Optimal Strategy to Sample Complex Systems

Ariel Haimovici Supervisor: Matteo Marsili ICTP, Trieste • 2006-2012: Degree in Physics at the Universidad de Buenos Aires, Buenos Aires, Argentina.

Degree Thesis: "Study of the spontaneous fluctuations of large scale brain activity" Supervisors: Dr. Dante R. Chialvo, Dr. Pablo Balenzuela. [Haimovici et al 2013]

- 2012-Present: phd student at Universidad de Buenos Aires. Supervisor: Dr. Dante R. Chialvo Courses:
 - Non Linear Dynamics. Dr G Mindlin
 - Computational Neuroscience. Dr M Sigman
 - Complex Networks. Dr H Makse
 - Computational tools in Neuroscience. Dr M Isson
- July-2013: "School on Biological Complex Networks: from the cell to the brain and beyond", Natal, Brasil. Orginizers: Drs. JM Buldú, S Boccaletti, H Herrmann, J Soares Andrade, L Da Silva.
- November 2013 Present: ESR in Netadis, at the ICTP, Trieste, Italy.
 Course on Advanced Probability Theory. Dr Matteo Marsili, SISSA, Trieste.

Phd Project: unraveling large scale brain dynamics

Functional Magnetic Resonance Imaging

40000 Time series of ~ 300 points

How is the exploration of the phase space?

[Beckman et al 2005]

• Find informative representations of the system's dynamics

Clustering techniques to reduce the systems dimensionality in an *optimal* manner

• Infer the interactions between the systems constituents.

How does information flow in the brain?

How to choose the optimal resolution

Given the distribution of system's states (S), and state's frequencies (K), compute the entropy of the frequencies H[K] as a measure of the information content. [Marsili et al 2013]

If there are mk states (S) which are observed k times, in a sample of M points:

$$\hat{H}[\underline{s}] = -\sum_{\underline{s}} \hat{p}_{\underline{s}} \log \hat{p}_{\underline{s}} = -\sum_{k} \frac{km_{k}}{M} \log \frac{k}{M}$$
$$\hat{H}[K] = -\sum_{k} \frac{km_{k}}{M} \log \frac{km_{k}}{M} = \hat{H}[\underline{s}] - \sum_{k} \frac{km_{k}}{M} \log m_{k}$$

Back to the Brain

- → Inference on the system's dynamics
- Apply this type of analysis to an fMRI experiment in which the subjects perform a specific cognitive task. In collaboration with Drs A. Laio and D. Amati (SISSA, Trieste).
- → Apply this type of analysis to financial data. [Marsili 2008]

Thank you

References:

Beckmann, C. F., DeLuca, M., Devlin, J. T., & Smith, S. M. (2005). Investigations into resting-state connectivity using independent component analysis. Philosophical transactions of the Royal Society of London. Series B, Biological sciences, 360(1457), 1001–13.

Giada, L., & Marsili, M. (2013). Algorithms of maximum likelihood data clustering with applications. Physica A: Statistical Mechanics and its Applications, 315(3-4), 650–664.

Haimovici, A., Tagliazucchi, E., Balenzuela, P., & Chialvo, D. R. (2013). Brain Organization into Resting State Networks Emerges at Criticality on a Model of the Human Connectome. Physical Review Letters, 110(17), 178101.

Marsili M., Mastromatteo I., & Roudi Y. (2013). On sampling and modeling complex systems. Journal of Statistical Mechanics: Theory and Experiment

Marsili, M. (2008). Dissecting financial markets: Sectors and states. Quantitative Finance.