EPIDEMIC PROCESSES ON NETWORKS, VIRAL MARKETING AND OPTIMAL VACCINATION

> Alberto Guggiola a.guggiola@gmail.com

École Normale Supérieure de Paris

NETADIS Scientific Kick-off Meeting Torino (Italy), February 5th, 2013

ALBERTO GUGGIOLA (ENS)

NETADIS KICK-OFF

05/02/2013

1 Presentation

2 Previous Research Projects

3 The NETADIS Project

4 Possible Secondments

ALBERTO GUGGIOLA (ENS)

NETADIS KICK-OFF

05/02/2013 2 / 21

э

・ 伺 ト ・ ヨ ト ・ ヨ ト

OUTLINE

1 Presentation

2 PREVIOUS RESEARCH PROJECTS

3 THE NETADIS PROJECT

4 Possible Secondments

ALBERTO GUGGIOLA (ENS)

NETADIS KICK-OFF

05/02/2013

3

3 / 21

・ロト ・ 一下 ・ ・ 三 ト ・ 三 ト

Who I Ам

- Bachelor Degree in *Physics* at the University of Torino
- Master Degree in *Physics of Complex Systems* at the University of Torino

ALBERTO GUGGIOLA (ENS)

NETADIS KICK-OFF

05/02/2013

< 67 ▶

- 4 ⊒ →

э

Who I Ам

- Bachelor Degree in *Physics* at the University of Torino
- Master Degree in *Physics of Complex Systems* at the University of Torino

 Now PhD student at the École Normale Supérieure de Paris

< 47 ▶

NETADIS KICK-OFF

OUTLINE

1 Presentation

2 PREVIOUS RESEARCH PROJECTS

3 THE NETADIS PROJECT

4 Possible Secondments

ALBERTO GUGGIOLA (ENS)

NETADIS KICK-OFF

05/02/2013

3

5 / 21

・ロト ・ 一下 ・ ・ 三 ト ・ 三 ト

PREVIOUS RESEARCH PROJECTS

BACHELOR THESIS

Spreading of Information on Dynamical Contact Networks

With Ciro Cattuto, ISI Foundation, Torino

MASTER THESIS Statistical Sequence Analysis of Protein Families

With Andrea Pagnani, HuGeF Foundation, Torino

ALBERTO GUGGIOLA (ENS)

NETADIS KICK-OFF

05/02/2013

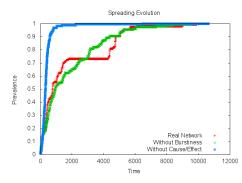
PREVIOUS RESEARCH PROJECTS

BACHELOR THESIS

Spreading of Information on Dynamical Contact Networks

With Ciro Cattuto, ISI Foundation, Torino

MASTER THESIS Statistical Sequence Analysis of Protein Families


With Andrea Pagnani, HuGeF Foundation, Torino

Spreading of Information on Dynamical Contact Networks

- Real World networks:
 - Small world effect
 - Slow propagation of information

M. Karsai et al., 2011: Small But Slow World: How Network Topology and Burstiness Slow Down Spreading, arXiv:1006.2125

Which topological characteristics slow down the spreading?

NETADIS KICK-OFF

PREVIOUS RESEARCH PROJECTS

BACHELOR THESIS

Spreading of Information on Dynamical Contact Networks

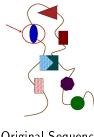
With Ciro Cattuto, ISI Foundation, Torino

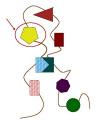
MASTER THESIS Statistical Sequence Analysis of Protein Families

With Andrea Pagnani, HuGeF Foundation, Torino

ALBERTO GUGGIOLA (ENS)

NETADIS KICK-OFF


05/02/2013


OBJECTIVE

Inference of protein structures using statistics of the sequences

F. Morcos, A. Pagnani et al. Direct-coupling analysis of residue coevolution captures native contacts across many protein families, PNAS 2011

Contact points are more correlated than generic ones

Original Sequence

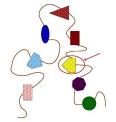
ALBERTO GUGGIOLA (ENS)

NETADIS KICK-OFF

05/02/2013


Independent Modifications

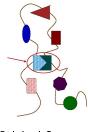
OBJECTIVE

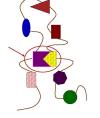

Inference of protein structures using statistics of the sequences

F. Morcos, A. Pagnani et al. Direct-coupling analysis of residue coevolution captures native contacts across many protein families, PNAS 2011

