

Araks Martírosyan

My Way

- BS in Applíed Physics and Mathematics
- MS-1 Theoretical Physics

ParisTech

- Stage - Vírus Evolution Models
- MS-2 Theoretical Pfysics and Applications/Complex Systems
- Stage - Modeling of Cell Metabolism
- 所D, Applications of Stat. Pfysics and Inf. Theory in Biology

Фlan

- Troject
- ModeL
- State of The Art
- Next Steps

Droject
Regulatory control in Metabolic Networks
Advisers: Enzo Marinarí, Andrea De Martíno

Questions?

- Why certain biological channels work optimally?
- What is the optimal concentration of objects that the given channel of interaction transfer maximum amount of information?
- What is the optimal channel of interaction that for given concentrations of objects transfers maximum amount of information?

ChanneL

mRNA

Regulation

5' UTR Code

ModeL

Ref: Matteo Figliuzzi, Enzo Marinari, Andrea De Martino, MicroRNAs as a selective, post-transcriptional channel of communication between ceRNAs: a steady state theory To appear in Biophy J

State of The 'Art

1. ODE Approach and Steady State Analyses
2. Noise Integration
3. Information Theory
4. Optimization

ODE Approach and Steady State

 Analyses

Ref: Matteo Figliuzzi, Enzo Marinari, Andrea De Martino, MicroRNAs as a selective, post-transcriptional channel of communication between ceRNAs: a steady state theory, To appear in Biophy J

Noise Integration

Ref: Gasper Tkacik and Aleksandra M. Walczak, Information transmission in genetic Regulatory network, J Phys Condes Matt 23 (2011)

Noise Integration

Ref: Gasper Tkacik and Aleksandra M. Walczak, Information transmission in genetic Regulatory network, , J Phys Condes Matt 23 (2011)

Noise Integration

Ref: Matteo Figliuzzi, Enzo Marinari, Andrea De Martino, MicroRNAs as a selective, post-transcriptional channel of communication between ceRNAs: a steady state theory Biophy J, 2013

Information Theory

Information

$$
\begin{aligned}
& =\text { knowledge } \\
& =\text { loss ontropy }
\end{aligned}
$$

Ref: Shannon, Information Theory, Mathematical Theory Of communications, bell Sys Tech J 27: 379 \& 623, 1948

Mutual Information

Question: How much our uncertainty about output o reduces by knowing input x?

$$
I(x ; o)=\int d p(x)(S[p(o)]-S[p(o / x)])
$$

mutual information
input variable prob. dist.
output variable prob. dist.
conditional prob. describing x-> o regulatory element

Ref: Gasper Tkacik and Aleksandra M. Walczak, Information transmission in genetic Regulatory network, , J Phys Condens Matt 23 (2011)

Optimization

Channel

Input

Ref: Gasper Tkacik and Aleksandra M. Walczak, Information transmission in genetic Regulatory network, , J Phys Condes Matt 23 (2011)

Optimization

Entropy for the Gaussian distribution is:

$$
S_{\text {Gaussian }}=\log _{2} \sqrt{2 \pi e \sigma^{2}}
$$

variance
Using Langrange multiplier methods one can show that when the noise is Gaussian and additive, then information transmission is maximized at fixed input variance when input is drawn from a Gaussian distribution.

Ref: Gasper Tkacik and Aleksandra M. Walczak, Information transmission in genetic Regulatory network, , J Phys Condes Matt 23 (2011)

Next Steps...

Secondary

Norges Teknisk-Naturvitenskapelige Wolitecnico di Torino
Kings College

Ecole Normale Supérieure

Technischen Universität Berlin

$$
\begin{aligned}
& \frac{\overrightarrow{0}}{5} \\
& \stackrel{n}{5} \\
& \hline
\end{aligned}
$$

$$
I C T P
$$

 ICTP

 ICTP}

