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Abstract
• We consider the problem of predicting the spin states in a kinetic Ising model when spin trajectories are observed for only a finite fraction of sites.

• Exact inference of hidden states is not tractable for large networks, but algorithms which are based on statistical physics approximations have recently been discussed [2, 3].
Hence, it will be interesting and important to study a scenario for which the theoretically optimal performance for predicting hidden spins can be computed exactly.

• We will show that such a solution can be found in the thermodynamic limit of an infinitely large network when the couplings are random. Our approach will be based on the
replica method of disordered systems.

• We will then translate the picture derived for the disorder averaged system into equations for the local magnetization of hidden spins which are valid for a typical single system
with fixed couplings and observations. As following step, such equations could be used to write an optimal algorithm for inferring the network couplings.

The model and Bayes optimal inference
We will consider a model with N Ising spins, divided into two groups:

• a group of observed spins si(t) , i = 1 . . . Nobs = λN, t = 0 . . . T ,

• a group of hidden spins σa(t) a = 1 . . . Nhid = (1− λ)N, t = 0 . . . T

We assume parallel Markovian dynamics for the entire spin system, which is governed by
the transition probability

P [{s, σ}(t+ 1)|{s, σ}(t)] =
∏
i

esi(t+1)gi(t)

2 cosh[gi(t)]

∏
a

eσa(t+1)ga(t)

2 cosh[ga(t)]
,

where the fields are defined as

gi(t) =
∑
j

Jijsj(t) +
∑
b

Jibσb(t) , ga(t) =
∑
j

Jajsj(t) +
∑
b

Jabσb(t) ,

in terms of the couplings J . In a Bayesian setting, where the probabilistic model of the
spin dynamics is assumed to be known, the optimal prediction can be computed from the
conditional (posterior) distribution of unobserved spins given the observed ones. Given a
true ‘teacher’ sequence {σ∗} of unobserved spins, we are interested in the total quality of
the Bayes optimal prediction, given by the Bayes error

ε =
∑
{s,σ∗}

P ({s, σ∗})Θ(−σ∗a(t)ma(t)) =
∑
{s}

P ({s})
∑
{σ∗}

P ({σ∗}|{s})Θ(−σ∗a(t)ma(t)).

We will use the replica method to compute the error in the thermodynamic limit N →∞,
when the couplings J are assumed to be mutually independent Gaussian random variables,
with zero mean and variance k2/N .

Replica analysis
The replica analysis reveales a fairly simple statistical picture of the posterior trajectories
of hidden spins. Spins at different time steps (and sites) are statistically independent, but
their local magnetizations depend on the propagation of information from past and future
spins which is expressed through the order parameter

Qαβ(t) =
1

Nhid

∑
a

σαa (t)σβa (t), α 6= β

and its conjugate parameter. Assuming replica symmetry (Qαβ(t) = Q(t) ∀α 6= β, t), the
selfaveraging values of the order parameters are:

Q(t) =
1

〈W (t− 1)〉ζt−1,φt,ψt−1

〈
〈tanhA(t− 1)W (t− 1)〉2ζt−1

〈W (t− 1)〉ζt−1

〉
φt,ψt−1

, t = 1...T

Q̂(t) =
ik2(1− λ)

〈W (t)〉ζt,φt+1,ψt

〈
〈[tanhA(t)− tanhB(t)]W (t)〉2ζt

〈W (t)〉ζt

〉
φt+1,ψt

+ ik2λ
∑

{s}(t+1)

〈
〈[s(t+ 1)− tanhB(t)]V (t)〉2ζt

〈V (t)〉ζt

〉
ψt

, t = 0...T − 1

where

A(t) = ψ(t) + ζ(t) + φ(t+ 1), B(t) = ψ(t) + ζ(t),

W (t) =
coshA(t)

coshB(t)
, V (t) =

es(t+1)B(t)

2 coshB(t)

and ζ(t), ψ(t), φ(t) are Gaussian independent random fields with zero mean and covari-
ances:

〈ψ(t)ψ(t)〉 = k2 (λ+ (1− λ)Q(t)) , 〈ζ(t)ζ(t)〉 = k2(1− λ) (1−Q(t)) ,

〈φ(t)φ(t)〉 = −iQ̂(t).

Distribution of local magnetization: pt(m) = 〈w(ψ, φ)δ(m−m(t|ψ, φ)〉ψt−1,φt
,

where

m(t|ψ, φ) =
〈tanhA(t− 1)W (t− 1)〉ζt−1

〈W (t− 1)〉ζt−1

, w(ψ, φ) =
〈W (t− 1)〉ζt−1

〈W (t− 1)〉ζt−1,ψt−1,φt

.

The Bayes error equation is translated into: ε = 1
2

(
1−

∫ 1

−1 pt(m) |m| dm
)
.

Results
On the right: order parameter Q as a function
of time.
Our analytical results agree very well with
simulations of spin systems with relative
small number of spins. For these sys-
tems we could compute local magnetiza-
tions ma(t) exactly by enumeration. The
Markovian spin dynamics facilitated these
computations with the use of a forward–
backward algorithm. We then compute Q
using Q(t) = 1

Nhid

∑Nhid
a=1 Es,J m
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On the left: Bayes error as a function of the
load factor λ.
In the limit of no observations, the pre-
diction on the the state of hidden spins is
completely random (ε = 0.5). The error
rapidly decreases as λ gets larger, but re-
mains nonzero for λ = 1, indicating the
presence of a residual error in almost fully
observed systems due to the stochasticity
of the Markov process. Since the couplings
are responsible for the propagation of in-
formation between spin sites, the Bayes er-
ror decreases as the coupling strength in-
creases.
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k=2 Distribution of local magnetization of hidden
spins.
For small k the distribution is close to a
Gaussian centered at zero, with vanishing
variance as k → 0, meaning that nontriv-
ial prediction on the magnetization can be
made. As k grows larger the distribution
broadens and above a critical value the
curve becomes bimodal. For large k, the
distribution p(m) concentrates atm = ±1,
allowing for a perfect prediction of hidden
spins.
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Cavity approach

From cavity arguments we derive the equa-
tions for the local magnetization of hidden
spins for a typical single system with fixed
couplings and observations. Such mean
field equations provide an efficient algo-
rithm for the computation of local magne-
tizations in large random networks. This
could then be used as an approximation in
the E-Step of an EM algorithm [4] which
aims at computing the maximum likeli-
hood estimator of the network couplings,
averaging out unobserved spins.
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Order parameter Q as a function of
time. In the cavity approach, we compute
Q from the local magnetizations using
Q(t) = 1

Nhid

∑Nhid
a=1 Es,J m

2
a(t).