Contact points are more correlated than generic ones

Original Sequence


NETADIS KICK-OFF


OBJECTIVE

Inference of protein structures using statistics of the sequences

F. Morcos, A. Pagnani et al. Direct-coupling analysis of residue coevolution captures native contacts across many protein families, PNAS 2011

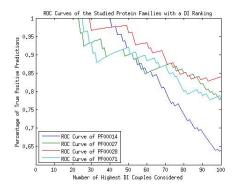
Contact points are more correlated than generic ones

Original Sequence

ALBERTO GUGGIOLA (ENS) N

NETADIS KICK-OFF

05/02/2013


Two-site Modified Sequence

Direct Information ranking of the couples of sites

Result

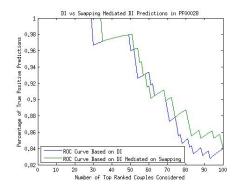
Percentage of TP among the x top ranked couples

Possible Improvement Generate modified datasets, then rank according to mean DI

< 67 ▶

NETADIS KICK-OFF

05/02/2013 11 / 21


Direct Information ranking of the couples of sites

Result

Percentage of TP among the x top ranked couples

Possible Improvement

Generate modified datasets, then rank according to mean DI

NETADIS KICK-OFF

OUTLINE

1 PRESENTATION

2 PREVIOUS RESEARCH PROJECTS

3 The NETADIS Project

4 Possible Secondments

ALBERTO GUGGIOLA (ENS)

NETADIS KICK-OFF

12 / 21

3

THE NETADIS PROJECT

Project 1 \rightsquigarrow Socio-economical sciences With Guilhem Semerjian:

Epidemic processes on networks, viral marketing and optimal vaccination Which initial conditions lead a system to a certain final state within a given dynamical process?

Project 2 \rightsquigarrow Biology

With Rémi Monasson:

Statistical mechanical study of the dynamics of interacting genomical sequences

PDZ proteic domains and their ligands are highly specific. How is such an **optimal** result obtained through the two independent, local evolutions of the sequences?

ALBERTO GUGGIOLA (ENS)

NETADIS KICK-OFF

05/02/2013

THE NETADIS PROJECT

Project 1 \rightsquigarrow Socio-economical sciences With Guilhem Semerjian:

Epidemic processes on networks, viral marketing and optimal vaccination Which initial conditions lead a system to a certain final state within a given dynamical process?

Project $2 \rightsquigarrow Biology$

With Rémi Monasson:

Statistical mechanical study of the dynamics of interacting genomical sequences

PDZ proteic domains and their ligands are highly specific. How is such an **optimal** result obtained through the two independent, local evolutions of the sequences?

ALBERTO GUGGIOLA (ENS)

NETADIS KICK-OFF

05/02/2013

・ロト ・ 一下 ・ ・ 三 ト ・ 三 ト

GENERAL FRAMEWORK

MICROSCOPICALLY IRREVERSIBLE PROCESS

- **Binary variables** $x_i^t \in \{0, 1\}$ $i \in \{1, ..., N\}$ and $t \in \{0, ..., \infty\}$
- State of the system at time t:
- Only flips $0 \rightarrow 1$ allowed:

Dynamics: Bootstrap Percolation

$$x_i^{t+1} = \left\{egin{array}{l} 1 ext{ if } x_i^t = 1 ext{ or } \sum_{j \in \mathfrak{d}_i} x_j^t \geq heta \ 0 ext{ otherwise} \end{array}
ight.$$

APPLICATIONS

Financial contagion, failures in power grids, viral marketing ...

ALBERTO GUGGIOLA (ENS)

NETADIS KICK-OFF

05/02/2013

15 / 21

 $\vec{x}^t = \{x_1^t, x_2^t, ..., x_N^t\}$

 $x_i^t = 1 \rightarrow x_i^{t'} = 1 \quad \forall t' > t, \forall i$

GENERAL FRAMEWORK

MICROSCOPICALLY IRREVERSIBLE PROCESS

- **Binary variables** $x_i^t \in \{0, 1\}$ $i \in \{1, ..., N\}$ and $t \in \{0, ..., \infty\}$
- State of the system at time t:
- Only flips $0 \rightarrow 1$ allowed:

DYNAMICS: BOOTSTRAP PERCOLATION

$$x_i^{t+1} = \begin{cases} 1 \text{ if } x_i^t = 1 \text{ or } \sum_{j \in \partial_i} x_j^t \ge \theta \\ 0 \text{ otherwise} \end{cases}$$

Applications

Financial contagion, failures in power grids, viral marketing ...

