Marsili

School and courses in ICTP and SISSA

Paris - Université Paris-Sud, Lptms

the middle of January - the middle of March, 2014

Silvio Franz

Static and Dynamics of spin glasses

breaking ergodicity in p spin model

Formative collaborations:

Helsinki, Aalto University

Alexander Mozeika

Macroscopic analysis of dynamics

Formative experiences during the NETADIS project

Courses:

Information Theory (KTH)

Mathematical method for equilibrium statistical mechanics of spin glasses (KTH)

General Relativity (KTH)

Advanced topics in probability theory (SISSA)

Technical English course (KTH)

Schools:

Winter school in "Quantitative System Biology" (ICTP)

Netadis summer school May - June 2013 (ICTP)

Netadis summer school Sept - Oct 2013 (Hillerod)

Winter school on "Statistical physics, optimization, inference and message-passing algorithms" (École de Physique des Houches)

Tutoring: EuSYSBIO Program at KTH

Research done so far

Course on Spin Glasses at KTH in Stockholm

Adriano Barra

Research done so far

Course on Spin Glasses at KTH in Stockholm

 Project on interpolating techniques applied on Spin Glasses Adriano Barra

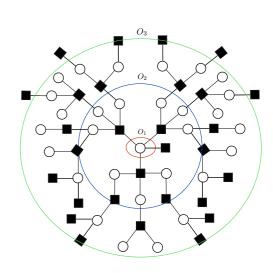
"Mean field spin glasses treated with PDE techniques"

Adriano Barra, GDF, Daniele Tantari --- Eur. Phys. J. B (2013) 86: 332

Research done so far

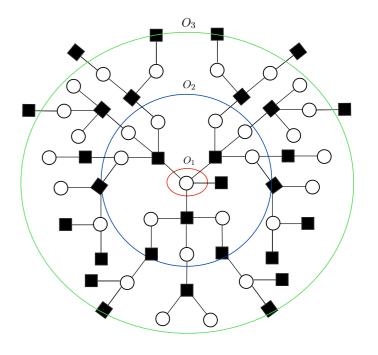
Course on Spin Glasses at KTH in Stockholm

 Project on interpolating techniques applied on Spin Glasses Adriano Barra

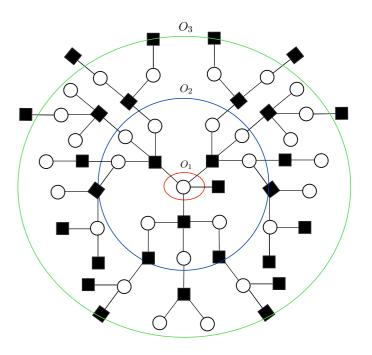

"Mean field spin glasses treated with PDE techniques"

Adriano Barra, GDF, Daniele Tantari --- Eur. Phys. J. B (2013) 86: 332

 Construction of a large deviation theory for off-equilibrium processes


application on a one-dimensional Ising model

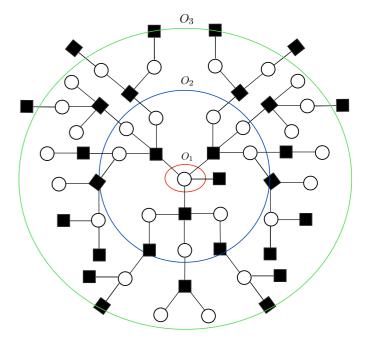
"Perturbative large deviation analysis of non-equilibrium dynamics"


GDF, Erik Aurell --- <u>arXiv:1401.4685</u>

Large deviation function for the probability distribution

$$P(s) \propto \exp(-NV(s))$$

where
$$V = \text{Const.} + \beta_1 o_1(s) + \ldots + \beta_L o_L(s)$$


Large deviation function for the probability distribution

$$P(s) \propto \exp(-NV(s))$$

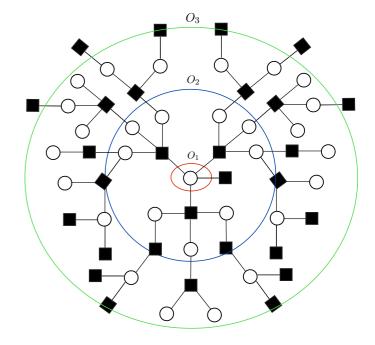
where
$$V = \text{Const.} + \beta_1 o_1(s) + \ldots + \beta_L o_L(s)$$

Two parameter theory

$$P_{\text{Ising-2}}(s) = \exp(-\beta_M M(s) - \beta_E E(s) - F)$$

Large deviation function for the probability distribution

$$P(s) \propto \exp(-NV(s))$$


where
$$V = \text{Const.} + \beta_1 o_1(s) + \ldots + \beta_L o_L(s)$$

Two parameter theory

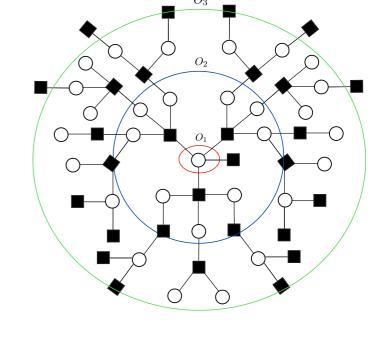
$$P_{\text{Ising-2}}(s) = \exp(-\beta_M M(s) - \beta_E E(s) - F)$$

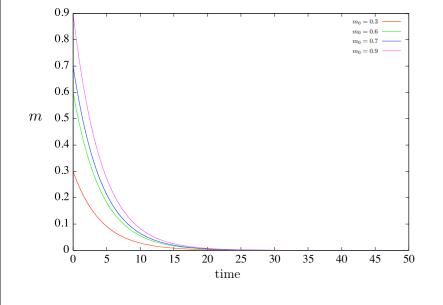
Joint spin field theory

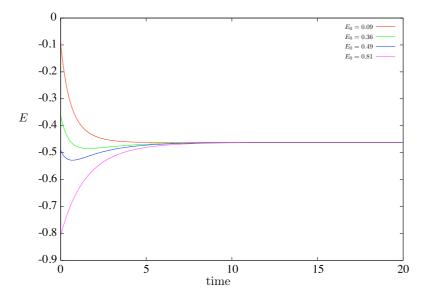
$$P^{LCS} = \exp\left(\sum_{s,h,i} d(s,h) 1_{s_i,s} 1_{h_i,h} - F\right)$$

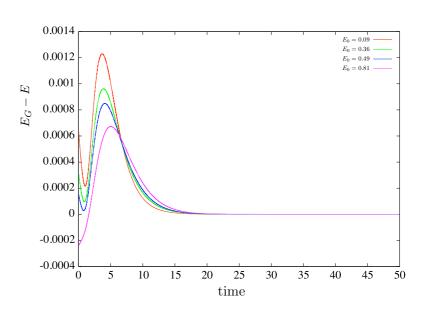
Large deviation function for the probability distribution

$$P(s) \propto \exp(-NV(s))$$


where
$$V = \text{Const.} + \beta_1 o_1(s) + \ldots + \beta_L o_L(s)$$


Two parameter theory


$$P_{\text{Ising-2}}(s) = \exp(-\beta_M M(s) - \beta_E E(s) - F)$$


Joint spin field theory

$$P^{LCS} = \exp\left(\sum_{s,h,i} d(s,h) 1_{s_i,s} 1_{h_i,h} - F\right)$$

Thank you