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1 Introduction

Proteins are crucial for the existence of life as we know it. Their function is tightly
coupled to their three-dimensional structure, which is difficult to determine experi-
mentally.

Computational protein structure prediction ab initio is one of the longest standing
challenges in structural biology. Initial methods for prediction showed little success,
when tested blindly, because of insurmountable dimensionality of the unrestrained
search space.

The knowledge of which amino acids in a protein interact with each other provides
sufficient information to predict the structure of a protein. However, until recently,
contact prediction in proteins did not produce sufficient information to aid signifi-
cantly in protein structure predictions. The most successful methods for contact pre-
dictions were based on identifying correlated mutations between pairs of residues.
The introduction of predictors using methods derived from statistical physics, infer-
ring direct couplings J given the observed evolutionary data, [2] have been shown to
significantly increase the accuracy for proteins with many homologous sequences [1]
derived from next generation sequencing experiments.

2 Direct Coupling Analysis using pseudolikelihood
maximization for the Potts model (plmDCA)

A possible approach of inferring parameters Θ = {Ji j(a,b),h i(a)}i, j,a,b in the Potts
model P(D|Θ) = ∏

b=1 P(ab|Θ) given the data D = {ab} is maximum-likelihood infer-
ence:

Θ∗ = argmax
Θ

B∏
b=1

P(ab|Θ) (1)

Here, the probability P(ab|Θ) can be obtained by dividing the Boltzmann factor of
a sequence e−H(ab) by a normalization constant, the partition function.

This is intractable for any reasonable system size because the calculation of the
probabilities becomes computationally too expensive. An alternative approach is
pseudolikelihood maximization,

Θ∗
i = argmax

Θi

B∏
b=1

P(ab
i |ab

/i,Θi), (2)

where Θi = {J i,hi} are all parameters appearing in the conditional probability
distribution for node i.

The solution to this restrained problem can be solved by gradient descent methods
because the probabilities given a set of parameters can be computed explicitly.

The number of parameters is still large and scales as N2q2. To avoid overfitting,
a regularization term is introduced and the final function to be maximized is:

B∑
b=1

logP(ab
i |ab

/i,Θi)−λJ
∑
i< j

∑
a,b

Ji j(a,b)2−λh
∑

i

∑
a

hi(a)2 (3)

The resulting parameters will be a trade-off between explaining the data well and
setting as many parameters to insignificantly small values as possible.

3 Prediction accuracy

For successful contact-assisted protein folding, one needs roughly the same amount of
well-predicted contacts as the amount of amino acids in protein chain. In comparison
to the methods based on mean-field approximation, pseudo-likelihood maximization
is consistently at least 15% more accurate in terms of positive predictive value (see
section 5 and [3])

On average plmDCA is most effective while working on alignments including also
distantly related proteins, as Potts model in this case seems to be more resilient to
the inherent noise in such alignments than Ising model of mean-field methods or
methods based on partial correlation coefficients, such as PSICOV [2]). Such align-
ments tend to contain significant amount of unaligned residues (gaps), especially in
case of the distantly homologous protein sequences.

4 A Data-Driven Addition to the Hamiltonian: Gap
Stretch Parameters (gplmDCA)

Current version of plmDCA does not explicitly account for gaps, but treats them as
21st amino acid. Consequently, in case of regions with low coverage, amino acids
flanking the gaps are assigned inordinately strong couplings, leading to mispredic-
tions.

An intuitive way to reduce the gap-bias of the predictions is a set of parameters
describing stretches of gaps of length m at a position i:

HGAPS = HplmDCA +
N∑

m=1

N−m∑
i=2

γ(m)
i I[a i−1 6= q]I[a i : a i+m−1 = q]I[a i+m 6= q], (4)

where I[X = Y ] are indicator functions that are 1 if their argument is true, and 0
otherwise, and q is the symbol denoting a gap.

Any term of the first sum constitutes a multi-node interaction of order m+2 and
introduces N −m−1 new parameters. The complete number of new parameters is
of the order of N2 instead of order N2q2 for a general multi-node interaction. This
addition allows the system to explain gap stretches, clearly not the effect of a two-
node interaction, independently of the couplings. These should therefore then be,
intuitively, less tainted by them.

Given the straightforward inference technique of plmDCA based on a gradient
method, any addition to the Hamiltonian can easily be included in the implementa-
tion as long as the derivative with respect to any parameter can be calculated. This
can be done by eye from Equation 4. The additional running time can be kept small
calculating the results of the indicator functions beforehand — at the expense of a
larger memory use of about two times the size of the alignment.

5 Performance improvement and impact

Based on a set of 212 proteins of known structure and alignments produced by HH-
blits [4], gplmDCA provides more accurate predictions than plmDCA in over 85% of
cases and as-good-or-better in over 95% of cases. In comparison to PSICOV (world-
class competitive method [2]), plmDCA is better in 70% of cases, while gplmDCA is
better in 90% of cases and slightly worse in only 5%.

As previously shown, spatial couplings inferred by methods like plmDCA can be
used to accurately predict unknown protein structures [5]. Increased accuracy pro-
vided by gplmDCA should allow for tackling greater range of proteins, and coupled
with the rapidly growing amount of protein sequence information, ultimately solving
majority of protein structures in silico.
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