ALBERTO GUGGIOLA (ENS)

NETADIS KICK-OFF

05/02/2013

15 / 21

 $\vec{x}^t = \{x_1^t, x_2^t, ..., x_N^t\}$

 $x_i^t = 1 \rightarrow x_i^{t'} = 1 \quad \forall t' > t, \forall i$

GENERAL FRAMEWORK

MICROSCOPICALLY IRREVERSIBLE PROCESS

Binary variables $x_i^t \in \{0, 1\}$ $i \in \{1, ..., N\}$ and $t \in \{0, ..., \infty\}$

 $\vec{x}^t = \{x_1^t, x_2^t, ..., x_N^t\}$

 $x_i^t = 1 \rightarrow x_i^{t'} = 1 \quad \forall t' \ge t, \forall i$

05/02/2013

3

15 / 21

- State of the system at time t:
- Only flips $0 \rightarrow 1$ allowed:

DYNAMICS: BOOTSTRAP PERCOLATION

$$x_i^{t+1} = \left\{ egin{array}{l} 1 ext{ if } x_i^t = 1 ext{ or } \sum_{j \in \mathfrak{d}_i} x_j^t \geq heta \ 0 ext{ otherwise} \end{array}
ight.$$

Applications

Financial contagion, failures in power grids, viral marketing ...

ALBERTO GUGGIOLA (ENS)

NETADIS KICK-OFF

THE SPREAD OPTIMIZATION PROBLEM

STATEMENT

Given a graph $\mathcal{G} = \mathcal{G}(\mathcal{V}, \mathcal{E})$, find the minimal set of seeds such that, at a certain time T, all the nodes of the network become active

F. Altarelli, A. Braunstein, L. Dall'Asta, R. Zecchina, The Spread Optimization Problem, arXiv:1203.1426

ENERGY FUNCTION

$$\varepsilon(\vec{t}) = \sum_{i=1}^{N} \varepsilon_i = \sum_{i=1}^{N} \left(\mu \mathbb{I}[t_i = 0] + \varepsilon \mathbb{I}[t_i = \infty] \right)$$

where t_i is the activation time of the i^{th} node s.t. $x_i^{t_i-1}=0$ and $x_i^{t_i}=1$

LARGE DEVIATIONS

The seeds are **not** randomly chosen \rightsquigarrow Extremal properties of the process under exam

ALBERTO GUGGIOLA (ENS)

NETADIS KICK-OFF

05/02/2013

THE SPREAD OPTIMIZATION PROBLEM

STATEMENT

Given a graph $\mathcal{G} = \mathcal{G}(\mathcal{V}, \mathcal{E})$, find the minimal set of seeds such that, at a certain time T, all the nodes of the network become active

F. Altarelli, A. Braunstein, L. Dall'Asta, R. Zecchina, The Spread Optimization Problem, arXiv:1203.1426

ENERGY FUNCTION

$$\varepsilon(\vec{t}) = \sum_{i=1}^{N} \varepsilon_i = \sum_{i=1}^{N} \left(\mu \mathbb{I}[t_i = 0] + \varepsilon \mathbb{I}[t_i = \infty] \right)$$

where t_i is the activation time of the i^{th} node s.t. $x_i^{t_i-1} = 0$ and $x_i^{t_i} = 1$

LARGE DEVIATIONS

The seeds are **not** randomly chosen \rightsquigarrow Extremal properties of the process under exam

ALBERTO GUGGIOLA (ENS)

NETADIS KICK-OFF

05/02/2013

THE SPREAD OPTIMIZATION PROBLEM

STATEMENT

Given a graph $\mathcal{G} = \mathcal{G}(\mathcal{V}, \mathcal{E})$, find the minimal set of seeds such that, at a certain time T, all the nodes of the network become active

F. Altarelli, A. Braunstein, L. Dall'Asta, R. Zecchina, The Spread Optimization Problem, arXiv:1203.1426

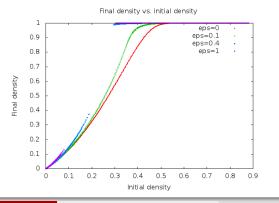
ENERGY FUNCTION

$$\varepsilon(\vec{t}) = \sum_{i=1}^{N} \varepsilon_i = \sum_{i=1}^{N} \left(\mu \mathbb{I}[t_i = 0] + \varepsilon \mathbb{I}[t_i = \infty] \right)$$

where t_i is the activation time of the i^{th} node s.t. $x_i^{t_i-1} = 0$ and $x_i^{t_i} = 1$

LARGE DEVIATIONS

The seeds are ${\bf not}$ randomly chosen \rightsquigarrow Extremal properties of the process under exam


ALBERTO GUGGIOLA (ENS)

NETADIS KICK-OFF

Optimization vs. Random Choice of the Seeds

 If ε > 0, the fraction of seeds needed to activate all the network is smaller with respect to the case where no optimization is imposed (i.e. ε = 0)

RANDOM REGULAR GRAPH, K=3, $\Theta = 2$, T = 20

ALBERTO GUGGIOLA (ENS)

PHASE TRANSITIONS IN RCSP

CONSTRAINT SATISFACTION PROBLEMS

A CSP consists in a set of constraints to be simultaneously satisfied by a set of variables.

• As $\alpha = \frac{\#constraints}{\#variables}$ changes \Rightarrow Phase transitions

ALBERTO GUGGIOLA (ENS)

NETADIS KICK-OFF

05/02/2013

PHASE TRANSITIONS IN RCSP

CONSTRAINT SATISFACTION PROBLEMS

A CSP consists in a set of constraints to be simultaneously satisfied by a set of variables.

• As $\alpha = \frac{\#constraints}{\#variables}$ changes \Rightarrow Phase transitions

PHASE TRANSITIONS IN RCSP

CONSTRAINT SATISFACTION PROBLEMS

A CSP consists in a set of constraints to be simultaneously satisfied by a set of variables.

• As $\alpha = \frac{\#constraints}{\#variables}$ changes \Rightarrow Phase transitions $\alpha = \alpha_C < \alpha_S \Rightarrow CLUS$ -TERING TRANSI-TION

NETADIS KICK-OFF

A =
 A =
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

17 / 21

05/02/2013

BEYOND THE RS PHASE IN THE SPREADING PROBLEM

- \blacksquare For certain values of the parameters μ and ε the BP equations do not converge any more
- The hypothesis on which they hold are then no more fulfilled because of the replica symmetry breaking: the space of the solutions splits into separate pure states
- The problem should then be approached in a more general framework (i.e. 1 RSB), so to study the statistics of sets of solutions instead of trying to find a unique one

$$\eta_{ij}(t_i, t_j) \quad \rightsquigarrow \quad P[\eta_{ij}(t_i, t_j)]$$

э.

FIRST RESULTS AND PERSPECTIVES

FIRST RESULT

In the region where BP equations do not converge, the **complexity** (i.e. the logarithm of the number of pure states) has been seen to be strictly positive: the 1 RSB approach seems then to be justified

BUT a deeper analysis is needed in order to extract useful information about the spreading process

ALBERTO GUGGIOLA (ENS)

NETADIS KICK-OFF

05/02/2013

OUTLINE

1 PRESENTATION

2 PREVIOUS RESEARCH PROJECTS

3 THE NETADIS PROJECT

4 Possible Secondments

ALBERTO GUGGIOLA (ENS)

NETADIS KICK-OFF

POSSIBLE INTERSECTIONS WITH OTHER PROJECTS

KCL1: SUB-NETWORK ANALYSIS USING PROJECTION METHODS

What can be said about extreme trajectories in networks if the structure is partially unknown?

KCL2: CONTAGION DYNAMICS ACROSS CREDIT NETWORKS ICTP: INFERENCE IN FINANCE AND SOCIO-ECONOMIC NETWORKS Applications of the theory of spreading events developed to socio-economic data (epidemics, financial contagion...)

Thank you for your attention!!

NETADIS KICK-OFF

POSSIBLE INTERSECTIONS WITH OTHER PROJECTS

KCL1: SUB-NETWORK ANALYSIS USING PROJECTION METHODS

What can be said about extreme trajectories in networks if the structure is partially unknown?

KCL2: CONTAGION DYNAMICS ACROSS CREDIT NETWORKS ICTP: INFERENCE IN FINANCE AND SOCIO-ECONOMIC NETWORKS Applications of the theory of spreading events developed to socio-economic data (epidemics, financial contagion...)

Thank you for your attention !!

ALBERTO GUGGIOLA (ENS)

NETADIS KICK-OFF

05/02/2013